
VCL components for advanced communications

REFERENCE GUIDE
The comprehensive guide to using Async Professional

Reference Guide
TM

F

©2001,TurboPower Software Company

For over fifteen years you’ve depended on TurboPower to provide the best

tools and libraries for your development tasks. Now try SysTools 3 and

XMLPartner Professional—two of TurboPower’s best selling products—

risk free. Both are fully compatible with Borland Delphi and C++Builder,

and are backed with our expert support and 60-day money back guarantee.

S YS TO O L S  3™

SysTools 3 means never having to write the same

old routines again. That’s because it’s the only

library with more than 1000 reliable, optimized,

time-tested routines you’ll use in virtually every

project you build. For everything from low-level

system access to high-level financial calculations,

SysTools is a product that will easily pay for itself

the first time you use it.

X M L PA RT N E R  P R O F E S S I O N A L™

TurboPower’s newest cross-platform toolkit for XML (supporting Linux as

well as Windows) provides all the reading, writing, and editing power of

our entry-level product, XMLPartner, then adds advanced manipulation,

transformation, and presentation components—all in a single package!

Our new XSL Processor with XPath support, filter set, and EXMLPro utility

make it easy to add XML capabilities to your applications.

D E V E LO P, D E B U G , O P T I M I Z E

F R O M S TA R T T O F I N I S H , T U R B O P O W E R

H E L P S Y O U B U I L D Y O U R B E S T

Try the full range of     
TurboPower products.

Download free Trial-Run Editions 
from our Web site.

www.turbopower.com

The TurboPower family of tools—
Winners of 6 Delphi Informant Readers’ Choice Awards
for 2001! Company of the Year in 2000 and 2001.

Async Professional 4 requires Microsoft Windows (9x, Me, NT, 2000 or XP)  and Borland Delphi 3 and above, or C++Builder 3 and above

Async ProfessionalTM Async 
Professional



Async Professional 4 
Reference Guide

TurboPower Software Company
Colorado Springs, CO

www.turbopower.com

© 1998-2001 TurboPower Software Company. All rights reserved.

First Edition January 1998
Second Edition November 1999
Third Edition September 2001

     ™



License Agreement

This software and accompanying documentation are protected by United States copyright law and also by International 
Treaty provisions. Any use of this software in violation of copyright law or the terms of this agreement will be prosecuted to 
the best of our ability.

Copyright © 1998-2001 by TurboPower Software Company, all rights reserved.

TurboPower Software Company authorizes you to make archival copies of this software for the sole purpose of back-up and 
protecting your investment from loss. Under no circumstances may you copy this software or documentation for the 
purposes of distribution to others. Under no conditions may you remove the copyright notices made part of the software or 
documentation.

You may distribute, without runtime fees or further licenses, your own compiled programs based on any of the source code 
of Async Professional. You may not distribute any of the Async Professional source code, compiled units, or compiled 
example programs without written permission from TurboPower Software Company.

Note that the previous restrictions do not prohibit you from distributing your own source code, units, or components that 
depend upon Async Professional. However, others who receive your source code, units, or components need to purchase 
their own copies of Async Professional in order to compile the source code or to write programs that use your units or 
components.

The supplied software may be used by one person on as many computer systems as that person uses. Group programming 
projects making use of this software must purchase a copy of the software and documentation for each member of the 
group. Contact TurboPower Software Company for volume discounts and site licensing agreements.

This software and accompanying documentation is deemed to be “commercial software” and “commercial computer 
software documentation,” respectively, pursuant to DFAR Section 227.7202 and FAR 12.212, as applicable. Any use, 
modification, reproduction, release, performance, display or disclosure of the Software by the US Government or any of its 
agencies shall be governed solely by the terms of this agreement and shall be prohibited except to the extent expressly 
permitted by the terms of this agreement. TurboPower Software Company, 15 North Nevada Avenue, Colorado Springs, CO 
80903-1708.

With respect to the physical media and documentation provided with Async Professional, TurboPower Software Company 
warrants the same to be free of defects in materials and workmanship for a period of 60 days from the date of receipt. If you 
notify us of such a defect within the warranty period, TurboPower Software Company will replace the defective media  or 
documentation at no cost to you.

TurboPower Software Company warrants that the software will function as described in this documentation for a period of 
60 days from receipt. If you encounter a bug or deficiency, we will require a problem report detailed enough to allow us to 
find and fix the problem. If you properly notify us of such a software problem within the warranty period, TurboPower 
Software Company will update the defective software at no cost to you.

TurboPower Software Company further warrants that the purchaser will remain fully satisfied with the product for a period 
of 60 days from receipt. If you are dissatisfied for any reason, and TurboPower Software Company cannot correct the 
problem, contact the party from whom the software was purchased for a return authorization. If you purchased the product 
directly from TurboPower Software Company, we will refund the full purchase price of the software (not including shipping 
costs) upon receipt of the original program media and documentation in undamaged condition. TurboPower Software 
Company honors returns from authorized dealers, but cannot offer refunds directly to anyone who did not purchase a 
product directly from us.

TURBOPOWER SOFTWARE COMPANY DOES NOT ASSUME ANY LIABILITY FOR THE USE OF ASYNC 
PROFESSIONAL BEYOND THE ORIGINAL PURCHASE PRICE OF THE SOFTWARE. IN NO EVENT WILL 
TURBOPOWER SOFTWARE COMPANY BE LIABLE TO YOU FOR ADDITIONAL DAMAGES, INCLUDING ANY 
LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF 
THE USE OF OR INABILITY TO USE THESE PROGRAMS, EVEN IF TURBOPOWER SOFTWARE COMPANY HAS 
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

By using this software, you agree to the terms of this section and to any additional licensing terms contained in the 
DEPLOY.HLP file. If you do not agree, you should immediately return the entire Async Professional package for a refund.

All TurboPower product names are trademarks or registered trademarks of TurboPower Software Company. Other brand 
and product names are trademarks or registered trademarks of their respective holders.



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Table of Contents

Chapter 1: Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Files Supplied  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
The Component Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Organization of this Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Technical Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Chapter 2: Port Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
 TApdComPort Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Chapter 3: Winsock Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
TApdSocksServerInfo Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
 TApdWinsockPort Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
TApdSocket Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 4: Data Packet Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
TApdDataPacket Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 5: Script Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
TApdScript Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Chapter 6: State Machine Components  . . . . . . . . . . . . . . . . . . . . . . . . . . 165
TApdStateMachine Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
TApdState Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Chapter 7: Status Light Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
TApdStatusLight Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
TApdSLController Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Chapter 8: The Terminal Components  . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Terminal Design Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
TAdTerminalBuffer Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
The Terminal Parsers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
TAdTerminalParser Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
TAdVT100Parser Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
The TAdKeyboardMapping Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
The TAdCharSetMapping Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
The TAdTerminalEmulator Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
The TAdTTYEmulator Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
The TAdVT100Emulator Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
1

1



13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The TAdTerminal Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

Chapter 9: IP Telephony  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
IP Telephony in Async Professional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294
Configuration for VoIP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295
TApdVoIPTerminal Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298
TApdVoIP Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301

Chapter 10: SAPI Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
SAPI Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310
TApdAudioOutDevice Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314
TApdAudioInDevice Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324
TApdCustomSapiEngine Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333
Speech Synthesis Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334
TApdSapiEngine Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337
TApdSapiPhonePrompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351
TApdCustomSapiPhone Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356
TApdSapiPhone Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359

Chapter 11: Remote Access Service (RAS) Components  . . . . . . . . . . . 371
TApdRasDialer Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372
TApdRasStatus Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387

Chapter 12: TAPI Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
TAPI Device Control from an Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392
 TApdTapiDevice Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407
TApdAbstractTapiStatus Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440
 TApdTapiStatus Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .443
 TApdTapiLog Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445

Chapter 13: Modem Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
modemcap and libmodem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .448
TApdLibModem Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .449
TAdModem Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461
TAdModemStatus Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .478

Chapter 14: File Transfer Protocols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
General Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485
Xmodem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .501
Ymodem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .504
Zmodem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .507
Kermit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .513
ASCII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .519



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
FTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
 TApdProtocol Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
TApdFtpClient Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
TApdAbstractStatus Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
 TApdProtocolStatus Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
 TApdProtocolLog Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

Chapter 15: Fax Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
Faxmodem Control from an Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
Document Conversion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
 TApdFaxConverter Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
TApdFaxUnpacker Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
TApdFaxViewer Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
TApdFaxPrinter Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674
TApdAbstractFaxPrinterStatus Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
TApdFaxPrinterStatus Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693
TApdFaxPrinterLog Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
Sending and Receiving Faxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698
TAPI/Fax Integration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
TApdAbstractFax Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715
TApdSendFax Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736
TApdReceiveFax Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 754
Fax Server Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
TApdFaxJobHandler Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769
TApdFaxServer Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
TApdFaxServerManager Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809
TApdFaxClient Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815
TApdAbstractFaxStatus Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822
TApdFaxStatus Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826
TApdFaxLog Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828
Fax Printer Drivers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 830
TApdFaxDriverInterface Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

Chapter 16: Paging Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 837
Sending Alphanumeric Pages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 838
TApdAbstractPager Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839
TApdTAPPager Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 841
TApdSNPPPager Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 856
TApdPagerLog Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862
TApdGSMPhone Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865
TApdSMSMessage Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 872
TApdMessageStore Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875
1

1



13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdGSMPhone Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .878

Chapter 17: Low-level Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887
Timers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .888
Name Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .894

Chapter 18: Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 899
Error Handling and Exception Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .900
Conditional Defines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .920
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .921
Debugging Windows Communications Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .930

Identifier Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 1: Introduction

Async Professional is a collection of native Visual Component Library (VCL) components 
that provide serial communication facilities for programs created with Borland Delphi and 
C++Builder. It provides optimized components that are fully integrated with Delphi, 
compile directly into your EXE files, and include complete source code. Async Professional 
(APRO) provides a wide range of communication components, including:

• A communications port component with standard serial port properties (port 
number, baud rate, and so on), methods for sending and receiving data, and events 
for common communications situations (data available, buffer empty, and so on).

• A flexible data packet component that informs you when data that meets your criteria 
arrives at the communications port.

• New state machine components that let you design and implement protocols.

• New SAPI components to add Speech to your applications. Now your applications 
can speak (Text to Speech) and listen (Speech to Text).

• New IP Telephony components to implement full streaming audio and video over 
your network.

• New Non-TAPI modem database using TurboPower’s NEW modemcap XML format. 
Use the TAPI modem definitions (from the INF files) to control your modem when 
TAPI doesn’t cut it.

• New SMS pager component to take advantage of the Short Message System.

• A scripting component that contains properties and methods for automating basic 
communication operations like logging on and off, file upload and file download.

• A communications port component that provides network and Internet 
communications using Winsock, in addition to the standard communications port 
capabilities.

• A RAS dialing component to that gives you more control over your Dial-Up 
Networking via the Remote Access Server API.

•  File Transfer Protocol (FTP) components that take care of the FTP protocol details 
and present a friendly interface, allowing you to transfer huge files from the Internet 
and support resumable transfers. An FTP logging component automates the process 
of logging an FTP client-server dialog for auditing FTP activities.
     1

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
• TAPI components for working with modems in TAPI environments like Windows 
95/98, Windows NT 4.0, and Windows 2000.

• A new modem component that provides a simple interface for accessing the most 
commonly used modem operations. TAdModem integrates the selection of the 
modem from the new modem database and the dialog to show the current status of 
the modem.

• An advanced terminal the provides full support for VT100 protocol.

• StatusLight components that  react to changes in serial port status and reflect the 
status of the port.

• A file transfer protocol component for transferring files using an Xmodem, Ymodem, 
Zmodem, Kermit, or ASCII protocol.

• File transfer status and file transfer logging components to display the progress of a 
file transfer and create a history file of files sent or received.

• Paging components for sending alphanumeric pages with Telelocator Alphanumeric 
Protocol (TAP), Personal Entry Terminal Protocol (PET), internet based paging using 
the Simple Network Paging Protocol (SNPP), and Short Message Services (SMS).

•  Fax Client and Server components that make it easy to create a distributed fax server 
system.

• A fax conversion component that converts color BMP, monochrome PCX, DCX, 
TIFF and text files to a faxable format, and a fax unpacking component that unpacks 
received faxes into image files or memory bitmaps. Components for printing and 
viewing faxes are also included.

• Fax printer drivers and an interface component that provide a print-to-fax feature 
from any Windows program.

• Fax send and receive components for transmitting and receiving fax files using Class 
1, Class 1.0, Class 2 and Class 2.0 faxmodems.
     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Deprecated components
As Async Professional has matured through the years, several components have become 
obsolete, or have been replaced by components with greater functionality. Some of these 
components have been deprecated to allow APRO to evolve, while still maintaining some 
degree of backwards compatibility.

Previous version of APRO have moved the deprecated components to a separate tab on the 
component palette, this version of APRO has deprecated even that. The deprecated 
components are installed on your installation destination folder in the \Bonus folder. The 
units in this folder contain the component source for several components that can be 
installed in your palette. 

We do not plan to make any enhancements to these components, and technical support for 
these products will have a very low priority. These components may be completely removed 
from future versions of APRO. In short, we highly recommend that you do not use these 
components for new development.

The following components are now deprecated:

• TApdIniDBase, TApdModemDBase, AwModem.ini: These components and files 
were used for modem configuration and phone book databases. They have been 
replaced by the TApdLibModem component and the modemcap database.

• TApdModem, TApdSModem: These files were used for non-TAPI modem control 
using the TApdModemDBase component. They have been replaced by the 
TAdModem and TApdLibModem components.

• Modem dialer and status components using the TApdModem and TApdSModem 
components.

• Phonebook and phonebook editor components.

• Terminal window, terminal emulator and keyboard emulator components that allow 
you to add ANSI, VT52 or VT100 terminals to your application. Replaced by the 
TAdTerminal and associated components.

Each of the units containing installable deprecated components are duplications of the 
distributed 3.0x source files. To install these components, you may have to add the 
registrations methods, or add the units to a custom package.

Documentation for the deprecated components is included in the APRODEP.HLP file, 
installed in the \Bonus folder.
Chapter 1: Introduction     3

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Files Supplied
Installation information is provided in the Async Professional Developer’s Guide.

Async Professional includes Delphi components, demonstration programs, example 
programs, and a help system. It also includes a few general files, which are described below.

README.HLP
A help file that describes changes to the manual and new features added after the manual 
was printed. Please read this file before using the product.

APRO.XXX
A text file that summarizes changes between successive versions of Async Professional. 
“XXX” is replaced with the version number. For example, APRO.4.01summarizes changes 
between versions 4.00 and 4.01 of Async Professional.

APRO.HLP or APROBCB.HLP
A Windows help file containing information about Async Professional. The help system is 
generated from this manual and contains the complete text of the reference sections along 
with abbreviated versions of each component introduction.

Units supplied
The Async Professional components depend on several low-level units that are not 
documented in this manual and should never need to be used directly by your program. 
These include AdFaxCtl, AdMeter, AdPackEd, AdPropEd, AdRasUtl, AdSelCom, AdTSel, 
AdTUtil, and AdWUtil.

The AdXDial, AdXDown, AdXPort, AdXProt, and AdXUp bonus units provide example 
dialogs for dialing, downloading, selecting port options, selecting protocol options, and 
uploading, respectively. Although these units are not documented in this manual, you can 
easily use the forms in your program or modify them for your needs. Units that will be used 
in your applications to access the Async Professional VCL components are shown in Table 
1.1.

Table 1.1: Async Professional units

Unit Description

AdAbout Includes the Version property.

AdExcept Defines all of the exception classes used by Async
Professional.
     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
AdFax Includes the TApdAbstractFax, TApdSendFax, TApdReceiveFax,
TApdFaxLog, and TApdAbstractFaxStatus components.

AdFaxCvt Includes the TApdFaxConverter and TApdFaxUnpacker components.

AdFaxPrn Includes the TApdFaxPrinter, TApdFaxPrinterLog, and
TApdAbstractFaxPrinterStatus components.

AdFaxSrv Includes the TApdFaxJobHandler, TApdFaxServer,
TApdFaxServerManager and TApdFaxClient components.

AdFPStat Includes the TApdFaxPrinterStatus component.

AdFStat Includes the TApdFaxStatus component.

AdFtp Includes the TApdFtpClient and TApdFtpServer components.

AdFView Includes the TApdFaxViewer component.

AdLibMdm Includes the TApdLibModem modemcap interface component.

AdModem Includes the TAdModem and TAdAbstractModemStatus components.

AdPacket Includes the TApdDataPacket component.

AdPager Includes the TApdTAPPager and TApdSNPPPager components.

AdPort Includes the TApdComPort component.

AdProtcl Includes the TApdProtocol, TApdProtocolLog, and
TApdAbstractStatus components.

AdPStat Includes the TApdProtocolStatus component.

AdRas Includes the TApdRasDialer component.

AdRStat Includes the TApdRasStatus component.

AdSapiEn Includes the TApdSapiEngine and TApdSapiPhone components.

AdScript Includes the TApdScript component.

AdSocket Includes the TApdSocket component.

AdState Includes the TApdStateMachne, TApdState and TApdStateWatcher
components.

AdStatLt Includes the TApdStatusLight and TApdSLController components.

AdTapi Includes the TApdTapi, TApdTapiLog, and
TApdAbstractTapiStatus components.

AdTrmBuf Includes the TAdTerminalBuffer component.

AdTrmEmu Includes the TAdTerminalEmulator, TAdTTYEmulator,
TAdVT100Emulator and the TAdTerminal components.

AdTrmMap Includes the TAdKeyboardMapping and TAdCharSetMapping
components.

AdTrmPsr Includes the TAdTerminalParser and TAdVT100Parser components.

Table 1.1: Async Professional units (continued)
Files Supplied     5

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
AproReg is the unit used to register all of the Async Professional components and to add 
them to the component palette. Refer to the installation section of the Developer’s Guide for 
more information.

Demonstration and example programs
Async Professional includes many demonstration programs and small example programs. 
The demonstration programs are intended to be useful as well as instructive and they 
include many user-interface niceties that sometimes obscure the use of the communications 
objects, while the example programs typically use minimal code allowing you to focus on 
the specific component or technique being demonstrated. Generally, you should use the 
example programs to understand the basics of the communications components and use the 
demonstration programs for real-life examples of implementation.

Table 1.2 briefly describes the demonstration programs. These programs are described fully 
in the Developer’s Guide.

AdTStat Includes the TApdTapiStatus component.

AdVoIP Includes the TApdVoIP component and associated classes.

AdWnPort Includes the TApdWinsockPort component.

Table 1.2: Async Professional demonstration programs

Name Description

TermDemo Demonstrates the terminal component and related components.
It provides more features than the introductory example
programs but isn’t as complex as TCom3.

SendFax Shows how to send multiple faxes with optional cover pages.

RcvFax Shows how to wait for and answer incoming fax calls.

Cvt2Fax Demonstrates how the fax converter component converts text,
BMP, PCX, DCX, TIFF files, and the new shell and COM methods.

ViewFax A fax viewer that allows you to view APF files.

FaxMon Monitors the Async Professional fax printer driver for print
jobs and notifies FaxServr. Designed to run with FaxServr.

FaxServr Retrieves the recipient’s fax number from FaxMon, then sends
the fax. Designed to run with FaxMon.

FaxSrvX Monitors print jobs sent to the Async Professional fax
printer driver and send the faxes. FaxSrvX is based on
SendFax.

Table 1.1: Async Professional units (continued)
     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The example programs are discussed fully in the “Example” section for each of the 
components throughout the manual. See EXAMPLES.TXT in the installation directory for a 
list of the example programs included in Async Professional. The list provides the name of 
the project (DPR) file for each example. The main form/unit file name typically consists of 
the project name followed by ‘0’.

VoIPDemo A simple Voice of IP (IP Telephony) program that demonstrates
how to establish VoIP connections and conduct conversations.

TTSDemo A simple SAPI Text-to-Speech demonstration program.

SRDemo A simple SAPI Speech Recognition demonstration program.

StatDemo A project demonstrating the protocol wizard components to
create an automated logon.

ModemCap A somewhat detailed example demonstrating the modemcap modem
database.

InfParsr A demonstration program that parses modem INF files and
converts them to modemcap entries.

RasDemo A simple RAS dialer program that can dial and manipulate RAS
phonebooks. It is based on the TApdRasDialer component.

FTPDemo A simple FTP client program that can connect to an FTP
server, login, transfer files, display directory contents,
etc. It is based on the TApdFtpClient component.

ExPaging A simple paging program that allows the user to maintain a
list of pager IDs and access addresses (TAP Paging Server
phone numbers and/or SNPP IP addresses), and to send
alphanumeric pages to them individually or in groups.

Table 1.2: Async Professional demonstration programs (continued)
Files Supplied     7

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The Component Hierarchy
In order to provide the user easy access to a product version number, a Version property is 
associated with the Async Professional’s non-visual TApdBaseXxx components. The VCL 
ancestor is listed in the hierarchy for each TApdBaseXxx component.

Version read-only property

property Version : string

Show the current version of Async Professional.

Version is provided so you can identify your Async Professional version if you need 
technical support. You can display the Async Professional about box by double-clicking this 
property or selecting the dialog button to the right of the property value.

On the following pages are diagrams showing the Async Professional component hierarchy. 
All of the diagrams show the component or class name and the unit name where the 
component is implemented. All of the Async Professional components derive ultimately 
from the TComponent class. 

Some of the classes, such as TApdCustomComPort, include the word “Custom” in their 
names. These classes follow the Borland convention of implementing all of the properties 
and events of a component, but publishing none of them. You don’t design with these 
classes, but they are useful for deriving your own components that differ in some way from 
the supplied components. They are not described in the following overview.
     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
ComPort, Winsock, FTP, Data Packet, Socket
TComponent (VCL)

TApdBaseComponent (OOMisc)

TApdCustomComPort (AdPort)

TApdComPort (AdPort)

TApdCustomWinsockPort (AdWnPort)

TApdWinsock Port (AdWnPort)

TApdCustomFtpClient  (AdFtp)

TApdFtpClient  (AdFtp)

TApdFtpLog (AdFtp)

TApdDataPacket (AdPacket)

TApdSocket (AdSocket)

The TApdComPort component is the foundation of Async Professional. It allows you to 
access your PC’s serial ports, to set their properties, and to do low level serial 
communications. Almost all of the other components in Async Professional contain a link 
to a TApdComPort. The TApdWinsockPort provides a Winsock port for use in network and 
Internet communications. It provides all of the properties and methods of a TApdComPort, 
so can perform either as a Winsock port or a standard communications port. The 
TApdFtpClient is a specialized TApdWinsockPort that implements client-side file transfer 
protocol (FTP) capabilities. TApdFtpLog can be associated with a TApdFtpClient to provide 
automatic FTP logging services. TApdDataPacket provides data packets for incoming data. 
TApdSocket is a low-level component that provides standard Winsock services.

Scripting component
TComponent (VCL)

TApdBaseComponent (OOMisc)

TApdCustomScript (AdScript)

TApdScript (AdScript)

This diagram shows the hierarchy of the TApdScript component which contains properties 
and methods for automating basic communications sessions.
The Component Hierarchy     9

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
RAS dialing
TComponent (VCL)

TApdBaseComponent (OOMisc)

TApdCustomRasDialer  (AdRas)

TApdRasDialer  (AdRas)

TApdCustomRasStatus  (AdRas)

TApdRasStatus  (AdRStat)

This diagram shows the components used to establish and monitor a connection to another 
computer via Dialup Networking.  TApdRasDialer provides an easy to use interface to the 
Microsoft Remote Access Services API and a set of standard functions for manipulating 
phonebook entries and displaying dial status information. The TApdRasStatus  component 
provides a standard RAS dialing status dialog for use on machines whose RAS DLL does not 
provide a status display. 

TAPI modem management
TComponent (VCL)

TApdBaseComponent (OOMisc)

TApdCustomTapiDevice (AdTapi)

TApdTapiDevice (AdTapi)

TApdAbstractTapiStatus (AdTapi)

TApdTapi Status (AdTapi)

TApdTapiLog (AdTapi)

This diagram shows the family of components used for Telephony Application 
Programming Interface (TAPI) modem management. TApdTapiDevice provides modem 
dialing, answering, and configuration services using Windows TAPI support. The 
TApdTapiDevice also provides support for advanced voice modem features like WAV file 
playing and recording, and DTMF tone detection and generation. TApdAbstractTapiStatus 
is an abstract class that can be attached to a TApdTapiDevice object to display the TAPI 
status. TApdTapiStatus is an implementation of this abstract class that displays status in a 
particular format. TApdTapiLog is a small component that can be attached to a 
TApdTapiDevice object to keep a log file of TAPI actions.
0     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Modem operations
TComponent (VCL)

TApdBaseComponent (OOMisc)

TApdCustomSModem (AdSModem)

TApdSModem (AdSModem)

This diagram shows the ancestry of the TApdSModem (simple modem) component. It 
provides a simple interface for accessing the most commonly used modem operations.  It 
integrates the selection of the modem from the modem database and the dialog to show the 
current status of the modem.  

Terminal
TObject (VCL)

TAdTerminalBuffer (ADTrmBuf)

TAdKeyboardMapping (ADTrmMap)

TAdCharSetMapping (ADTrmMap)

TAdTerminalParser (ADTrmPsr)

TAdVT100Parser (ADTrmPsr)

TComponent (VCL)

TApdBaseComponent (OOMisc)

TAdTerminalEmulator (ADTrmEmu)

TAdTTYEmulator (ADTrmEmu)

TAdVT100Emulator (ADTrmEmu)

TWinControl (VCL)

TApdBaseWinControl (OOMisc)

TAdTerminal (ADTrmEmu)
The Component Hierarchy     11

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
This diagram shows the family of components and classes used for terminals and emulators.  
The TAdTerminalBuffer class defines a data structure for maintaining the data required for a 
communications terminal display. The TAdTerminalParser class is the ancestor class that 
defines the functionality of a terminal parser. The TAdVT100Parser class defines a parser 
that understands VT100 terminal data streams. 

The TAdKeyboardMapping class provides a simple, convenient method to specify the PC 
keystrokes that map onto the emulated terminal keystrokes, and also what control sequence 
those terminal keystrokes are going to send to the host computer. The TAdCharSetMapping 
class provides a method to emulate the different character sets used by terminals by using 
glyphs from different fonts.

The TAdTerminalEmulator class is the base class for all terminal emulators. The 
TAdTTYEmulator class emulates a teletype terminal. The TAdVT100Emulator class 
emulates a Digital Equipment Corporation (DEC) VT100 terminal and supports some 
common extensions to the normal VT100 escape sequence set. 

The TAdTerminal component represents the visual part of a terminal. It is the only visual 
component in the Async Professional suite of terminal classes. It is responsible for 
maintaining the window handle and for performing the low-level processing to get all the 
possible keystrokes available on a PC keyboard.

Modem status lights
TComponent (VCL)

TApdBaseComponent (OOMisc)

TApdCustomSLController (AdStatLt)

TApdSLController (AdStatLt)

TControl (VCL)

TGraphicControl (VCL)

TApdCustomStatusLight (AdStatLt)

TApdStatusLight (AdStatLt)

This diagram shows the family of components used for modem status lights. 
TApdStatusLight is a graphical component used to display the light in a “lit” or “unlit” state. 
TApdSLController manages a group of TApdStatusLight components and lights them based 
on events it receives from an associated comport component.
2     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Paging
TComponent (VCL)

TApdBaseComponent (OOMisc)

TApdAbstractPager (AdPager)

TApdCustomModemPager (AdPager)

TApdTAPPager (AdPager)

TApdCustomINetPager (AdPager)

TApdSNPPPager (AdPager)

This diagram shows the family of components used for sending alphanumeric pages. 
TApdAbstractPager provides properties and methods that are common to paging regardless 
of the transmission medium. TApdTAPPager sends alphanumeric pages to paging services 
that support Telelocator Alphanumeric Protocol and the Motorola Personal Entry Terminal 
Protocol. TApdSNPPPager implements Internet based paging using the Simple Network 
Paging Protocol.
The Component Hierarchy     13

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Faxes: conversion, unpacking, viewing, printing
TComponent (VCL)

!TApdBaseComponent (OOMisc)

!TApdCustomFaxConverter (AdFaxCvt)

!TApdFaxConverter (AdFaxCvt)

!TApdCustomFaxUnpacker (AdFaxCvt)

!TApdFaxUnpacker (AdFaxCvt)

!TApdCustomFaxPrinter (AdFaxPrn)

!TApdFaxPrinter (AdFaxPrn)

!TApdAbstractFaxPrinterStatus (AdFaxPrn)

!TApdFaxPrinterStatus (AdFaxPrn)

!TApdCustomFaxPrinterLog (AdFaxPrn)

!TApdFaxPrinterLog (AdFaxPrn)

!TControl (VCL)

!TWinControl (VCL)

!TApdCustomFaxViewer (AdView)

!TApdFaxViewer (AdView)

This diagram shows the family of components used for fax conversion, unpacking, viewing, 
and printing. TApdFaxConverter converts ASCII text, BMP, PCX, DCX, and TIFF files to 
Async Professional Fax (APF) format. TApdFaxUnpacker unpacks fax files to memory 
bitmaps or image files. TApdFaxViewer allows viewing of faxes with scaling, rotation, and 
white space compression. TApdFaxPrinter prints faxes with scaling and headers and footers. 
TApdAbstractFaxPrinterStatus is an abstract class that can be attached to a TApdFaxPrinter 
object to display print status. TApdFaxPrinterStatus is an implementation of this abstract 
class that displays status in a particular format. TApdFaxPrinterLog is a small component 
that can be attached to a TApdPrinter object to keep a log file of printer actions.
4     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Faxes: sending, receiving
TComponent (VCL)

!TApdBaseComponent (OOMisc)

!TApdCustomAbstractFax (AdFax)

!TApdAbstractFax (AdFax)

!TApdCustomSendFax (AdFax)

!TApdSendFax (AdFax)

!TApdCustomReceiveFax (AdFax)

!TApdReceiveFax (AdFax)

!TApdCustomFaxServer

!TApdFaxServer

!TApdFaxJobHandler

!TApdFaxServerManager

!TApdFaxClient

!TApdAbstractFaxStatus (AdFax)

!TApdFaxStatus (AdFax)

!TApdFaxLog (AdFax)

!TApdFaxDriverInterface (AdFaxCtl)

This diagram shows the family of components used for fax sending and receiving. 
TApdAbstractFax provides the set of properties, methods, and events that are common to 
both sending and receiving. The send and receive components are derived from 
TApdAbstractFax. TApdSendFax sends single or multiple faxes with optional cover pages. 
TApdReceiveFax receives faxes. TApdFaxServer is the faxing engine for the Fax Server 
Components. It handles the physical communication with the fax modem to send and 
receive faxes. Since this component can both transmit and receive faxes, it shares many 
properties with TApdSendFax and TApdReceiveFax.

TApdFaxJobHandler provides methods to manipulate the Async Professional Job file 
format. TApdFaxServerManager component provides fax scheduling and queuing 
capability. TApdFaxClient provides the ability to create APJ fax job files with a design-time 
interface.
The Component Hierarchy     15

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdAbstractFaxStatus is an abstract class that can be attached to a TApdSendFax, 
TApdReceiveFax or TApdFaxServer object to display fax status. TApdFaxStatus is an 
implementation of this abstract class that displays status in a particular format. TApdFaxLog 
is a small component that can be attached to a TApdSendFax, TApdReceiveFax or 
TApdFaxServer object to keep a log file of fax actions. TApdFaxDriverInterface provides 
control for the fax printer drivers. 
6     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Organization of this Manual
This manual is organized as follows:

• Chapter 1 is an introduction to Async Professional.

• Chapters 2 through 16 describe the Async Professional components.

• Chapter 17 describes a few general non-communication components.

• The appendices provide a discussion of error handling, a description of the Async 
Professional conditional defines, and a glossary of communications terms.

• An identifier index and a conventional subject index are provided.

Each chapter starts with an overview of the classes and components discussed in that 
chapter. The overview also includes a hierarchy for those classes and components. Each class 
and component is then documented individually, in the following format:

Overview
A description of the class or component.

Hierarchy
Shows the ancestors of the class being described, generally stopping at a VCL class. The 
hierarchy also lists the unit in which each class is declared and the number of the first page of 
the documentation of each ancestor. Some classes in the hierarchy are identified with a 
number in a bullet: !. This indicates that some of the properties, methods, or events listed 
for the class being described are inherited from this ancestor and documented in the 
ancestor class.

Properties, methods, and events lists
The properties, methods, and events for the class or component are listed. Some of these 
may be identified with a number in a bullet: !. In these cases, they are documented in the 
ancestor class from which they are inherited.
Organization of this Manual     17

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Reference section
Details the properties, methods, and events of the class or component. These descriptions 
are in alphabetical order. They have the following format:

• Declaration of the property, method, or event.

• Default value for properties, if appropriate.

• A short, one-sentence purpose. A !symbol is used to mark the purpose to make it 
easy to skim through these descriptions.

• Description of the property, method, or event. Parameters are also described here.

• Examples are provided in many cases.

• The “See also” section lists other properties, methods, or events that are pertinent to 
this item.

Throughout the manual, the "symbol is used to mark a warning or caution. Please pay 
special attention to these items.

Naming conventions
To avoid class name conflicts with components and classes included with the compiler or 
from other third party suppliers, all Abbrevia class names begin with “TAb.” The “Ab” 
stands for Abbrevia.

“Custom” in a component name means that the component is a basis for descendant 
components. Components with “Custom” as part of the class name do not publish any 
properties. Instead, descendants publish the properties that are applicable to the derived 
component. If you create descendant components, use these custom classes instead of 
descending from the component class itself.

On-line help
Although this manual provides a complete discussion of Abbrevia, keep in mind that there is 
an alternative source of information available. Once properly installed, help is available from 
within the IDE. Pressing <F1> with the caret or focus on an Abbrevia property, routine or 
component displays the help for that item.
8     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Technical Support
The best way to get an answer to your technical support questions is to post it in the Async 
Professional newsgroup on our news server (news.turbopower.com). Many of our customers 
find the newsgroups a valuable resource where they can learn from others’ experiences and 
share ideas in addition to getting answers to questions

To get the most from the newsgroups, we recommend that you use dedicated newsreader 
software. You’ll find a link to download a free newsreader program on our web site at 
www.turbopower.com/tpslive.

Newsgroups are public, so please do NOT post your product serial number, 16-character 
product unlocking code or any other private numbers (such as credit card numbers) in 
your messages.

The TurboPower KnowledgeBase is another excellent support option. It has hundreds of 
articles about TurboPower products accessible through an easy to use search engine 
(www.turbopower.com/search). The KnowledgeBase is open 24 hours a day, 7 days a week. So 
you will have another way to find answers to your questions even when we’re not available. 

Other support options are described in the product support brochure included with Async 
Professional. You can also read about support options at www.turbopower.com/support.
Technical Support     19

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
0     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 2: Port Component

The Async Professional port component builds the foundation for all communications 
applications. The simplest application might contain a single TApdComPort; a more 
complex application might contain one or more port components and many other 
components that rely on the services of a TApdComPort (terminal windows, modems, and 
so on).

This chapter describes the TApdComPort component, which contains properties and 
methods for the following:

• Configuring the serial port hardware and Windows communications driver (buffer 
sizes, line parameters, flow control).

• Providing information about the state of the serial port (modem signals, line errors).

• Transmitting and receiving data.

• Interfacing with the TApdDataPacket component (see page 132) to identify and 
handle received data.

• Assigning VCL events to handle received data, matched strings, status changes, and 
timers.

In addition to its support for standard serial ports, the TApdComPort includes specialized 
support for the RS-485 communication standard (see page 31).

If you need to support network or Internet communications using Winsock, you should 
consider using the TApdWinsockPort (see page 106) instead of the TApdComPort. Since the 
TApdWinsockPort is a descendant of the TApdComPort, it retains all capabilities of the 
TApdComPort, and adds support for Winsock.
     21

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
 TApdComPort Component
An application uses the TApdComPort component to control serial port hardware. All serial 
port I/O is performed by calling methods of TApdComPort and by writing event handlers 
that respond to serial events. Higher level communications actions such as dialing a modem 
or transferring a file use a TApdComPort to interact with the hardware.

Sending and receiving data through the serial port is obviously part of the process, but most 
communications applications also need to identify and handle data according to a specific 
need. Async Professional provides many high level components that simplify common tasks 
such as displaying the data (see “Chapter 11: Status Light Components” on page 373) and 
transferring data using an error-correcting protocol (see “Chapter 12: File Transfer 
Protocols” on page 383).

In addition to such common and well-defined tasks, a flexible component is provided that 
allows you to define the type of data you are looking for, automatically collect the data for 
you, and notify you when the data has arrived (see “Chapter 3: Data Packet Component” on 
page 105). Be sure to investigate whether or not these high level components could meet 
your needs before venturing too far into the low level facilities of the TApdComport 
discussed in the following section—you could save yourself a lot of time and effort.

Triggers and trigger handlers
Async Professional uses the term “trigger” for any serial port action that can cause its 
communications dispatcher to generate a VCL event. There are four types of triggers:

• Data available—received data is available.

• Data match trigger—a particular character or character string was received.

• Status trigger—a status event occurred (details later in this section).

• Timer trigger—a timer expired.

Note: In 32-bit applications, TApdComPort events are synchronized to the thread that sets 
Open to True (in other words, the thread that instantiates the dispatcher). In most cases, this 
will end up being the main VCL thread.

The TApdComPort component contains a variety of routines for managing triggers. 
Triggers can be added, activated, modified, and deactivated.
2     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

"

For example, adding a timer trigger looks something like this:

var
TrigHandle : Word;

...
TrigHandle := ApdComPort.AddTimerTrigger;
ApdComPort.SetTimerTrigger(TrigHandle, 36, True);

This code adds a timer trigger and stores the trigger handle in TrigHandle. The timer is 
activated and set to expire in 36 ticks (about 2 seconds). When the timer expires, an 
OnTriggerTimer event will be generated. An event handler must be assigned to the 
OnTriggerTimer property to gain control when the timer expires.

procedure Form1.TriggerTimer(CP : TObject; TriggerHandle : Word);
begin

...
end;
...
ApdComPort.OnTriggerTimer := TriggerTimer;

Here are the TApdComPort event properties and event handler declarations that correspond 
to the four Async Professional trigger types, and the data they contain.

OnTriggerAvail
procedure(CP : TObject; Count : Word) of object;

Generated when a certain number of bytes of received serial data are available for 
processing. Count is the actual number of bytes that have been received at the instant the 
trigger is generated.

It’s likely that more than one byte of data will be available when the message handler is 
called. The amount of data received in a given event depends on several factors, such as the 
nature of the data itself (does it get sent one character at a time by the transmitter, or is it 
being sent in blocks or streams?), and the hardware/driver supplying the data to Async 
Professional (standard Windows communications drivers typically supply data in small 
blocks (8 bytes or less), but Winsock can supply data in large blocks (1,000 bytes or more).

Caution: Be sure to process the exact number of bytes passed in the Count parameter of this 
handler. If you process fewer bytes, you risk losing characters to another component 
extracting data during the event (such as the terminal). If you process a number of bytes 
greater than the value of the Count property, you risk receiving events for overlapping 
data—which may eventually lead to an EBufferIsEmpty exception.
TApdComPort Component     23

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

"

Here’s what a typical OnTriggerAvail event handler should look like:

procedure Form1.TriggerAvail(CP : TObject; Count : Word);
var

I : Word;
C : Char;

begin
for I := 1 to Count do begin

C := ApdComPort.GetChar;
...

end;
end;

The OnTriggerAvail and OnTriggerData events are generated from the dispatcher thread, 
and synchronized with the appropriate thread through the use of SendMessageTimeout. 
The timeout value is 3 seconds. If your OnTriggerAvail or OnTriggerData event handlers 
take longer than 3 seconds to execute (starting at the time the SendMessageTimeout method 
was called), you run the risk of losing data. If the timeout period expires, the dispatcher will 
assume that a deadlock has occurred and will continuing processing the serial port 
notification messages. If you need to perform lengthy processing, you should collect the 
received data in a buffer, then process the buffer outside the context of the OnTriggerAvail 
event handler.

OnTriggerData
procedure(CP : TObject; TriggerHandle : Word) of object;

Generated when the dispatcher finds a match in the received data for a data string previously 
specified using the AddDataTrigger method. TriggerHandle is the trigger handle returned 
by AddDataTrigger.

Usually the dispatcher finds the match in the middle of a block of bytes it is examining. In 
this case the dispatcher first generates an OnTriggerAvail event for all the data leading up the 
matched string, then it generates the OnTriggerData event to advertise the match, and 
finally it generates another OnTriggerAvail event for the data associated with the match.

The data trigger does not guarantee that the notification will be exactly synchronized with 
the actual occurrence of the data match. In other words, if you set a data trigger for the 
string “MYDATA”, it is not reliable nor was it intended for you to start capturing those 
characters in an OnTriggerAvail event immediately following the OnTriggerData event for 
that string. Refer to the APROFAQ.HLP file for example code.

Caution: Be sure to process the exact number of bytes passed in the Count parameter of this 
handler. If you process fewer bytes, you risk losing characters to another component 
extracting data during the event (such as the terminal).If you process a number of bytes 
greater than the value of the Count property, you risk receiving events for overlapping 
data—which may eventually lead to an EBufferIsEmpty exception.
4     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
In most cases, the TApdDataPacket component is the best way to capture a specific string. 
See “Chapter 3: Data Packet Component” on page 105 for more information on how to use 
the TApdDataPacket component.

OnTriggerTimer
procedure(CP : TObject; TriggerHandle : Word) of object;

Generated when the dispatcher determines that a timer has expired. TriggerHandle is the 
trigger handle returned when AddTimerTrigger was called.

OnTriggerStatus
procedure(CP : TObject; TriggerHandle : Word) of object;

Generated when a status change occurs. Status types include: changes in modem signals 
(CTS, DSR, RING, and DCD), changes in line status (line break received and data overrun, 
parity, and framing errors), output buffer free space reaching a specified level, and output 
buffer used space reaching a certain level.

TriggerHandle is the trigger handle returned when AddStatusTrigger was called. 

When a status trigger is used to track more than one modem signal, the event handler must 
check the appropriate modem status properties to determine exactly which modem signal 
generated the trigger. You can avoid these calls by adding a separate trigger for each modem 
signal that you need to trap.

Specialized versions of the OnTriggerStatus event are also available through several events 
that are generated only when one particular kind of status change occurs. Event handlers for 
these events are called after the OnTriggerStatus event handler. It is possible to have an 
OnTriggerStatus handler and also one or more specific status event handlers. Here are the 
event properties and event handler declarations for these specialized events.

OnTriggerLineError
procedure(

CP : TObject; Error : Word; LineBreak : Boolean) of object;

Generated when the dispatcher determines that a line error or break signal occurred while 
receiving data. Error contains one of the following values (a subset of all possible values of 
the LineError property):

leOverrun = 2;
leParity = 3;
leFraming = 4;

LineBreak is True if a break signal was received. Note that breaks are often accompanied by 
framing errors.
TApdComPort Component     25

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
OnTriggerModemStatus
procedure(CP : TObject) of object;

Generated when a monitored modem status signal changes. The signals to monitor are 
passed in SetStatusTrigger. Note that there is no TriggerHandle parameter to this event 
handler. As such, it cannot differentiate among multiple modem status triggers. If you need 
to add more than one modem status trigger, use an OnTriggerStatus event handler instead 
of this specialized one.

OnTriggerOutbuffFree
procedure(CP : TObject) of object;

Generated when the number of bytes free in APro’s output buffer is greater than or equal to 
the number passed to SetStatusTrigger for this event.

OnTriggerOutbuffUsed
procedure(CP : TObject) of object;

Generated when the number of bytes used in Apro’s output buffer is less than or equal to the 
number passed to SetStatusTrigger for this event.

OnTriggerOutSent
procedure(CP : TObject) of object;

Generated after PutChar, PutBlock, or PutString is called.

The TApdComPort component has one more event type that is a superset of all of those just 
described. This event is generated for every trigger reported by the Async Professional 
dispatcher to the component.

OnTrigger
procedure(

CP : TObject; Msg, TriggerHandle, Data : Word) of object;

Generated for all trigger events. Msg is the internal message number that corresponds to the 
event. For example, the message APW_TRIGGERAVAIL corresponds to the OnTriggerAvail 
event (the other message names are documented in the reference section for the OnTrigger 
event on page 69). TriggerHandle is the trigger handle returned when the trigger was added. 
Data is the data associated with this trigger.

This event is generated prior to the associated specific event type. For example, when a 
modem status signal generates a trigger, the OnTrigger event is generated with Msg set to 
APW_TRIGGERSTATUS, then the OnTriggerStatus event is generated with TriggerHandle 
set to the status trigger handle, then the OnTriggerModemStatus event is generated.
6     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
In most cases you would not want to use an OnTrigger event handler, but instead provide 
individual event handlers. OnTrigger is provided primarily for script or protocol-oriented 
processes where it is more efficient to manage all tasks from one central routine.

With the exceptions of OnTriggerAvail, OnTriggerData, and OnTriggerOutSent, all triggers 
must be reactivated within the event handler. That is, the triggers generate a single message 
and do not restart themselves automatically. The following example uses triggers:

{$IFDEF Win32}
{$APPTYPE CONSOLE}
{$ENDIF}
unit Extrig0;

interface

uses
{$IFNDEF Win32}
WinCrt,
{$ENDIF}
SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls, AdPort, AdTerm;

type
TExTrigTest = class(TForm)

ApdComPort1: TApdComPort;
StartTest: TButton;
Label1: TLabel;
procedure ApdComPort1TriggerAvail(
CP : TObject; Count : Word);

procedure ApdComPort1TriggerData(
CP : TObject; TriggerHandle : Word);

procedure ApdComPort1TriggerTimer(
CP : TObject; TriggerHandle : Word);

procedure StartTestClick(Sender : TObject);
private

TimerHandle : Word;
DataHandle : Word;

end;
var

ExTrigTest: TExTrigTest;
implementation

{$R *.DFM}
TApdComPort Component     27

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
procedure WriteIt(C : Char);
begin

if Ord(C) > 32 then
Write(C)

else
Write('[', Ord(C), ']');

end;

procedure TExTrigTest.ApdComPort1TriggerAvail(
CP : TObject; Count : Word);

var
I : Word;
C : Char;

begin
WriteLn('OnTriggerAvail event: ', Count, ' bytes received');
for I := 1 to Count do begin

C := ApdComPort1.GetChar;
WriteIt(C);

end;
WriteLn;
WriteLn('--------');

end;

procedure TExTrigTest.ApdComPort1TriggerData(
CP : TObject; TriggerHandle : Word);

var
I : Word;
C : Char;

begin
WriteLn('OnTriggerData event: ', TriggerHandle);

end;

procedure TExTrigTest.ApdComPort1TriggerTimer(
CP : TObject; TriggerHandle : Word);

begin
WriteLn('OnTriggerTimer event: ', TriggerHandle);

end;

procedure TExTrigTest.StartTestClick(Sender : TObject);
begin

TimerHandle := ApdComPort1.AddTimerTrigger;
ApdComPort1.SetTimerTrigger(TimerHandle, 91, True);
DataHandle := ApdComPort1.AddDataTrigger('OK', True);

{send a string to a modem that will hit all triggers}
ApdComPort1.PutString('ATI'^M);

end;

end.
8     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
This is the unit containing the form for the example project EXTRIG. It contains two 
components: StartTest (a TButton) and ApdComPort1 (a TApdComPort). StartButton 
implements a Click event handler named StartButtonClick that starts the trigger 
demonstration. StartButtonClick adds and sets a timer for 91 ticks (5 seconds) and adds a 
data trigger for the string “OK.” Finally, it transmits the string ‘ATI’^M. If a modem is 
attached to the serial port, this tells the modem to return its version information, followed 
by the response “OK.”

The form implements three event handlers:

• ApdComPort1TriggerAvail for OnTriggerAvail events.

• ApdComPort1TriggerData for OnTriggerData events.

• ApdComPort1TriggerTimer for OnTriggerTimer events.

As the modem returns its version information the program receives one or more 
OnTriggerAvail events. The handler for this event, ApdComPort1TriggerAvail, retrieves and 
displays this data to the WinCrt window (or console window in a 32-bit console 
application). ApdComPort1TriggerData is called when “OK” is received; it writes a simple 
message to the WinCrt window. After 5 seconds ApdComPort1TriggerTimer is called, 
which also writes a short message to the WinCrt window.

ISDN support overview
Integrated Service Digital Network (ISDN) connections are becoming more commonplace 
in today’s communications applications as the associated costs steadily decline.

ISDN introduces a number of features to the world of PC communications. ISDN lines 
have digital channels as opposed to the analog lines (also called POTS for Plain Old 
Telephone Service) that standard AT-compatible modems use. Digital channels provide 
much higher bandwidths that allow faster communication speeds and higher data 
throughput. ISDN lines consist of multiple channels, whereas POTS consists of a single line. 
With multiple channels, various types of information (e.g., data, voice, and video) can be 
transmitted simultaneously.

ISDN is available in a number of configurations. Basic Rate Interface ISDN (BRI-ISDN) 
comes with two B-channels and a D-channel. B-channels allow for 64 Kbps or 56 Kbps 
throughput depending on what your local carrier provides. In some configurations, these 
channels can be utilized as a single 128 Kbps or 112 Kbps line. The D-channel provides a 16 
Kbps channel that is normally used to send signaling information and additional control 
data (e.g., the calling party’s name, location, and configuration). Primary Rate Interface 
ISDN (PRI-ISDN) is much more expensive and provides up to 23 B-channels and one D-
channel in the U.S., Canada, and Japan. It provides up to 30 B-channels and two D-channels 
in Europe.
TApdComPort Component     29

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Async Professional supports basic ISDN services with many AT-compatible adapters 
through the TApdTapiDevice component. In general, non-TAPI and non-AT-compatible 
ISDN adapters (e.g., those used strictly for PPP or dial-up connections) are not supported 
by Async Professional for serial communications. The TApdTapiDevice treats ISDN 
adapters as standard AT-compatible modems that control a single channel. A 
TApdTapiDevice cannot control multiple channels. You can use the other channels in your 
ISDN connection by creating a TApdTapiDevice for each one.

Note that Async Professional support ISDN devices through the TApdTapiDevice interface. 
Async Professional does not support the CAPI interface to ISDN devices. 

Async Professional supports two types of ISDN adapter/driver configurations: ISDN 
adapters that are AT-compatible and ISDN adapters that come with AT-compatible analog 
drivers. Many AT-compatible ISDN adapters work with Async Professional transparently, 
usually with higher throughput than standard faxmodems. These modems and drivers are 
used for ISDN to ISDN connections. ISDN adapters that provide analog modem or fax 
drivers work with Async Professional just like a standard faxmodem (i.e., at the lower speed 
and throughput of a standard faxmodem). When the driver is the selected device, the ISDN 
adapter and line can connect to standard POTS devices such as a faxmodem or fax machine. 
To date, there are relatively few ISDN adapters that provide analog fax drivers.

Async Professional can be used with ISDN adapters that conform to the following 
specifications:

• 100% AT (command set) compatible.

• TAPI compatible and has a TAPI driver (available in the Modems Applet in the 
Microsoft Windows Control Panel).

• At least one data channel.

Async Professional also supports the following optional features:

• Analog modem (TAPI) driver support (used when connecting to standard modems 
on POTS lines).

• Faxmodem (TAPI) driver support (used when connecting to standard faxmodems or 
fax machines on POTS lines).

Some TAPI service provider drivers do not support the full set of TAPI functions. You might 
be limited by the driver provided by your ISDN adapter manufacturer.

Using a TApdTapiDevice component with an ISDN line is exactly the same as using it with a 
standard analog line. See “Chapter 8: TAPI Components” on page 203 for more information 
on how to use a TApdTapiDevice.
0     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
RS-485 support overview
RS-485 serial networks usually consist of two or more serial devices all connected to the 
same 2-wire serial cable. The transmitted data is represented by voltage differences between 
the two lines instead of a voltage difference between a single line and a common ground as 
in RS-232. This difference allows RS-485 networks to operate over much greater distances 
than RS-232.

RS-485 requires specific serial port hardware that supports RS-485 voltages and 
conventions. Most standard serial ports provided on a motherboard and even most add-in 
serial ports do not support RS-485 mode.

Since both RS-485 wires are required to transmit data, an RS-485 device can either receive 
data or transmit data (but not both) at any given moment. RS-485 devices usually spend 
most of their time in receive mode, monitoring the line for incoming data. When one device 
starts transmitting all other devices in the network receive that data, so messages usually 
include an address byte to allow devices to ignore messages not addressed to them.

With such a network, the PC normally acts as a master—addressing and sending data to 
each remote slave device and processing its response before moving on to the next device. 
Before the PC can transmit, it must take control of the data line. While transmitting, it 
cannot receive any data so it must release control of the line after transmitting so it can 
receive the response. This switch from transmit to receive mode can be either automatic 
(controlled by the RS-485 board or converter), or it can be manual (controlled by the PC 
software or driver). 

The mechanism provided by RS-485 boards for switching the data line from receive to 
transmit mode falls into three categories:

• RTS Control

• Automatic

• Other

Most currently available RS-485 boards use the RTS line to control the state of the data line. 
Before transmitting data, the application raises the RTS line of the port, which tells the 
RS-485 board to switch to transmit mode. After transmitting the data the application lowers 
RTS to switch the line back to receive mode. These boards are supported by the 
TApdComport by using the RS485Mode property (with some exceptions noted below).

Some boards and converters handle the RS-485 data line switch automatically, with no 
assistance from the software. These boards are supported by Async Professional but do not 
require use of the RS485Mode property.
TApdComPort Component     31

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

"

The few remaining boards use proprietary techniques for providing RS-485 support instead 
of the RTS or automatic switching described above. These boards are not specifically 
supported by Async Professional, but can probably be used anyway if your code performs 
the actions required by the board’s documentation.

RTS control
Since the TApdComPort provides an RTS property your application could manually raise 
RTS before transmitting data and lower RTS after transmitting. This would work in theory, 
but is somewhat problematic in that when a PutXxx method has returned, the data may not 
have been completely transmitted and lowering RTS at that time would result in some data 
being truncated. Even lowering RTS after a calculated delay would be error prone since the 
calculation would have to account for delays in UART (the serial port chip) buffering and 
would be susceptible to unpredictable delays due to multitasking.

A better approach is to use Async Professional’s built-in RTS line control, which is available 
through the RS485Mode property. When RS485Mode is set to True all PutXxx methods 
raise RTS before transmitting the first byte, wait for the data to be completely transmitted, 
then lower RTS. The wait accurately accounts for data in the UART, assuring that RTS is 
lowered at the proper time.

Caution: The RTS line control follows the output buffer. If the output buffer empties while 
your code is formatting and transmitting a command, the RTS line could be lowered and 
re-raised—which might cause some RS-485 devices to misinterpret the message.

It is better to pre-format a command in a buffer and use a single PutBlock call to transmit it 
than to format and transmit at the same time using multiple PutXxx commands.

For example, use the first code example rather than the second:

Message := '!' + Address + MsgLength + Message + '$';
PutString(Message);

PutChar('!');
PutChar(Address);
PutChar(MsgLength)
PutString(Message, MsgLength);
PutChar('$');

Under Windows 95/98/ME, the waiting is handled within Async Professional since the 
communications API doesn’t provide the necessary accuracy. Under Windows NT, the 
waiting is handled by the serial port driver, since it does provide the necessary accuracy.
2     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The automatic handling of the RTS line is possible for standard ports in all environments 
and for all non-standard serial ports that provide the necessary driver support. Part of this 
support (in Windows 95/98/ME) includes the detection of the serial port hardware’s base 
address. If this address cannot be detected, attempts to transmit in RS-485 mode will raise 
the EBaseAddressNotSet exception. If you know the base address of the port, you can set it 
manually using the BaseAddress run-time property.

If the serial port doesn’t use standard serial port hardware, then RS485Mode cannot provide 
automatic RTS line control for that port. In such cases, however, the board likely provides 
some other mechanism for handling RS-485 support (assuming it’s RS-485 capable) and 
you will need to consult the board’s documentation for details.

Under Windows NT, the waiting is handled within the serial port driver and replacement 
drivers must also provide this support in order for Async Professional’s RS485Mode 
property to work. If they do not, it is again likely that the board provides some other 
mechanism for supporting RS-485.

Debugging facilities
In a perfect world all programs would work flawlessly as they were typed in. Since things 
rarely work out this nicely, it is often necessary to break out the debugging tools and apply 
some hard-won debugging knowledge to get programs to behave themselves. 
Communications programs introduce some new debugging issues, and your existing tools 
and knowledge may no longer be adequate.

For example, suppose you’re writing a data collection program that regularly receives data 
from an instrument and writes the data to a database. While testing, you notice that a small 
percentage of the data in the database is wrong. Broadly speaking, there are two 
explanations for such a problem: 1) the instrument sent bad data; or 2) your program 
somehow corrupted the good data before writing it to disk. Given that the errors occur 
infrequently, you’d probably have to add specific debugging code to your program to create 
an audit report of all received data. Later you’d compare this audit report to the data in the 
database. If the data matched, you would know that the instrument sent bad data; otherwise 
you could conclude that your program corrupted the data. Either way, you would know what 
debugging steps to take next.

Tracing
Variations of this need for an audit trail can occur in almost any communications program. 
Rather than force you to add such debugging code to your applications, Async Professional 
provides a general auditing facility called tracing.

Simply put, tracing gives you the ability to keep track of all characters transmitted and 
received by a program, in the form of a text file that your program creates on request.
TApdComPort Component     33

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Every time an application successfully retrieves a received character (i.e., GetChar returns a 
character) a trace entry is created. Every time an application successfully sends a character 
to the Windows communications driver (i.e., PutChar is called successfully) another trace 
entry is created.

These entries are stored in a circular queue of a specified size. Since the queue is circular, it 
always contains information about the most recent transmitted or received characters. In 
Delphi 1, the queue can hold at most 32760 entries. In 32-bit compilers, the queue can hold 
up to 4 million entries.

The queue can be dumped to a text file at any time. This text file is a report of all data 
transmitted and received by the application in the following format:

Transmit:
**[24]B0100000027fed4[13][138][17]

Receive:
rz[13]**[24]B00800000000dd38[13][138][17]

Transmit:
**[24]B0100000027fed4[13][138][17]

Receive:
[17]*[24]C[4][1][0][0][0][184]6[30][139]a.txt[0]6048
4734111064 0 0 3 18144[0][24]kP[251]B6

This report happens to be the first few exchanges of a Zmodem protocol transfer. Printable 
characters are displayed as ASCII strings; non-printable characters are displayed as decimal 
values in square brackets (e.g., [13] is a carriage return) or optionally as hex values.

Notice that the data is grouped in blocks of received and transmitted characters 
representing the sequence in which the program made calls to GetChar and PutChar. A 
new block is created whenever the program switches from transmitting to receiving or vice 
versa. For example, if a program transmitted a continuous stream of data without ever 
stopping to receive data, the report would consist of a single transmit block. Conversely, if 
a program contained a character-by-character terminal loop, each block might consist of 
only one character because the program constantly switched between sending and receiving 
single characters.

The sequence in a trace report is not necessarily the same as the sequence in which data 
arrived or departed from the serial port. Suppose that a program transmits the string 
“ABCD” to a remote device that echoes the characters it receives. In a chronological report, 
the echo characters received by the transmitter would be intermingled with, but slightly 
behind, the transmitted characters.
4     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
That’s not what tracing was designed to do. It was designed to show the data in the order it 
was processed by an application. The major benefit to such ordering is that it permits 
checking program logic against the data the program is actually processing. For example, 
tracing was extremely valuable during the development of the modem and file transfer 
protocol portions of Async Professional. If a particular test went awry, it was a simple matter 
to review the trace and find out what went wrong (of course, finding out why it went wrong 
was another matter).

The mechanics of using tracing are quite simple. A typical use would look something like 
the following: 

...create comport component
ApdComPort.TraceSize := 1000;
ApdComPort.Tracing := tlOn;
...use comport component
ApdComPort.TraceName := 'TEST.TRC';
ApdComPort.Tracing := tlDump;
...destroy comport component

The state of the tracing facility is controlled by setting the Tracing property to one of the 
following values shown in Table 2.1.

When inspected, either at run time or design time, Tracing will always be one of tlOff, tlOn, 
or tlPause. Setting Tracing to any other value causes an action (such as writing the trace file) 
then sets Tracing to either tlOff or tlOn. For example, setting Tracing to tlDump writes the 
trace data to a new file, then turns Tracing off, so inspecting Tracing immediately after 
setting it to tlDump would return tlOff.

Table 2.1: Tracing property values

Value Effect

tlOff Turns off tracing without saving the trace data.

tlOn Turns tracing on or resumes tracing after a pause.

tlDump Writes the trace data to a new file, turns off tracing.

tlAppend Appends the trace to an existing file, turns off tracing.

tlClear Clears the trace buffer but leaves tracing on.

tlPause Pauses tracing.
TApdComPort Component     35

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
After you create a comport component, set the TraceSize property to specify the trace buffer 
size, then set the Tracing property to tlOn to begin tracing. From then on, every successful 
call to PutXxx and GetXxx is automatically recorded. If more than the specified number of 
trace entries is generated, the queue always contains the most recent. Set the TraceName 
property to the name of the file where the trace file should be stored. Optionally, you can set 
the TraceHex property to True to enable writing of non-printable characters to the trace file 
in hexadecimal format. When Tracing is set to tlDump, the current contents of the trace 
buffer are written to disk.

Dispatch logging
Tracing is a great tool for examining the incoming and outgoing data processed by your 
program. One of tracing’s major strengths is that it shows only the data processed when your 
program calls the GetXxx and PutXxx routines. Comparing the resulting trace file to your 
program logic can often point out logic errors.

In some situations, however, a more appropriate debugging tool is one that shows the true 
chronology of incoming and outgoing data. It may be more important to see exactly when 
data arrived at the port rather than seeing how your program processed that data.

The standard Windows communications driver doesn’t provide enough information to 
determine exactly when data arrived. The next best thing is knowing when the Async 
Professional internal dispatcher got the data, and that’s how “dispatch logging” works.

Dispatch logging creates an audit trail of each action taken by Async Professional 
components. These entries are stored in a circular queue of a specified size. Since the queue 
is circular, it contains information about the most recent transmitted or received characters. 
Entries in this queue are of variable length, and the queue can be as large as 16 million bytes. 
6     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The queue can be dumped to a text file at any time. This text file is a report of all dispatcher 
events in the following format:

APRO v4.00
Compiler : Delphi 6
Operating System : Windows NT 4.0 Service Pack 4
Time Type SubType Data OtherData
-------- -------- ------------ -------- ---------
00000010 TrDatChg Avail 00000001
00000010 TrgHdAlc Window 7DDE03CE
00000010 TrgHdAlc Window 870302A2
00000010 TrDatChg Avail 00000001
00000010 TrgHdAlc Procedure 00000000
00000010 TrDatChg Avail 00000001
00000010 TrigAllc Data 00000008 rz[0D]
00000010 TrigAllc Data 00000010 [05]
00000010 TrigAllc Data 00000018 [10]
00000010 TrigAllc Data 00000020 [1B]I
00000010 TrigAllc Status 00000029 (Modem status)

The first three lines are the header of the text file a provide the installed version of Async 
Professional, the current compiler, and the current operating system.

The first column of the report is a timestamp. It represents the time elapsed from the time 
dispatch logging was turned on to when the entry was made, measured in milliseconds. The 
multimedia API TimeGetTime is used to calculate this timestamp, so it should be accurate 
to the nearest millisecond.

The second column is the major category of log entry, the third column identifies the log 
entry subtype, the forth column provides additional information related to the event (often 
a handle or data count), and the remaining column adds any additional information that 
could be useful for the event being logged.
TApdComPort Component     37

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following tables identify possible entries in a dispatch log:

Log entry type: Dispatch

An entry of this type means that a communications event is being processed.

Subtype - Meaning Data Other Data

ReadCom - The Windows
comm driver has notified
APRO that incoming data
is available and APRO’s
dispatcher has, in turn,
read the available data.

The number of bytes
read.

The actual data.

WriteCom - APRO has sent
data to the Windows comm
driver.

The number of bytes
sent.

The actual data.

Line status - A line
status event has been
received from the
Windows comm driver.

Modem status - A modem
status event has been
received from the
Windows comm driver.

The numeric value of
the event received.

A translation of the
numeric value. (DCTS,
DDSR, TERI, DDCD, CTS,
DSR, RI, DCD.)
8     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Log entry type: Trigger

A trigger is being dispatched by the dispatcher.

Log entry type: Thread

Occur only if the DebugThreads define is enabled in AWUSER.PAS. They are designed to 
provide detail about the operation of APRO’s threads.

Subtype - Meaning Data Other Data

Avail - A data avail
event is being
dispatched.

The number of bytes
ready to be read.

Timer - A timer event is
being dispatched.

The handle of the
trigger.

Data - A data trigger
match event is being
dispatched.

The handle of the
trigger.

Status - A status
trigger is being
dispatched.

The handle of the
trigger.

Subtype - Meaning

Start - One of the three background threads associated with each comport
(dispatcher thread, communications thread, output thread) is starting.

Exit - One of the three background threads associated with each is
terminating.

Sleep - One of the three background threads associated with each is
entering a wait state.

Wake - One of the three background threads associated with each is
returning from a wait state.
TApdComPort Component     39

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Log entry type: TrigAllc

A trigger is being allocated.

Log entry type: TrigDisp

A trigger is being disposed.

Log entry type: TrgHdAlc

A trigger handler has been allocated.

Subtype - Meaning Data Other Data

Data - A data trigger is being
allocated.

The handle
of the
trigger.

What the trigger is
being set to trigger
on.

Timer - A timer trigger is being
allocated.

The handle
of the
trigger.

Status - A status trigger is being
allocated.

The handle
of the
trigger.

The type of the status
trigger.

Subtype - Meaning Data

Data - A data trigger is being deleted. The handle of the trigger.

Timer - A timer trigger is being deleted. The handle of the trigger.

Status - A status trigger is being deleted. The handle of the trigger.

Subtype - Meaning Data

Window - A window handle based trigger handler is
being registered with the comport.

The window handle.

Procedure - A procedure pointer based trigger
handler is being registered with the comport.

Method - A method pointer based trigger handler is
being registered with the comport.
0     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Log entry type: TrgHdDsp

A trigger handler has been disposed.

Log entry type: TrDatChg

Data associated with the trigger has been changed.

Subtype - Meaning Data

Window - A window handle based trigger handler is
being deregistered from the comport.

The window handle.

Procedure - A procedure pointer based trigger
handler is being deregistered from the comport.

Method - A method pointer based trigger handler is
being deregistered from the comport.

Subtype - Meaning Data Other Data

Avail - The data trigger length
value is being changed.

The new
length.

Timer - The time-out value for a
particular timer trigger is being
changed.

The handle
of the
timer
trigger.

The new time.

Status - SetStatusTrigger is being
called for a particular status
trigger.

The handle
of the
trigger
being
changed.

The new value mask for
the trigger.
TApdComPort Component     41

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Log entry type: Telnet

Logs the telnet negotiation conversation during a Winsock telnet session. Each SubType 
shows the type of negotiation being logged.

Subtype - Meaning Data Other Data

Sent WILL - APRO is acknowledging
that it will support a requested
mode.

The numeric
value of
the command
being
negotiated.

A translation of the
numeric command.

Sent WON’T - APRO is refusing to
support a requested mode.

The numeric
value of
the command
being
negotiated.

A translation of the
numeric command.

Sent DO - APRO is requesting the
support of a telnet mode.

The numeric
value of
the command
being
negotiated.

A translation of the
numeric command.

Sent DON’T - APRO is requesting
that a telnet mode not be
supported.

The numeric
value of
the command
being
negotiated.

A translation of the
numeric command.

Recv WILL - The telnet host is
acknowledging that it will support
a requested mode.

The numeric
value of
the command
being
negotiated.

A translation of the
numeric command.

Recv WON’T - The telnet host is
refusing to support a requested
mode.

The numeric
value of
the command
being
negotiated.

A translation of the
numeric command.

Recv DO - The telnet host is
requesting the support of a telnet
mode.

The numeric
value of
the command
being
negotiated.

A translation of the
numeric command.
2     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Log entry type: Packet

Events that indicate state changes in packets.

Log entry type: Telnet (cont.)

Subtype - Meaning Data Other Data

Recv DON’T - The telnet host is
requesting that a telnet mode not
be supported.

The numeric
value of
the command
being
negotiated.

A translation of the
numeric command.

Command - A subnegotiation command
has been received.

The numeric
value of
the command
being
negotiated.

The collected command.
APRO currently doesn’t
support any of these
commands, but they are
logged nonetheless.

Sent Term - A string identifying
the terminal emulation type has
been sent to the host.

The numeric
value of
the command
being
negotiated.

The string sent.

Subtype - Meaning Other Data

Enable - The packet is being enabled. The name of the packet
component.

If the end condition was a string, the next log entry is another
StringPacket event with the value of the end string in the “other data”
column. If the end condition was a size event, the next log entry is a
SizePacket event.

Disable - The packet is being enabled. The name of the packet
component.

StringPacket - A string packet event is
being dispatched.

The name of the packet
component.

If the end condition was a string, the next log entry is another
StringPacket event with the value of the end string in the “other data”
column. If the end condition was a size event, the next log entry is a
SizePacket event.

SizePacket - Describes the end value for a
StringPacket.

The value of the end
condition of the previously
listed StringPacket.

PcktTimeout - A packet timeout event is
being generated.
TApdComPort Component     43

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Log entry type: Error

The dispatcher was called recursively. This is an error and can cause events to be missed. 
The cause is usually that event handlers take too long to process their data. No SubTypes 
exist for this type of entry.

Log entry type: Fax

Entries for this Type track APRO’s progress through the send or receive fax state machine. 
The SubType indicates the current state of the state machine.

Log entry type: XModem

Entries for this Type track APRO’s progress through the send or receive xmodem protocol 
state machine. The SubType indicates the current state of the state machine.

Log entry type: YModem

Entries for this Type track APRO’s progress through the send or receive ymodem protocol 
state machine. The SubType indicates the current state of the state machine.

Log entry type: ZModem

Entries for this Type track APRO’s progress through the send or receive zmodem protocol 
state machine. The SubType indicates the current state of the state machine.

Log entry type: Packet (cont.)

Subtype - Meaning Other Data

StartStr - Describes the start string for
a particular packet.

The value of the start
string of an enable
sequence.

The event is always generated as a part of the enable sequence for the
packet, if it has a start string. See the Enable event above.

EndStr - Describes the current end string
for a particular packet.

The end string of an enable
sequence.

The event is always generated as a part of the enable sequence for the
packet, if it has an end string. See the Enable event above.

Idle - The packet is not currently
collecting data and is not waiting for a
string.

Waiting - The packet is waiting for its
start string to come in.

Collecting - The packet’s start condition
has been met and thus the packet currently
has ownership to the incoming data.
4     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Log entry type: Kermit

Entries for this Type track APRO’s progress through the send or receive kermit protocol 
state machine. The SubType indicates the current state of the state machine.

Log entry type: Ascii

Entries for this Type track APRO’s progress through the send or receive ASCII protocol state 
machine. The SubType indicates the current state of the state machine.

Log entry type: BPlus

This type is currently not implemented due to an enumeration capacity limitation in the 
C++ Builder 3 compiler.

Log entry type: User

A user defined event type. You can add custom strings to a comports logfile using the 
comport’s AddStringToLog method. These strings have the type User in the log file. 

Logging facility
The state of the logging facility is controlled by setting the Logging property to one of the 
values shown in Table 2.2.

See “Tracing” on page 33, for more information and a related example.

Example
This example shows how to construct and use a comport component. Create a new project, 
add the following components, and set the property values as indicated in Table 2.3.

Table 2.2: Logging property values

Value Explanation

tlOff Turns off logging without saving the log data.

tlOn Turns logging on or resumes logging after a pause.

tlDump Writes the log data to a new file, turns off logging.

tlAppend Appends the log to an existing file, turns off logging.

tlClear Clears the log buffer but leaves logging on.

tlPause Pauses logging.

Table 2.3: Example project components and property values

Component Property Value

TApdComPort ComNumber <set as needed for your PC>

TButton Name ‘Test’
TApdComPort Component     45

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Double-click on the Test button and modify the generated method to match this:

procedure TForm1.TestClick(Sender : TObject);
begin

ApdComPort1.Output := 'ATZ'^M;
end;

This method transmits “ATZ” (the standard modem reset command), followed by a carriage 
return, to the serial port opened by TApdComPort. If a modem is attached to the serial port 
it should echo the command, then return “OK.”

Double-click on the TApdComPort OnTriggerAvail event handler in the Object Inspector 
and modify the generated method to match this:

procedure TForm1.ApdComPort1TriggerAvail(
CP : TObject; Count : Word);

var
I : Word;
C : Char;
S : string;

begin
S := '';
for I := 1 to Count do begin

C := ApdComPort1.GetChar;
case C of
#0..#31 : {don't display} ;
else S := S + C;

end;
end;
ShowMessage('Got an OnTriggerAvail event for: ' + S);

end;

This method collects all of the received data into the string S, discarding non-printable 
characters, then displays S using ShowMessage.

To run this program you need to attach a modem to the serial port, then compile and run 
the project. Clicking on the Test button sends ‘ATZ’^M to the modem. The modem’s 
responses are shown through one or more message boxes.
6     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomComPort (AdPort)

TApdComPort (AdPort)

Properties
AutoOpen

BaseAddress

Baud

BufferFull

BufferResume

ComNumber

CTS 

DataBits

DCD 

DeltaCTS 

DeltaDCD 

DeltaDSR 

DeltaRI 

DeviceLayer

DSR 

DTR

FlowState 

HWFlowOptions

InBuffFree 

InBuffUsed 

InSize

LineBreak 

LineError

LogAllHex

Logging

LogHex

LogName

LogSize

ModemStatus 

Open

OutBuffFree 

OutBuffUsed 

Output 

OutSize

Parity

PromptForPort

RI 

RS485Mode

RTS

StopBits

SWFlowOptions

TapiMode

TraceAllHex

TraceHex

TraceName

TraceSize

Tracing

UseEventWord

! Version

XOffChar

XOnChar
TApdComPort Component     47

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Methods
ActivateDeviceLayer

AddDataTrigger

AddStatusTrigger

AddStringToLog

AddTimerTrigger

AddTraceEntry

CharReady

FlushInBuffer

FlushOutBuffer

GetBlock

GetChar

ProcessCommunications

PutBlock

PutChar

PutString

RemoveAllTriggers

RemoveTrigger

SendBreak

SetBreak

SetStatusTrigger

SetTimerTrigger

Events
OnPortClose

OnPortOpen

OnTrigger

OnTriggerAvail

OnTriggerData

OnTriggerLineError

OnTriggerModemStatus

OnTriggerOutbuffFree

OnTriggerOutbuffUsed

OnTriggerOutSent

OnTriggerStatus

OnTriggerTimer
8     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

ActivateDeviceLayer  virtual method

function ActivateDeviceLayer : TApdBaseDispatcher; virtual;

TApdBaseDispatcher = class;

Called when the port is first opened to instantiate a device driver object for the port.

Async Professional includes several device layers. The dlWin32 device layer (the default for 
32-bit applications) uses the standard Win32 comms drivers. The dlWin32 device layer have 
a descendant device layer that is used if TapiMode is set to tmOn. The TAPI device layers 
rely on TAPI to open and close the serial port, but are otherwise identical to their ancestor 
device layers. The dlWinsock device layer is available only if you use TApdWinsockPort 
component (see page 105). 

You can create custom device layers by deriving them from TApdBaseDispatcher and 
creating a new port descendant from TApdCustomComport where you override 
ActivateDeviceLayer to return the newly defined device layer.

See “Device Independence” on page 725 for more information on device layers.

See also: DeviceLayer, TapiMode

AddDataTrigger   method

function AddDataTrigger(
const Data : string; const IgnoreCase : Boolean) : Word;

Adds a string match trigger to the dispatcher.

Data is the string the dispatcher attempts to match in the received data stream. If IgnoreCase 
is True, case is not considered when checking for a match.

If the trigger is added successfully, the function returns the handle of the trigger. Otherwise, 
it generates an exception. No subsequent call is required to activate the trigger.

When the internal dispatcher finds incoming data that matches Data it generates an 
OnTriggerData event.

The following example tells the internal dispatcher to generate an OnTriggerData event 
whenever it receives the string “UserID:”. Because False is passed for IgnoreCase the case of 
the strings must match exactly.

ApdComPort.AddDataTrigger('UserID:', False);

See also: AddStatusTrigger, AddTimerTrigger, RemoveTrigger
TApdComPort Component     49

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

AddStatusTrigger  method

function AddStatusTrigger(const SType : Word) : Word;

Adds a status trigger of the specified type.

This method adds a status trigger of type SType, which is one of the following:

See the SetStatusTrigger method on page 88 or more information about these status trigger 
types.

If the trigger is added successfully, the function returns the handle of the trigger; otherwise 
it generates an exception. The trigger is not activated until a subsequent call to 
SetStatusTrigger. The data associated with the trigger (such as the buffer free level for a 
stOutBuffFree trigger event) is supplied at that time.

The following example adds a status trigger and enables the trigger to generate an 
OnTriggerStatus event as soon as at least 100 bytes become free in the output buffer. Later 
it deactivates the trigger but does not delete it. Note that status triggers are not self-
restarting; the application’s message handler must call SetStatusTrigger again once an event 
is generated.

var
StatusHandle : Word;

...
StatusHandle := ApdComPort.AddStatusTrigger(stOutBuffFree);
ApdComPort.SetStatusTrigger(StatusHandle, 100, True);
...
ApdComPort.SetStatusTrigger(StatusHandle, 0, False);

See also: RemoveTrigger, SetStatusTrigger

Value Meaning

stModem Trigger on modem status change.

stLine Trigger on line status change.

stOutBuffFree Trigger on output buffer free above level.

stOutBuffUsed Trigger on output buffer used below level.

stOutSent Trigger on any call to PutChar or PutBlock.
0     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

AddStringToLog method

procedure AddStringToLog(S : string);

Adds a User-type log entry to the dispatcher log

This procedure can be called to add custom entries to the dispatcher log. These entries will 
show up in the dispatcher log as “User” entries. 

AddStringToLog can be very useful when debugging the application. Custom strings can be 
added to the log to show when you process events, or start other operations, or just for 
general logging purposes.

See also: Logging

AddTimerTrigger  method

function AddTimerTrigger : Word;

Adds a timer trigger.

If the trigger is added successfully, the function returns the handle of the trigger; otherwise, 
it generates an exception. The timer must be activated subsequently with a call to 
SetTimerTrigger.

The following example adds a timer trigger and enables it to expire in 36 ticks (2 seconds), 
when it will generate an OnTriggerTimer event. Note that timer triggers are not 
self-restarting; the application’s event handler must call SetTimerTrigger again once an event 
is handled.

var
Timer : Word;

...
Timer := ApdComPort.AddTimerTrigger;
ApdComPort.SetTimerTrigger(Timer, 36, True);

See also: SetTimerTrigger
TApdComPort Component     51

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

AddTraceEntry   method

procedure AddTraceEntry(const CurEntry, CurCh : Char);

Adds a trace event to the port’s trace queue.

This procedure can be called to add a special entry to the trace buffer. The CurEntry 
parameter indicates the type of entry, normally either ‘T’ for Transmit or ‘R’ for Receive. 
CurCh is the character that was transmitted or received.

Although AddTraceEntry is intended primarily for internal use by Async Professional 
routines that send and receive data, you can use it to store additional data in the trace buffer. 
For example, you might add an entry just before you temporarily suspend tracing.

If CurEntry is a character other than ‘T’ or ‘R’, it shows up in the tracing report as shown in 
the following code snippet where ‘X’ is the CurEntry character and ‘Y’ is CurCh:

Special-X:
Y

When AddTraceEntry is mixed in with a normal set of transmit and receive blocks, it looks 
something like this:

Transmit:
ATZ[13]

Special-X:
Y

Receive:
ATZ[13][13[10]OK[13][10]

In this example the program transmitted ‘ATZ’<CR>, called AddTraceEntry(‘X’, ‘Y’), then 
used one of the GetXxx routines to retrieve the received data.

See also: Tracing

AutoOpen property

property AutoOpen : Boolean

Default: True

Determines whether the port is automatically opened on demand.

If AutoOpen is True and a method or property that requires an open serial port is accessed, 
the TApdComPort component automatically opens the port. If AutoOpen is False, the port 
must be opened explicitly by setting the Open property to True.

See also: Open
2     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

BaseAddress run-time property

property BaseAddress : Word

Default: 0

Determines the base address of the port.

Under normal conditions, a program would not need to reference or set this property. The 
base address has importance only when a program is using RS-485 hardware that uses RTS 
to control the RS-485 line. In most cases Async Professional is able to determine the base 
address automatically.

This property is provided for rare cases where Async Professional is not able 
to automatically determine the base address of the RS-485 port. In these cases, this 
property must be set manually in order for Async Professional to provide RTS line control 
for the port.

See “RS-485 support overview” on page 31 for more information on RS-485 support.

See also: RS485Mode

Baud property

property Baud : LongInt

Default: 19200

Determines the baud rate used by the port.

Generally acceptable values for Baud include 300, 1200, 2400, 4800, 9600, 19200, 38400, 
57600, and 115200.

If the port is open when Baud is changed, the line parameters are updated as soon as any 
data existing in the output buffer has drained. Baud does not validate the assigned value 
before passing it on to the communications driver. The driver may reject the value, leading 
to an exception.

You can enter a baud rate using the Object Inspector or invoke the SelectBaudRate property 
editor, which provides a drop-down list box of standard baud rates.

See also: ComNumber, DataBits, Parity, StopBits
TApdComPort Component     53

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

BufferFull property

property BufferFull : Word

Default: 0

Determines the input buffer level at which receive flow control is imposed.

When hardware flow control is used, BufferFull should typically be set to 90% of the input 
buffer size. When software flow control is used, it should typically be set to 75% of the buffer 
size, since it may take the remote some time to receive the XOff character and stop sending. 
If flow control is enabled and BufferFull has not been set, or has been set to an invalid value, 
the level is set to 90% of the input buffer size.

See also: BufferResume, HWFlowOptions, SWFlowOptions

BufferResume property

property BufferResume : Word

Default: 0

Determines the input buffer level at which receive flow control is deactivated.

When hardware flow control is used, BufferResume should typically be set to 10% of the 
input buffer size. When software flow control is used, it should typically be set to 25% of the 
buffer size, since it may take the remote some time to receive the XOn character and start 
sending again. If flow control is enabled and BufferResume has not been set, or has been set 
to an invalid value, the level is set to 10% of the input buffer size.

See also: BufferFull, HWFlowOptions, SWFlowOptions

CharReady   method

function CharReady : Boolean;

Returns True if at least one character is in the dispatcher buffer.

Don’t use CharReady in OnTriggerAvail event handlers. Doing so can interfere with the 
dispatcher’s data tracking ability, leading to errors or lost data. This function is provided for 
the rare cases where you need to call GetChar outside of an event handler.

See also: GetChar
4     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ComNumber property

property ComNumber : Word

Default: 0

Determines the serial port number (Com1, Com2, ...) used by the TApdComPort 
component.

ComNumber does not validate the port number. When the port is opened, the Windows 
communications driver will determine whether the port number is valid and generate an 
error if it is not. To validate the port, use the IsPortAvailable method described on page 896.

If the port is open when ComNumber is changed, the existing port is closed and then 
reopened using the new number. Triggers are maintained during this operation.

This property is ignored when the TAPI and Winsock device layers are used.

The following example creates, configures, and opens a comport component at run time:

ApdComPort := TApdComPort.Create(Self);
ApdComPort.ComNumber := 1; {use Com1}
ApdComPort.Baud := 9600;
ApdComPort.Parity := pNone;
ApdComPort.DataBits := 8;
ApdComPort.StopBits := 1;
ApdComPort.Open := True;

CTS read-only, run-time property

property CTS : Boolean

Returns True if the port’s “clear to send” line (CTS) is set.

The following example transmits a large block of data after assuring that the remote has 
raised the CTS signal:

if ApdComPort.CTS then
ApdComPort.PutBlock(BigBlock, 1024);

See also: DSR
TApdComPort Component     55

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

DataBits property

property DataBits : Word

Default: 8

Determines the number of data bits of the port.

Acceptable values are 5, 6, 7, and 8.

If the port is open when DataBits is changed, the line parameters are updated immediately. 
DataBits does not validate the assigned value before passing it on to the communications 
driver. The driver may reject the value, leading to an exception.

See also: Baud, ComNumber, Parity, StopBits

DCD  read-only, run-time property

property DCD : Boolean

Returns True if the port’s “data carrier detect” line (DCD) is set.

DCD is usually set only for serial connections made through a modem. Your modem sets 
DCD to indicate that it has a connection with another modem. If either modem hangs up or 
the connection is lost for another reason, your modem clears DCD (assuming it is 
configured to do so.) Hence, if your application uses a modem connection, you might want 
to check DCD periodically to assure that the connection is still valid or, better yet, use a 
modem status trigger for the same purpose.

The following example detects carrier loss and handles the error:

if not ApdComPort.DCD then
{handle unexpected disconnect}

See also: DeltaDCD

DeltaCTS read-only, run-time property

property DeltaCTS : Boolean

Returns True if the port’s “delta clear to send” bit (DeltaCTS) is set.

DeltaCTS is set only if CTS has changed since the last time the application read the value of 
DeltaCTS.

See also: CTS
6     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

DeltaDCD read-only, run-time property

property DeltaDCD : Boolean

Returns True if the port’s “delta data carrier detect” bit (DeltaDCD) is set.

DeltaDCD is set only if DCD has changed since the last time the application read the value 
of DeltaDCD.

See also: DCD

DeltaDSR read-only, run-time property

property DeltaDSR : Boolean

Returns True if the port’s “delta data set ready” bit (DeltaDSR) is set.

DeltaDSR is set only if DSR has changed since the last time the application read the value 
of DeltaDSR.

See also: DSR

DeltaRI read-only, run-time property

property DeltaRI : Boolean

Returns True if the port’s “delta ring indicator” bit (DeltaRI) is set.

DeltaRI is set only if RI (the ring indicator) has changed since the last time the application 
called CheckDeltaRI.

The formal name for this bit is “trailing edge ring indicator” or TERI. DeltaRI is used for 
consistency with other Async Professional naming conventions.

It is generally better to use DeltaRI to detect incoming calls than to use RI. RI toggles rapidly 
as rings are detected, making it easy for your application to miss the brief periods that it 
returns True. By contrast, DeltaRI returns True if any ring was detected since the last call to 
the routine.

The following example calls the Answer method of TApdModem to connect a modem after 
a ring is detected:

if ApdComPort.DeltaRI then
Modem.Answer;

See also: RI
TApdComPort Component     57

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

DeviceLayer property

property DeviceLayer : TDeviceLayer

TDeviceLayer = (dlWin16, dlFossil, dlWin32, dlWinsock);

Default: dlWin16 for 16-bit, dlWin32 for 32-bit

Determines the hardware interface used by the port.

Async Professional includes several device layers. The dlWin32 device layer (the default for 
32-bit applications) uses the standard Win32 comms drivers. The dlWin32 device layer each 
has a descendant device layer that is used if TapiMode is set to tmOn. The TAPI device layers 
rely on TAPI to open and close the serial port, but are otherwise identical to their ancestor 
device layers. The dlWinsock device layer is available only if you use TApdWinsockPort 
component (see page 105).

You can create custom device layers by deriving them from TApdBaseDispatcher and 
creating a new port descendant from TApdCustomComport where you override 
ActivateDeviceLayer to return the newly defined device layer.

If desired, each individual TApdComPort component can use a different device layer.

See “Device Independence” on page 725 for more information on device layers.

See also: ActivateDeviceLayer

DSR read-only, run-time property

property DSR : Boolean

Returns True if the port’s “data set ready” line (DSR) is set.

DSR is a signal that the remote device sets to indicate that it is attached and active. It may be 
a good idea to check this signal before transmitting and periodically thereafter.

See also: DeltaDSR, CTS
8     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

DTR property

property DTR : Boolean

Default: True

Determines the current state of the “data terminal ready” signal (DTR).

Some types of remote devices require that this signal be raised before they transmit. For 
example, the default configuration of many modems is not to transmit data unless the PC 
has raised the DTR signal.

The following example lowers the DTR signal after opening the port and later raises it again:

ApdComPort := TApdComPort.Create(Self);
ApdComPort.Open := True;
ApdComPort.DTR := False;
...
ApdComPort.DTR := True;

See also: RTS

FlowState read-only, run-time property

property FlowState : TFlowControlState

TFlowControlState = (fcOff, fcOn, fcDsrHold, fcCtsHold,
fcDcdHold,fcXOutHold, fcXInHold, fcXBothHold);

Returns the state of hardware or software flow control.

fcOff indicates that flow control is not in use. fcOn indicates that flow control is enabled, but 
that blocking is not currently imposed in either direction.

fcDsrHold, fcCtsHold and fcDcdHold indicate that the application cannot transmit because 
the other side has lowered DSR, CTS, or DCD respectively. Note that Async Professional 
doesn’t currently provide DCD flow control.

Windows doesn’t provide information on the state of receive hardware flow control, so fcOn 
is returned even if the local device is blocking received data by using a hardware flow control 
line.

fcXOutHold indicates that the application cannot transmit because it has received an XOff 
character from the remote. fcXInHold indicates that the application has sent an XOff 
character to the remote to prevent it from transmitting data. fcXBothHold indicates that the 
application has both sent and received an XOff.
TApdComPort Component     59

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

In the rare case where both hardware and software flow control are enabled for a port, 
FlowState can return ambiguous results. In particular, if flow is blocked by both hardware 
and software flow control, FlowState can return only the fact that one type is causing the 
block.

See also: HWFlowOptions, SWFlowOptions

FlushInBuffer   method

procedure FlushInBuffer;

Clears the input buffers used by both the Windows device driver and the Async Professional 
internal dispatcher.

It also resets all data triggers so as to disregard any cleared data.

The following example flushes all data currently in the input buffer if a line error is detected. 
You probably shouldn’t do this routinely after each line error. Logic like this is usually 
appropriate only before trying to resynchronize with the transmitter in a file transfer 
protocol.

if ApdComPort.LineError <> leNoError then begin
...error handling
ApdComPort.FlushInBuffer;

end;

See also: FlushOutBuffer

FlushOutBuffer   method

procedure FlushOutBuffer;

Clears the output buffers used by both the Windows device driver and the Async 
Professional internal dispatcher.

Any data pending in the output buffer is not transmitted.

The following example discards any data that hasn’t yet been transmitted whenever an 
application function named ErrorDetected returns True after a remote device reports an 
error:

if ErrorDetected then begin
ApdComPort.FlushOutBuffer;
...resync with remote

end;

See also: FlushInBuffer
0     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

GetBlock   method

procedure GetBlock(var Block; Len : Word);

Returns a block of received characters and removes them from the dispatcher buffer.

This routine makes a request to return the next Len received bytes. The data is moved into 
the buffer referenced by Block. If Block is not large enough to hold Len bytes this will result 
in a memory overwrite. If fewer than Len bytes are available, none are returned and an 
EBufferIsEmpty exception is generated. The returned bytes are removed from the Async 
Professional dispatcher buffer.

To determine if line errors occurred while the communications driver was receiving this 
data, check the LineError property after calling GetBlock.

The following example calls GetBlock to remove the next 128 bytes from the dispatcher 
buffer, and handles the various possible outcomes:

var
Block : array[0..127] of Char;

...
try

ApdComPort.GetBlock(Block, 128);
except

on E : EAPDException do
if E is EBufferIsEmpty then begin
...protocol error, 128 bytes expected
raise;

end;
end;

See also: CharReady, GetChar, InBuffUsed, PeekBlock
TApdComPort Component     61

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

GetChar   method

function GetChar : Char;

Returns the next character from the dispatcher buffer.

If at least one character is available in the dispatcher buffer, GetChar returns the first 
available one.

To determine if line errors occurred while the communications driver was receiving this 
data, check the LineError property after calling GetChar.

The following example returns the next available character in C:

var
C : Char;

...
if ApdComPort.CharReady then

C := ApdComPort.GetChar;

See also: CharReady, GetBlock, PeekChar

HWFlowOptions property

property HWFlowOptions : THWFlowOptionSet

THWFlowOptionSet = set of THWFlowOptions;

THWFlowOptions = (
hwfUseDTR, hwfUseRTS, hwfRequireDSR, hwfRequireCTS);

Default: Empty set

Determines the hardware flow control options for the port.

When the options are an empty set, as they are by default, there is no hardware flow control. 
The options can be combined to enable hardware flow control.

“Receive flow control” stops a remote device from transmitting while the local input buffer 
is too full. “Transmit flow control” stops the local device from transmitting while the remote 
input buffer is too full.

Receive flow control is enabled by including the hwfUseRTS and/or hwfUseDTR elements in 
the options set. When enabled, the corresponding modem control signals (RTS and/or 
DTR) are lowered when the input buffer reaches the level set by the BufferFull property. The 
remote must recognize these signals and stop sending data while they are held low. Because 
there is usually little delay before the remote reacts (as there is with software flow control), 
BufferFull can be set close to the input buffer size, perhaps at the 90% level.
2     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

As the application processes received characters, buffer usage eventually drops below the 
value set by the BufferResume property. At that point, the corresponding modem control 
signals are raised again. The remote must recognize these signals and start sending data 
again. Again, because there is usually little delay you can set BufferResume close to zero, 
perhaps at 10% of the input buffer size.

Transmit flow control is enabled by including the hwfRequireCTS and/or hwfRequireDSR 
elements in the options set. With one or both of these options enabled, the Windows 
communications driver doesn’t transmit data unless the remote device is providing the 
corresponding modem status signal (CTS and/or DSR). The remote must raise and lower 
these signals when needed to control the flow of transmitted characters.

Note that flow control using RTS and CTS is much more common than flow control using 
DTR and DSR.

See “Flow Control” on page 711 for more information.

The following example enables bi-directional hardware flow control with limits at the 10% 
and 90% levels of the buffer. RTS is lowered for receive flow control and CTS is checked for 
transmit flow control. Later in the application, hardware flow control is disabled.

ApdComPort.HWFlowOptions := [hwfUseRTS, hwfRequireCTS];
ApdComPort.BufferFull := Trunc(0.9*ApdComPort.InSize);
ApdComPort.BufferResume := Trunc(0.1*ApdComPort.InSize);
...
ApdComPort.HWFlowOptions := [];

See also: DTR, FlowState, RTS, SWFlowOptions

InBuffFree read-only, run-time property

property InBuffFree : Word

Returns the number of bytes free in the dispatcher buffer.

This routine returns the number of bytes of free space in the Async Professional 
dispatcher buffer. It does not tell you the free space in the Windows communications 
driver input buffer.

Because the dispatcher automatically drains the Windows buffer using timer and 
notification messages, its status is rarely relevant to the program.

The following example checks to see that there’s significant free space in the dispatcher 
buffer before performing a time-consuming operation that doesn’t drain the buffer:

if ApdComPort.InBuffFree > 128 then
...perform a time-consuming operation

See also: InBuffUsed
TApdComPort Component     63

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

InBuffUsed read-only, run-time property

property InBuffUsed : Word

Returns the number of bytes currently available for reading from the dispatcher buffer.

This routine returns the number of bytes currently loaded in the Async Professional 
dispatcher buffer. It does not include bytes in the Windows communications driver input 
buffer that haven’t yet been moved to the dispatcher buffer. 

Because the dispatcher automatically drains the Windows buffer using timer and 
notification messages, this buffer’s status is rarely relevant to the program.

The following example checks InBuffUsed to see if received data is available for processing:

if ApdComPort.InBuffUsed <> 0 then
...process data

See also: CharReady, InBuffFree

InSize property

property InSize : Word

Default: 4096

Determines the size, in bytes, of the Window communications driver’s input buffer.

InSize should always be fairly large, perhaps 4096 or 8192. The larger this size, the less likely 
the driver loses data if an ill-behaved program takes control of Windows foreground 
processing for an extended time. 

The Windows communication API does not permit changing the buffer size when a serial 
port is open. When InSize is changed for an open port, the port is closed and re-opened 
with the new size.

See also: Open, OutSize

LineBreak read-only, run-time property

property LineBreak : Boolean

Returns True if a line break signal was received since the last call to LineBreak.

See also: OnTriggerStatus
4     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

LineError read-only, run-time property

property LineError : Word

Returns a non-zero value if line errors have occurred since the last call to LineError.

It returns 0 if no errors were detected or the port is not yet open. Otherwise it returns a 
numeric value from the following list that indicates the most severe pending error:

Line errors can occur during calls to any GetXxx or PutXxx method of the port. If your 
application must detect line errors, it should check LineError after each such call or group of 
calls, or it should install an OnTriggerLineError event handler.

The following example checks for line errors after receiving data with GetBlock:

ApdComPort.GetBlock(DataBlock, DataLen);
if ApdComPort.LineError <> 0 then

...error handling

See also: OnTriggerLineError

LogAllHex property

property LogAllHex : Boolean

Default: False

Determines whether all characters in the dispatcher log are written as hex or decimal. 

This property is useful when you are processing raw data, instead of a mixture of printable 
text and raw data.

Value Error Number Meaning

leBuffer 1 Buffer overrun in COMM.DRV.

leOverrun 2 UART receiver overrun.

leParity 3 UART receiver parity error.

leFraming 4 UART receiver framing error.

leCTSTO 5 Transmit timeout waiting for CTS.

leDSRTO 6 Transmit timeout waiting for DSR.

leDCDTO 7 Transmit timeout waiting for RLSD.

leTxFull 8 Transmit queue is full.
TApdComPort Component     65

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

If LogAllHex is False (the default), a received string of “123” will be written to the log as 
literal, printable chars:

0000.824 Dispatch ReadCom 0000000A 123

If LogAllHex is True, the same received string will be written to the log in their hexadecimal 
notation:

0000.829 Dispatch ReadCom 0000000A [31][32][33]

See also: LogHex, TraceAllHex

Logging property

property Logging : TTraceLogState

TTraceLogState = (tlOff, tlOn, tlDump, tlAppend, tlClear, tlPause);

Default: tlOff

Determines the current logging state.

When Logging is set to tlOff, as it is by default, no logging is performed.

To enable logging, set Logging to tlOn. This allocates an internal buffer of LogSize bytes and 
informs the dispatcher to start using this buffer. To disable logging without writing the 
contents of the log buffer to a disk file, set Logging to tlOff. This also frees the internal buffer.

To write the contents of the logging buffer to disk, set Logging to tlDump (which overwrites 
any existing file named LogName, or creates a new file) or tlAppend (which appends to 
an existing file, or creates a new file). After the component writes to the file it sets Logging 
to tlOff.

To clear the contents of the logging buffer and continue logging, set Logging to tlClear. After 
the component clears the buffer, it sets Logging to tlOn.

To temporarily pause logging, set Logging to tlPause. To resume logging, set Logging 
to tlOn.

See “Dispatch logging” on page 36 for more information.

The following example turns on logging and later dumps the logging buffer to APRO.LOG:

ApdComPort.Logging := tlOn;
...
ApdComPort.LogName := 'APRO.LOG';
ApdComPort.Logging := tlDump;

See also: AddStringToLog, LogHex, LogName, LogSize, Tracing
6     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

LogHex property

property LogHex : Boolean

Default: True

Determines whether non-printable characters stored in a dispatch logging file are written 
using hexadecimal or decimal notation.

See also: LogAllHex, Logging, LogName, LogSize

LogName property

property LogName : ShortString

Default: “APRO.LOG”

Determines the name of the file used to store a dispatch log.

The dispatcher log file is written when the Logging property is changed to tlDump or 
tlAppend. If a path is not provided, the log will be written to whatever directory is the 
current directory, which may not be where you expect it to be. Specify an explicit path and 
filename to ensure the log file is stored in the correct location.

See also: Logging

LogSize property

property LogSize : Word

Default: 10000

Determines the number of bytes allocated for the dispatch logging buffer.

The assigned value limit is 16 million. Each dispatch entry consumes at least 10 bytes. Many 
entries use additional buffer space to store a sequence of received or transmitted characters.

This property should normally be set before a logging session begins. If a changed value is 
assigned to LogSize while a logging session is active, the current session is aborted (which 
clears all information from the logging buffer), the new buffer is allocated, and a new 
logging session is started.

See also: Logging
TApdComPort Component     67

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

ModemStatus read-only, run-time property

property ModemStatus : Byte

Returns the modem status byte and clears all delta bits.

The status is returned in the byte format used by the UART’s modem status register. The 
returned value can be used with the following bit masks to isolate the desired bits:

You’ll probably find it easier to use the CTS, DSR, RI, DCD, and related DeltaXxx properties 
instead of ModemStatus, but ModemStatus is more efficient when you need to check several 
signals at once.

ModemStatus also clears the internal delta bits used to indicate changes in the CTS, DSR, RI, 
and DCD signals. This affects the results of subsequent checks of DeltaCTS, etc.

The following example uses ModemStatus to check for dropped carrier. It would have been 
simpler in this case to check the DCD property directly.

Status := ApdComPort.ModemStatus;
if Status and DCDMask = 0 then

...port dropped carrier

See also: CTS, DCD, DeltaCTS, DeltaDCD, DeltaDSR, DeltaRI, DSR, RI

Mnemonic Value Description

DeltaCTSMask 01h CTS changed since last read.

DeltaDSRMask 02h DSR changed since last read.

DeltaRIMask 04h RI changed since last read.

DeltaDCDMask 08h DCD changed since last read.

CTSMask 10h Clear to send.

DSRMask 20h Data set ready.

RIMask 40h Ring indicator.

DCDMask 80h Data carrier detect.
8     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

OnPortClose event

property OnPortClose : TNotifyEvent

OnPortClose is generated when the serial port associated with the TApdComPort is 
physically closed.

Setting the Open property to False does not close the associated serial port immediately. 
Buffers and structures need to be reset, and the physical hardware needs to be closed before 
the port can be considered closed. This event is generated when the physical port is actually 
closed and available to other processes.

See also: OnPortOpen, Open

OnPortOpen event

property OnPortOpen : TNotifyEvent

OnPortOpen is generated when the serial port associated with the TApdComPort is 
physically opened.

Setting the Open property to True begins a series of actions, ending with the physical serial 
port being opened and ready for use. This includes creating the buffers, data structures and 
the three threads required by the component. This process may take a few milliseconds, 
depending on the responsiveness of the Windows serial port drivers, unconventional 
configurations, etc. This event is generated when the physical serial port is opened and ready 
for use.

See also: OnPortClose, Open

OnTrigger event

property OnTrigger : TTriggerEvent

TTriggerEvent = procedure(
CP : TObject; Msg, TriggerHandle, Data : Word) of object;

Defines an event handler that is called whenever any serial data trigger occurs.

OnTrigger can be used to handle all kinds of trigger events in one location. Normally it is 
easier to use the more specific kinds of serial data triggers. The OnTrigger event handler is 
always called first, then the more specific event handlers are also called if they are assigned.
TApdComPort Component     69

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
CP is the TApdComPort component that generated the trigger. Msg is the Windows message 
that specifies the kind of trigger:

TriggerHandle is the handle number returned when the trigger was added. Data is a 
numeric value that is relevant for the APW_TRIGGERAVAIL, APW_TRIGGERDATA, and 
APW_TRIGGERSTATUS events. See the corresponding event handlers for more 
information.

The following example waits for and responds to a login prompt, processing 
APW_TRIGGERDATA, APW_TRIGGERAVAIL, and APW_TRIGGERTIMER messages in 
a single routine:

DataTrig := ApdComPort.AddDataTrigger('login:', True);
TimerTrig := ApdComPort.AddTimerTrigger;
ApdComPort.SetTimerTrigger(TimerTrig, 182, True);
...

procedure TMyForm.ApdComPortTrigger(
CP : TObject; Msg, TriggerHandle, Data : Word);

var
I : Word;
C : Char;

Trigger Description

APW_TRIGGERAVAIL Corresponds to OnTriggerAvail.

APW_TRIGGERDATA Corresponds to OnTriggerData.

APW_TRIGGERTIMER Corresponds to OnTriggerTimer.

APW_TRIGGERSTATUS Corresponds to OnTriggerStatus.
0     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

begin
case Msg of

APW_TRIGGERDATA :
{got 'login', send response}
ApdComPort.PutString('myname');

APW_TRIGGERAVAIL :
{extract and display/process the data}
for I := 1 to Data do begin

C := ApdComPort.GetChar;
...process data

end;
APW_TRIGGERTIMER :
{timed out waiting for login prompt, handle error}
...

end;
end;

See also: OnTriggerAvail, OnTriggerData, OnTriggerStatus, OnTriggerTimer

OnTriggerAvail event

property OnTriggerAvail : TTriggerAvailEvent

TTriggerAvailEvent = procedure(
CP : TObject; Count : Word) of object;

Defines an event handler that is called whenever a certain amount of serial input data is 
available for processing.

This event is generated when data has been transferred into the dispatcher buffer.

CP is the TApdComPort component that generated the trigger. Count is the actual number 
of bytes that are available to read at the instant the event is generated. Your event handler 
should process exactly the number of bytes of input equal to the value of the Count 
parameter (by calling GetChar or GetBlock). It should not use CharReady in a loop to 
process all available bytes since additional bytes may have transferred into the buffer while 
the event handler is active, and removing those bytes could interfere with the dispatcher’s 
data tracking mechanism.

If several parts of the same application are using the same comport component and each 
part installs its own OnTriggerAvail handler (as would occur if a terminal window and a file 
transfer protocol were both in use), the Async Professional dispatcher takes pains to ensure 
that all of them can read the same data. Even if the first handler to get control calls GetChar 
to read Count bytes of data, the second and subsequent handlers will also be able to read the 
same bytes of data by calling GetChar. After all of the OnTriggerAvail handlers have 
returned, the dispatcher determines the largest number of characters read by any of the 
handlers and removes those characters from the dispatcher buffer. If any data remains in the 
TApdComPort Component     71

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

"

buffer, the dispatcher immediately generates another OnTriggerAvail event. Hence, if one 
handler reads fewer characters than the other handlers, it will miss seeing the characters it 
did not read on its first opportunity.

Caution: Be sure to process the exact number of bytes passed in the Count parameter of this 
handler. If you process fewer bytes, you risk losing characters to another component 
extracting data during the event (such as the terminal). If you process more than Count 
bytes, you risk receiving events for overlapping data – which may eventually lead to an 
EBufferIsEmpty exception.

The following example collects incoming data until it finds a carriage return character 
(ASCII 13). If the incoming data stream contained “TurboPower Software”<CR>, 
ApdComPortTriggerAvail would be called one or more times until the entire string except 
<CR> was received. ApdComPortTriggerData would then be called and could process the 
complete string. ApdComPortTriggerAvail would then be called again with the <CR> and 
any other data that followed it. ApdComPortTriggerData would not be called again in this 
example, because the handler disables the data trigger.

const
S : string = '';

...
CRTrig := ApdComPort.AddDataTrigger(#13, False);

...
procedure TMyForm.ApdComPortTriggerData(

CP : TObject; TriggerHandle : Word);
begin

if TriggerHandle = CRTrig then begin
...do something with S
ApdComPort.RemoveTrigger(TriggerHandle);

end;
end;

procedure TMyForm.ApdComPortTriggerAvail(
CP : TObject; Count : Word);

var
I : Word;

begin
for I := 1 to Count do

S := S + ApdComPort.GetChar;
end;

See also: OnTrigger, OnTriggerData
2     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnTriggerData event

property OnTriggerData : TTriggerDataEvent

TTriggerDataEvent = procedure(
CP : TObject; TriggerHandle : Word) of object;

Defines an event handler that is called whenever a string matching a predefined goal is 
detected in the input buffer.

The event is generated as a result of adding a match string using AddDataTrigger. When the 
dispatcher finds a matching string in the input buffer, it generates an OnTriggerAvail event 
for the bytes leading up to the match, then generates an OnTriggerData event for the match. 
Finally, it generates another OnTriggerAvail event for the matched data itself.

CP is the TApdComPort component that generated the trigger. TriggerHandle is the handle 
number returned when the trigger was added.

Note that data match triggers remain active until explicitly removed. The event handler can 
call RemoveTrigger, passing TriggerHandle as the parameter, to remove the trigger that just 
generated the event.

See also: AddDataTrigger, OnTrigger, OnTriggerAvail

OnTriggerLineError event

property OnTriggerLineError : TTriggerLineErrorEvent

TTriggerLineErrorEvent = procedure(
CP : TObject; Error : Word; LineBreak : Boolean) of object;

Defines an event handler that is called whenever the dispatcher detects a line error or line 
break in the received data.

This event handler is called in a subset of the cases where the more general OnTriggerStatus 
handler is called. OnTriggerStatus is called first when a line error is detected, even if an 
OnTriggerLineError handler is installed.

CP is the TApdComPort component that generated the trigger. Error is a numeric code that 
indicates the most severe line error detected. See the LineError property for details. The 
LineBreak parameter is True if a line break was detected.

Note that status triggers are not self-restarting. The event handler must call SetStatusTrigger 
again to reactivate the trigger as needed.
TApdComPort Component     73

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The following example adds a status trigger for line errors and line breaks. The events are 
handled using an OnTriggerLineError event handler.

TrigLE : Word;
...
TrigLE := ApdComPort.AddStatusTrigger(stLine);
ApdComPort.SetStatusTrigger(

TrigLE, lsParity or lsFraming or lsOverrun or lsBreak, True);
...
procedure TMyForm.ApdComPortTriggerLineError(

CP : TObject; Error : Word; LineBreak : Boolean);
begin

if Error <> leNone then
...process line error

if LineBreak then
...process line break

{reactivate trigger}
ApdComPort1.SetStatusTrigger(
TrigLE, lsParity or lsFraming or lsOverrun or lsBreak, True);

end;

See also: LineError, OnTriggerStatus, SetStatusTrigger

OnTriggerModemStatus event

property OnTriggerModemStatus : TNotifyEvent

Defines an event handler that is called whenever the dispatcher detects that modem status 
signals have changed.

This event handler is called in a subset of the cases where the more general OnTriggerStatus 
handler is called. OnTriggerStatus is called first when a modem status change is detected, 
even if an OnTriggerModemStatus handler is installed.

The parameter passed to the TNotifyEvent is the TApdComPort component that generated 
the trigger. The TApdComPort’s modem status properties can be checked by the event 
handler to determine the exact reason for the event. No TriggerHandle is passed to the event 
handler, so it is not possible to distinguish between multiple modem status triggers in this 
event handler. If you need to do so, use the OnTriggerStatus event instead.

Note that status triggers are not self-restarting. The event handler must call SetStatusTrigger 
again to reactivate the trigger as needed.
4     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The following example adds and activates a modem status trigger for ring indicators and 
changes in DSR. Modem status changes are handled using an OnTriggerModemStatus event 
handler. 

TrigMS : Word;
...
TrigMS := ApdComPort.AddStatusTrigger(stModem);
ApdComPort.SetStatusTrigger(

TrigMS, msRingDelta or msDSRDelta, True);
...
procedure TMyForm.ApdComPortTriggerModemStatus(CP : TObject);
begin

if ApdComPort.DeltaRI then
...handle ring

if ApdComPort.DeltaDSR then
...handle change in DSR

{reactivate trigger}
ApdComPort.SetStatusTrigger(

TrigMS, msRingDelta or msDSRDelta, True);
end;

See also: CTS, DCD, DeltaCTS, DeltaDCD, DeltaDSR, DeltaRI, DSR, ModemStatus, RI

OnTriggerOutbuffFree event

property OnTriggerOutbuffFree : TNotifyEvent

Defines an event handler that is called whenever the dispatcher detects that free space in its 
output buffer has reached a certain level.

This event handler is called in a subset of the cases where the more general OnTriggerStatus 
handler is called. OnTriggerStatus is called first when sufficient free space is detected, even if 
an OnTriggerOutbuffFree handler is installed. If the output buffer level is already below the 
specified level when the trigger is activated, an OnTriggerOutbuffFree event is generated the 
next time the internal dispatcher gains control.

The parameter passed to the TNotifyEvent is the TApdComPort component that generated 
the trigger.

Note that status triggers are not self-restarting. The event handler must call SetStatusTrigger 
again to reactivate the trigger as needed.
TApdComPort Component     75

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The following example adds and activates a status trigger for OnTriggerOutbuffFree events; 
when the output buffer free level reaches 255 or greater ApdComPortTriggerOutbuffFree 
transmits BigString:

TrigOBF : Word;
...
TrigOBF := ApdComPort.AddStatusTrigger(stOutbuffFree);
ApdComPort.SetStatusTrigger(TrigOBF, 255, True);
...
procedure TMyForm.ApdComPortTriggerOutbuffFree(CP : TObject);
begin

{buffer has at least 255 bytes free, transmit a big string}
ApdComPort.Output := BigString;

end;

See also: OnTriggerStatus, OnTriggerOutbuffUsed

OnTriggerOutbuffUsed event

property OnTriggerOutbuffUsed : TNotifyEvent

Defines an event handler that is called whenever the dispatcher detects that used space in its 
output buffer has dropped below a certain level.

This event handler is called in a subset of the cases where the more general OnTriggerStatus 
handler is called. OnTriggerStatus is called first when used space drops below a particular 
level, even if an OnTriggerOutbuffUsed handler is installed. If the output buffer already 
contains fewer bytes than the specified level when the trigger is activated, an 
OnTriggerOutbuffUsed event is generated as soon as the internal dispatcher gains control.

The parameter passed to the TNotifyEvent is the TApdComPort component that generated 
the trigger.

Note that status triggers are not self-restarting. The event handler must call SetStatusTrigger 
again to reactivate the trigger as needed.

The following example adds and activates a status trigger for an OnTriggerOutbuffUsed 
event; when the output buffer used level drops below 100 bytes 
ApdComPortTriggerOutbuffUsed is called and transmits additional data:

TrigOBU : Word;
...
TrigOBU := ApdComPort.AddStatusTrigger(stOutBuffUsed);
ApdComPort.SetStatusTrigger(TrigOBU, 100, True);
...
procedure TMyForm.ApdComPortTriggerOutbuffUsed(CP : TObject);
6     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

begin
{buffer almost empty, start filling up again}
ApdComPort.Output := Stuff;
ApdComPort.Output := MoreStuff;
ApdComPort.Output := EvenMoreStuff;
...

end;

See also: OnTriggerStatus, OnTriggerOutbuffFree

OnTriggerOutSent event

property OnTriggerOutSent : TNotifyEvent

Defines an event handler that is called whenever the dispatcher gets a request to send one or 
more characters.

This event handler is called in a subset of the cases where the more general OnTriggerStatus 
handler is called. OnTriggerStatus is called first when an output request occurs, even if an 
OnTriggerOutSent handler is installed. The parameter passed to the TNotifyEvent is the 
TApdComPort component that generated the trigger.

Unlike most triggers, OnTriggerOutSent does not need to be reset. The event is always 
generated for output events until the trigger is deactivated.

The following example adds a status trigger for OnTriggerOutSent; thereafter, each time the 
program calls any transmit method or property ApdComPortTriggerOutSent is called to 
update a status display:

TrigOS : Word;
...
TrigOS := ApdComPort.AddStatusTrigger(stOutSent);
...
procedure TMyForm.ApdComPortTriggerOutSent(CP : TObject);
begin

...update display to indicate data was transmitted
end;

See also: OnTriggerStatus
TApdComPort Component     77

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

OnTriggerStatus event

property OnTriggerStatus : TTriggerStatusEvent

TTriggerStatusEvent = procedure(
CP : TObject; TriggerHandle : Word) of object;

Defines an event handler that is called whenever a line status change of some kind is 
detected.

This event handler combines the events described under OnTriggerLineError, 
OnTriggerModemStatus, OnTriggerOutbuffFree, OnTriggerOutbuffUsed, and 
OnTriggerOutSent.

CP is the TApdComPort component that generated the trigger. TriggerHandle is the handle 
number returned when the trigger was added.

With the exception of OnTriggerOutSent, status triggers are not self-restarting. The event 
handler must call SetStatusTrigger again to reactivate the trigger as needed.

The following example adds and activates status triggers for line errors and modem status 
changes. Subsequent status events are handled by ApdComPortTriggerStatus.

TrigLE : Word;
TrigMS : Word;
...
TrigLE := ApdComPort.AddStatusTrigger(stLine);
TrigMS := ApdComPort.AddStatusTrigger(stModem);
ApdComPort.SetStatusTrigger(

TrigLE, lsParity or lsFraming or lsOverrun or lsBreak, True);
ApdComPort.SetStatusTrigger(

TrigMS, msRingDelta or msDSRDelta, True);
...
procedure TMyForm.ApdComPortTriggerStatus(

CP : TObject; TriggerHandle : Word);
begin

if TriggerHandle = TrigLE then begin
...handle line error or break
...reset line error trigger

end else if TriggerHandle = TrigMS then begin
...handle modem status change
...reset modem status trigger

end;
end;

See also: OnTriggerLineError, OnTriggerModemStatus, OnTriggerOutbuffFree, 
OnTriggerOutbuffUsed, OnTriggerOutSent
8     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

OnTriggerTimer event

property OnTriggerTimer : TTriggerTimerEvent

TTriggerTimerEvent = procedure(
CP : TObject; TriggerHandle : Word) of object;

Defines an event handler that is called when an Async Professional timer expires.

CP is the TApdComPort component that generated the trigger. TriggerHandle is the handle 
number returned when the trigger was added.

Note that timer triggers are not self-restarting. The event handler must call SetTimerTrigger 
again to reactivate the trigger as needed.

The following example adds and activates two timer triggers. After 10 seconds and 60 
seconds elapse, events are generated and handled by ApdComPortTriggerTimer.

Timer1, Timer2 : Word;
...
Timer1 := ApdComPort.AddTimerTrigger;
Timer2 := ApdComPort.AddTimerTrigger;
ApdComPort.SetTimerTrigger(Timer1, 182, True);
ApdComPort.SetTimerTrigger(Timer2, 1092, True);
...
procedure TMyForm.ApdComPortTriggerTimer(

CP : TObject; TriggerHandle : Word);
begin

if TriggerHandle = Timer1 then begin
...handle 10 second timeout condition
{restart timer}
ApdComPort.SetTimerTrigger(Timer1, 182, True);

end else begin
...handle 60 second timeout condition
{restart timer}
ApdComPort.SetTimerTrigger(Timer2, 1092, True);

end;
end;

See also: AddTimerTrigger, SetTimerTrigger
TApdComPort Component     79

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Open property

property Open : Boolean

Default: False

Determines whether the physical port is opened and initialized with all current port 
properties.

Open must be set to True before a comport component can send or receive characters. If the 
AutoOpen property is set to True, the comport component will open itself automatically 
under many conditions: calling any I/O method or property or when a component that uses 
a TApdComPort is loaded.

When Open is set to True, the TApdComPort uses all current property settings to allocate 
input and output buffers, open the physical port, initialize the line settings and flow control 
settings, and enable or disable tracing and logging. It then registers a low-level trigger for the 
port, which gets the first look at all trigger events and passes control on to the appropriate 
OnTriggerXxx event handlers.

When Open is set to False, the TApdComPort turns off tracing and logging (by setting the 
associated properties to tlDump, which creates an output file if any information has been 
buffered), closes the physical port, and deallocates input and output buffers.

There is no harm done by setting Open to True when it is already True, or setting it to False 
when it is already False.

See also: AutoOpen, OnPortClose, OnPortOpen

OutBuffFree read-only, run-time property

property OutBuffFree : Word

Returns the number of bytes free in the output buffer.

Use OutBuffFree to assure that the output buffer has enough free space to hold data that you 
are about to transmit.
0     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

The following example checks for sufficient output buffer space to transmit a block of 
NeededSpace bytes. If enough space is available the block is transmitted. Otherwise, a status 
trigger is added to detect the required free space. The code assumes that an OnTriggerStatus 
event handler has already been activated.

if ApdComPort.OutBuffFree >= NeededSpace then
ApdComPort.PutBlock(Data, NeededSpace)

else begin
MyHandle := ApdComPort.AddStatusTrigger(stOutBuffFree);
ApdComPort.SetStatusTrigger(MyHandle, NeededSpace, True);

end;

See also: OutBuffUsed

OutBuffUsed read-only, run-time property

property OutBuffUsed : Word

Returns the number of bytes currently in the output buffer.

Use OutBuffUsed to detect whether or not any outgoing data remains in the output buffer. 

The following example checks to see if any outgoing data is still in the output buffer. If so, it 
sets a status trigger to go off once the buffer is completely empty. The code assumes that an 
OnTriggerStatus event handler has already been activated.

if ApdComPort.OutBuffUsed <> 0 then begin
MyHandle := ApdComPort.AddStatusTrigger(stOutBuffUsed);
ApdComPort.SetStatusTrigger(MyHandle, 0, True);

end;

See also: OutBuffFree

Output write-only, run-time property

property Output : string

Transmits its assigned value through the port.

Assigning a value to Output is equivalent to calling the PutString method with that same 
string.

The following example sends a dial string out the port:

ApdComPort.Output := 'ATDT555-1212'^M;

See also: PutChar, PutString
TApdComPort Component     81

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

OutSize property

property OutSize : Word

Default: 4096

Determines the size, in bytes, of the output buffer used by the Windows communications 
driver.

OutSize must be large enough to hold the largest block of data that you might transmit at 
one time (using PutBlock, for example). For file transfer protocols OutSize must be at least 
2078 bytes. The recommended setting is 4096, which is large enough to work with all 
protocols but not so large that it is wasteful.

To obtain a non-default buffer size, OutSize must be set before the port is opened.

See also: Open, InSize

Parity property

property Parity : TParity

TParity = (pNone, pOdd, pEven, pMark, pSpace);

Default: pNone

Determines the parity checking mode of the port.

If the port is open when Parity is changed, the line parameters are updated immediately. 
Parity does not validate the assigned value before passing it on to the communications 
driver. The driver may reject the value, leading to an exception.

See also: Baud, ComNumber, DataBits, StopBits

ProcessCommunications method

procedure ProcessCommunications;

Calls the internal dispatcher one time.

This method is used by the Winsock device layer.

An application should call this routine if it needs to receive data during lengthy processing 
where the application’s message loop isn’t running, or the dispatcher thread is otherwise 
blocked.
2     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The internal dispatcher, which is responsible for retrieving data from the Windows 
communication driver, is normally called from an application’s message loop. If an 
application isn’t calling its message loop then no new received data will be retrieved. To 
retrieve new data the application must call ProcessCommunications, usually in a loop, until 
it receives its data or times out.

Note that ProcessCommunications is provided for those cases where an application must 
wait (for timing reasons) for a particular response. Normally, an application would use 
OnTriggerAvail and OnTriggerData event handlers to wait for data.

The following example sends a string and waits for a response:

ET : EventTimer;
S : string;
...
S := '';
ApdComPort.Output := 'login:';
NewTimer(ET, 182);
repeat

ApdComPort.ProcessCommunications;
if ApdComPort.CharReady then

S := S + ApdComPort.GetChar;
until (S = 'ABC') or TimerExpired(ET);

See also: AddDataTrigger

PromptForPort property

property PromptForPort : Boolean

Default: True

Indicates whether the user should be prompted for the serial port number. 

If PromptForPort is True and ComNumber is zero, a dialog is displayed to prompt the user 
for the serial port when the port is opened:

If PromptForPort is False and ComPort is zero, an ENoPortSelected exception is raised 
when the port is opened. This is the same behavior as older versions of Async Professional, 
which do not have a PromptForPort property.

See also: ComPort
TApdComPort Component     83

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

PutBlock method

function PutBlock(const Block; const Len : Word) : Integer;

Copies a block of data to the output buffer of the Windows communications driver.

The communications driver then transmits the block byte-by-byte as fast as possible.

When there is insufficient free space in the output buffer, the documented behavior of the 
Windows communications driver is to delete old data from the buffer. To avoid this 
behavior, programs should always check OutBuffFree before calling any PutXxx method or 
assigning a value to the Output property.

Block refers to the block of data and Len is the number of bytes to transmit. Len must be 
smaller than the current value of the OutSize property.

The following example transmits a block of 20 characters after assuring that space is 
available:

if ApdComPort.OutBuffFree >= 20 then
ApdComPort.PutBlock(Block, 20);

See also: OutBuffFree, PutChar, PutString

PutChar method

procedure PutChar(const C : Char);

Copies a single character to the output buffer of the Windows communications driver.

The communications driver then transmits the character as soon as possible.

The following example transmits one character after assuring that space is available:

if ApdComPort.OutBuffFree >= 1 then
ApdComPort.PutChar(C);

See also: OutBuffFree, PutBlock, PutString

PutString method

procedure PutString(const S : string);

Copies a string to the output buffer of the Windows communications driver.

The communications driver then transmits the string as soon as possible. The length byte of 
the string is not transmitted.
4     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

"

!

The following example transmits a string after assuring that space is available:

S := 'Guinness Stout';
if ApdComPort.OutBuffFree >= Length(S) then

ApdComPort.PutString(S);

See also: OutBuffFree, Output, PutBlock, PutChar

RemoveAllTriggers method

procedure RemoveAllTriggers;

Deactivates all triggers added to this port.

Use this routine when your program changes modes and requires completely new triggers. 
Destroying or closing a port automatically removes all of its triggers.

Caution: Calling this method effectively disables the comport component since it removes 
all triggers, including the ones that Async Professional requires internally for normal 
operation of the comport and associated components.

Normally, it’s best to keep track of the triggers you add and remove them individually using 
RemoveTrigger when they are no longer needed.

See also: Open, RemoveTrigger

RemoveTrigger method

procedure RemoveTrigger(Handle : Word);

Deactivates a specified trigger.

Handle is the handle returned when the trigger was added. If no matching trigger handle is 
found, no error is generated. If Handle is a valid trigger, Handle is set to zero when removed.

The following example adds and uses a timer trigger, and later removes it:

var
MyHandle : Word;

...
MyHandle := ApdComPort.AddTimerTrigger;
ApdComPort.SetTimerTrigger(MyHandle, 36, True);
...
ApdComPort.RemoveTrigger(MyHandle);

See also: RemoveAllTriggers
TApdComPort Component     85

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

"

!

RI read-only, run-time property

property RI : Boolean

Returns True if the port’s “ring indicator” line (RI) is set.

Because the ring indicator line fluctuates rapidly as rings occur, the DeltaRI property is 
much more reliable for detecting an incoming call.

See also: DeltaRI

RS485Mode property

property RS485Mode : Boolean

Default: False

Determines whether the RTS line should be raised or lowered automatically when 
transmitting data.

Set this property to True when using an RS-485 board or converter that uses the RTS line to 
enable the transmit line. In this mode, RTS will be raised whenever the program is 
transmitting data and lowered at all other times.

Caution: This property should be set to True only when a program is using RS-485 ports or 
converters and only if those ports or converters use RTS for line control. Enabling this 
property at other times could cause programs to behave erratically or stop working 
completely.

Because RS-485 mode requires control over the RTS line, the RTS property is set to False 
and CTS/RTS hardware flow control is disabled whenever RS485Mode is set to True.

See “RS-485 support overview” on page 31 for more information on RS-485 support.

See also: BaseAddress

RTS property

property RTS : Boolean

Default: True

Determines the current state of the “request to send” signal (RTS).

This signal is usually used for hardware flow control, in which case your application does 
not need to set it directly. Less frequently, devices require that your application raise and 
lower RTS to control the device, or require that RTS be permanently set. Use this property in 
those cases.
6     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

The following example lowers the RTS signal after opening the port and later raises it again:

ApdComPort := TApdComPort.Create(Self);
ApdComPort.Open := True;
ApdComPort.RTS := False;
...
ApdComPort.RTS := True;

See also: DTR, HWFlowOptions

SendBreak method

procedure SendBreak(Ticks : Word; Yield : Boolean);

Transmits a break signal.

This method transmits a break signal (the transmit line is held in the “marking” state) for 
the number of ticks specified by Ticks. A tick is 55 milliseconds.

When Yield is True, SendBreak yields control back to Windows while sending the break, 
giving other applications and other parts of this application a chance to run. When Yield is 
False, SendBreak does not yield.

SetBreak method

procedure SetBreak(BreakOn : Boolean);

Raises or lowers the break signal.

This method will begin transmission of the break signal if BreakOn is True; or stops 
transmission of the break signal if BreakOn is False. Use this method if you need to transmit 
the break signal for an undetermined time period.

See also: SendBreak
TApdComPort Component     87

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

SetStatusTrigger method

procedure SetStatusTrigger(const Handle : Word;
const Value : Word; const Activate : Boolean);

Activates or deactivates a status trigger.

Status triggers are activated in two steps. The trigger is added using AddStatusTrigger, then 
the trigger is activated using SetStatusTrigger. The trigger type is specified when the trigger 
is added, and the exact trigger condition is specified when the trigger is activated.

Handle is the value that was returned by the call to AddStatusTrigger. The interpretation of 
Value varies between the trigger types, as described below. Activate is True to activate the 
trigger, False to deactivate it. When Activate is False the Value parameter is ignored.

For triggers of type stModem, Value is a bit mask that contains one or more of the following 
options:

For the msCTSDelta, msDSRDelta, and msDCDDelta options SetStatusTrigger saves the 
current state of the corresponding modem signals and checks for changes to those signals. 
When a change from the original state is detected an OnTriggerStatus event is generated. If a 
single trigger is used to monitor multiple signals, the message response routine must check 
the appropriate modem status properties to determine which signal actually changed state. 
Alternatively, a separate trigger can be added for each modem signal. Once a trigger 
message is sent the trigger is disabled, even if some of the monitored signals did not change 
state.

The msRingDelta option triggers an OnTriggerStatus event at the end of the next incoming 
ring signal, immediately after the audible termination of the ring. In order to receive another 
OnTriggerStatus event using msRingDelta, the application must not only call 
SetStatusTrigger again, but it must also read the DeltaRI property to clear the ring condition 
in the modem status register.

An stModem trigger also generates an OnTriggerModemStatus event. Note, however, that 
no trigger handle is passed to the OnTriggerModemStatus event handler, so it cannot 
distinguish among multiple different triggers. If you need to do this, use an OnTriggerStatus 
event handler instead.

Option Description

msCTSDelta Trigger when CTS changes.

msDSRDelta Trigger when DSR changes.

msRingDelta Trigger when a ring is detected.

msDCDDelta Trigger when DCD changes.
8     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
For triggers of type stLine, Value is a bit mask that contains one or more of the following 
options:

If a single trigger is used to monitor multiple line status signals, the OnTriggerStatus event 
handler must read the LineError property to determine the most severe error. When lsBreak 
is combined with other options the response routine must read both LineError and 
LineBreak to determine whether the trigger was caused by an error or by a received line 
break.

An stLine trigger also generates an OnTriggerLineError event, which passes the current 
values of LineError and LineBreak as parameters to its handler.

For triggers of type stOutBuffFree, an OnTriggerStatus event is generated when the number 
of bytes free in the output buffer is greater than or equal to Value. An OnTriggerOutbuffFree 
event is also generated by the trigger.

For triggers of type stOutBuffUsed, an OnTriggerStatus event is generated when the number 
of bytes used in the output buffer is less than or equal to Value. An OnTriggerOutbuffUsed 
event is also generated by the trigger.

For triggers of type stOutSent, Value is not used. Here, an OnTriggerStatus event is 
generated whenever PutChar, PutString, or PutBlock is called. However, the event is not 
generated directly from these routines, but is instead generated the next time the dispatcher 
gains control. Only one event is generated even if multiple PutXxx calls were made or the 
Output property was assigned since the last time the dispatcher ran.

All status triggers except stOutSent must be restarted within the message handler. That is, 
the triggers generate a single message and do not restart themselves automatically.

The following example adds an stOutBuffFree status trigger and activates it to send a 
message when at least 100 bytes are free in the output buffer:

var
MyHandle : Word;

...
MyHandle := ApdComPort.AddStatusTrigger(stOutBuffFree);
ApdComPort.SetStatusTrigger(MyHandle, 100, True);

Option Description

lsOverrun Trigger on UART overrun errors.

lsParity Trigger on parity errors.

lsFraming Trigger on framing errors.

lsBreak Trigger on a received line break signal.
TApdComPort Component     89

1

1



9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The following example adds an stModem trigger and activates it to send a message when 
either the DSR or CTS signal changes from its current state:

var
MyHandle : Word;

...
MyHandle := ApdComPort.AddStatusTrigger(stModem);
ApdComPort.SetStatusTrigger(

MyHandle, msDSRDelta or msCTSDelta, True);

See also: AddStatusTrigger, OnTriggerStatus

SetTimerTrigger method

procedure SetTimerTrigger(const Handle : Word;
const Ticks : LongInt; const Activate : Boolean);

Activates or deactivates a timer trigger.

Timer triggers are activated in two steps. The trigger is added using AddTimerTrigger, then 
the trigger is activated using SetTimerTrigger. The duration of the timer is specified when 
the trigger is activated.

Handle is the handle returned when the trigger was added. Ticks is the duration of the timer 
in BIOS clock ticks (a tick is approximately 55 milliseconds).

Activate is True to activate the trigger, False to deactivate it. When Activate is False the Ticks 
parameter is ignored.

After the specified time elapses the internal dispatcher generates an OnTriggerTimer event. 
The trigger handle is passed to the event handler so that it can detect which timer expired.

Timer triggers generate a single OnTriggerTimer event. The timer is automatically disabled 
after it triggers once. To reuse the timer your program must call SetTimerTrigger again.

The following example adds a timer trigger and activates it with a 36 tick (2 second) 
timeout:

var
MyHandle : Word;

...
MyHandle := ApdComPort.AddTimerTrigger;
ApdComPort.SetTimerTrigger(MyHandle, 36, True);

See also: AddTimerTrigger
0     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

StopBits property

property StopBits : Word

Default: 1

Determines the number of stop bits of the port.

Acceptable values are 1 and 2. If DataBits equals 5, a request for 2 stop bits is interpreted as a 
request for 1.5 stop bits, the standard for this data size.

If the port is open when StopBits is changed, the line parameters are updated immediately. 
StopBits does not validate the assigned value before passing it on to the communications 
driver. The driver may reject the value, leading to an exception.

See also: Baud, ComNumber, DataBits, Parity

SWFlowOptions property

property SWFlowOptions : TSWFlowOptions

TSWFlowOptions = (swfNone, swfReceive, swfTransmit, swfBoth);

Default: swfNone

Determines the software flow control options for the port.

This routine turns on one or both aspects of automatic software flow control based on the 
value assigned to the property.

“Receive flow control” stops a remote device from transmitting while the local receive buffer 
is too full. “Transmit flow control” stops the local device from transmitting while the remote 
receive buffer is too full.

Receive flow control is enabled by assigning swfReceive or swfBoth to the property. When 
enabled, an XOff character is sent when the input buffer reaches the level assigned to the 
BufferFull property. The remote must recognize this character and stop sending data after it 
is received.

As the application processes received characters, buffer usage eventually drops below the 
level assigned to the BufferResume property. At that point, an XOn character is sent. The 
remote must recognize this character and start sending data again.

Transmit flow control is enabled by assigning swfTransmit or swfBoth to the property. The 
BufferFull and BufferResume properties are not used in this case. When transmit flow 
control is enabled, the communications driver stops transmitting whenever it receives an 
XOff character. The driver does not start transmitting again until it receives an XOn 
character or the application sets SWFlowOptions to swfNone.
TApdComPort Component     91

1

1



9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The following example enables bi-directional software flow control with limits at the 25% 
and 75% levels of the buffer. The default characters are used for XOn and XOff. Later in the 
application, software flow control is disabled.

ApdComPort.BufferFull := Trunc(0.75*ApdComPort.InSize);
ApdComPort.BufferResume := Trunc(0.25*ApdComPort.InSize);
ApdComPort.SWFlowOptions := swfBoth;
...
ApdComPort.SWFlowOptions := swfNone;

See also: FlowState, HWFlowOptions

TapiMode property

property TapiMode : TTapiMode

TTapiMode = (tmNone, tmAuto, tmOn, tmOff);

Default: tmAuto

Determines whether a TApdComPort can be controlled by a TApdTapiDevice.

A TApdTapiDevice cannot work by itself; it must work in conjunction with a 
TApdComPort. When a TApdTapiDevice is created, it searches the form for a 
TApdComPort. If it finds one, it checks the comport component’s TapiMode property to 
determine whether it can be used by the TApdTapiDevice.

If TapiMode is tmAuto (the default), the TApdComPort is available for TAPI use. The 
TApdTapiDevice saves a pointer to the TApdComPort and sets these property values:

ApdComPort.TapiMode := tmOn;
ApdComPort.AutoOpen := False;
ApdComPort.Open := False;

TapiMode is changed to tmOn to indicate that the TApdComPort is being controlled by the 
associated TApdTapiDevice. AutoOpen and Open are both set to False because the 
TApdComPort should no longer control when it is opened or closed—that is now done by 
TAPI.

To turn off TAPI mode, or to prevent a TAPI device from taking control of the 
TApdComPort, set TapiMode to tmOff. To re-enable TAPI mode later, set TapiMode back to 
tmAuto or tmOn. You must also set AutoOpen and Open to False because the 
TApdTapiDevice automatically sets these properties only when either the TApdTapiDevice 
or TApdComPort are first created.

The value tmNone isn’t used.
2     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

See the ADXPORT form/unit in the TERMDEMO demonstration program (see the Async 
Professional Developer’s Guide) for an example of a program that uses both TAPI devices 
and direct serial port access. It modifies TapiMode accordingly as the user selects either 
TAPI devices or direct serial ports.

See “Chapter 8: TAPI Components” on page 203 for more information on TAPI.

See also: AutoOpen, Open

TraceAllHex property

property TraceAllHex : Boolean

Default: False

Determines when the trace log will contain literal printable characters, or if all characters 
will be written in hexadecimal notation.

See also: LogAllHex, Tracing

TraceHex property

property TraceHex : Boolean

Default: True

Determines whether non-printable characters stored in a trace file are written using 
hexadecimal or decimal notation.

See also: TraceAllHex, TraceName, TraceSize, Tracing

TraceName property

property TraceName : ShortString

Default: APRO.TRC

Determines the name of the file used to store a trace.

See also: Tracing
TApdComPort Component     93

1

1



9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

TraceSize property

property TraceSize : Word

Default: 10000

Determines the number of entries allocated in the trace buffer.

The value may be as large as 4 million. Each entry consumes 2 bytes.

This property should normally be set before a tracing session begins. If a changed value is 
assigned to TraceSize while a tracing session is active, the current session is aborted (which 
clears all information from the trace buffer), the new buffer is allocated, and a new trace 
session is started.

See also: Tracing

Tracing property

property Tracing : TTraceLogState

TTraceLogState = (tlOff, tlOn, tlDump, tlAppend, tlClear, tlPause);

Default: tlOff

Determines the current tracing state. 

When Tracing is set to tlOff, as it is by default, no tracing is performed.

To enable tracing, set Tracing to tlOn. This allocates an internal buffer of 2*TraceSize bytes 
and informs the dispatcher to start using this buffer. To disable tracing without writing the 
contents of the buffer to a disk file, set Tracing to tlOff. This also frees the internal buffer.

To write the contents of the tracing buffer to disk, set Tracing to tlDump (which overwrites 
any existing file named TraceName, or creates a new file) or tlAppend (which appends to an 
existing file, or creates a new file). After the component writes to the file it sets Tracing to 
tlOff.

Note that Tracing is usually not as useful as the dispatcher log. The trace file will contain 
groupings of transmitted and received characters, which may not be in chronological order. 
Dispatcher logging will also show most internal state machine states, which tracing does not 
provide.

To clear the contents of the tracing buffer and continue tracing, set Tracing to tlClear. After 
the component clears the buffer, it sets Tracing to tlOn.

To temporarily pause tracing, set Tracing to tlPause. To resume, set Tracing to tlOn.

See “Tracing” on page 33 for more information.
4     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

"

The following example turns on tracing and later dumps the tracing buffer to APRO.TRC:

ApdComPort.Tracing := tlOn;
...
ApdComPort.TraceName := 'APRO.TRC';
ApdComPort.Tracing := tlDump;

See also: Logging, TraceHex, TraceName, TraceSize

UseEventWord property

property UseEventWord : Boolean

Default: True

Determines how the dispatcher checks for received data.

The Windows communication API provides two methods to check for received data and 
line/modem status changes: API calls and an event word. The event word is maintained by 
the Windows communications driver. As data is received or line/modem status changes 
occur, the driver sets bits in the event word. The application can check the bits to determine 
if any communication events occurred. If so, the application can make the appropriate API 
call to clear the event word and retrieve the data or the new line/modem status values.

Windows also provides API calls to retrieve the same status information provided by the 
event word but the API calls are slower. Async Professional uses the event word by default 
for the fastest possible performance. Unfortunately, there is at least one communication 
driver (WRPI.DRV, included with some U.S. Robotics modems) that doesn’t appear to 
support the event word. For this and similar drivers, UseEventWord must be set to False 
before Async Professional will receive data.

Caution: Yielding introduces the possibility of reentrancy, which your application must 
anticipate and prevent. For example, if WaitForString is called from within a button’s 
OnClick event handler with Yield set to True, the user is able to navigate back to the button 
and click on it again. Although WaitForString would work in this situation (and would 
thereby start a wait within a wait) you probably do not want this to happen. It’s up to the 
application to prevent this by disabling the button or the screen containing the button or by 
checking for reentrancy within the OnClick event handler.

The reentrancy issue also applies to other parts of the application since most applications 
provide menu options and dialog boxes for changing port parameters, starting file transfers, 
dialing the modem, and so on. The application must prevent the user from instigating any 
actions that interfere with WaitForString until WaitForString returns.
TApdComPort Component     95

1

1



9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
None of these problems apply when Yield is False because WaitForString won’t allow other 
message processing while it is waiting. However, you should use this approach only for brief 
periods of just a few ticks since it prevents Windows from processing other applications and, 
worse yet, worries your user since the machine appears frozen until WaitForString returns.

Note that WaitForString uses GetChar to retrieve data, which may prevent this data from 
being seen by any trigger handlers for the same comport component (unless WaitForString 
is called from within a trigger handler itself). However, each received character generates an 
OnWaitChar event, so an event handler can be implemented to pass the data to other 
processes.

Note that WaitForString is depreciated and maintained for backward compatibility. In most 
cases, other alternatives, such as using the TApdDataPacket component or data triggers, are 
more appropriate for Windows applications. Data triggers avoid the reentrancy problems 
while still allowing Windows to process messages for other applications and other windows 
in the current application. Data triggers are more complex to use than WaitForString but are 
well worth the effort in the long run.

The following example shows an OnWaitChar event handler that manually stuffs received 
data into a terminal window:

procedure TForm.ApdComPort1WaitChar(CP : TObject; C : Char);
begin

ApdTerminal1.StuffChar(C);
ApdTerminal1.ForcePaint;

end;

The following example is the OnClick event handler from a “Login” button that waits for 
and responds to “login” and “password” prompts from a remote host:

procedure TForm1.LoginClick(Sender : TObject);
begin

ApdComPort.Output := 'ATDT260-9726'^M;
if not ApdComPort.WaitForString('login', 1092, True, True) then

...handle timeout error
ApdComPort.Output := 'myname';
if not ApdComPort.WaitForString(

'password', 182, True, True) then
...handle timeout error

ApdComPort.Output := 'secret';
...

end;

See also: AddDataTrigger, OnTriggerData, OnWaitChar, WaitForMultiString
6     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

XOffChar property

property XOffChar : Char

Default: #19 (^S)

Determines the character that is sent to disable remote sending when software flow control is 
active.

Software flow control almost universally uses the XOff (ASCII 19) character to suspend 
transmission, and this is the default character used by Async Professional. If you should 
encounter a device that requires a different character, you can use XOffChar to set it.

See also: SWFlowOptions, XOnChar

XOnChar property

property XOnChar : Char

Default: DefXOnChar (#17, ^Q) 

Determines the character that is sent to enable remote sending when software flow control is 
active.

Software flow control almost universally uses the XOn (ASCII 17) character to enable 
transmission, and this is the default character used by Async Professional. If you should 
encounter a device that requires a different character, you can use XOnChar to set it.
TApdComPort Component     97

1

1



9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
8     Chapter 2: Port Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

"

Chapter 3: Winsock Components

Windows includes routines for network and Internet communications. These routines are 
contained in DLLs which are collectively called Winsock (for WINdows SOCKets). Winsock 
is a Windows-specific implementation of the Berkley Sockets API. The Berkley Sockets API 
was developed as a protocol to allow UNIX machines to communicate with each other over 
networks. The concept of sockets is analogous to a telephone operator in the early days of 
telephones. When a call came in, the operator used a patch cord to connect the caller’s 
socket to the socket of the person being called. Winsock does essentially the same thing. It 
provides a means of connecting a calling computer to a host computer so that the two can 
exchange information. The calling application is called a client and the host application is 
called a server. 

Before a connection can be established, Winsock needs to know how to find the host 
computer. Each network computer has an address associated with it. This address, called the 
IP address, is a 32-bit value that uniquely identifies the machine. Since a number like 
32,147,265 is difficult to remember, network addresses are often displayed in dot notation. 
Dot notation specifies an IP address as a series of four bytes, each separated by a dot. For 
example, the TurboPower Web site address can be specified in dot notation as 
165.212.210.12. Network software translates the address specified in dot notation to a real 
32-bit value.

Caution: Leading zeros in a dot notation IP address (for example, “198.168.010.012”) 
causes Winsock to interpret the respective portion of the address in octal (the above IP 
would actually be interpreted by Winsock as “198.168.8.10”). APRO does not interfere with 
this behavior, it simply passes the entered address to Winsock as is.

While expressing a network address in dot notation is a little better than dealing with a raw 
32-bit value, it is still not particularly easy to remember. For that reason, a global database 
gives you the capability to specify an IP address in plain text. This database, called the 
Domain Name Service (DNS), has text entries that correspond to IP address values. For 
example, the TurboPower Web site DNS entry is www.turbopower.com. If Winsock does a 
lookup for the host name www.turbopower.com, it gets the IP address 165.212.210.12.

Not all computers have DNS entries. A DNS entry is usually used to provide public access to 
a computer. Servers that are for private use only don’t publish their IP addresses.

Most software allows you to specify either the host name or the IP address in dot notation 
when attempting to connect to a server. To illustrate, start your favorite Web browser and 
type “www.turbopower.com” at the address prompt. When you hit Enter, your browser 
displays the home page of the TurboPower Web site. Now try again, but this time type 
“165.212.210.12” at the address prompt. Once again the browser takes you to the 
TurboPower Web site.
     99

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
In addition to IP addresses, Winsock uses ports to specify how to connect to a remote 
machine. Winsock can be thought of as a trunk line with thousands of individual lines (the 
ports) which are used to connect machines. Some ports are considered well-known ports. 
For example, the port typically used for network mail systems (SMTP) is port 25, the telnet 
port is port 23, the network news server port (NNTP) is typically port 119, and so on. To see 
a list of well-known ports, inspect the SERVICES file in the Windows directory (for 
Windows NT it is in the WINNT\SYSTEM32\DRIVERS\ETC directory). The SERVICES 
file is a text file used by Winsock to perform port lookups (which return the service name 
for the specified port) and port name lookups (which return the port number for the 
specified service name). You can open this file in any text editor to see a list of port numbers 
and their corresponding service names. While these well-known ports are not set in stone, 
they are traditional and their use should be reserved for the service which they represent. 
When writing network applications, you should select a port number that is not likely to be 
duplicated by other applications on your network. In most cases you can choose a port 
number other than any of the well-known port numbers.

The IP address and port number are used in combination to create a socket. A socket is first 
created and then is used to establish connection between two computers. How the socket is 
used depends on whether the application is a client or a server. If an application is a server, it 
creates the socket, opens it, and then listens on that socket for computers trying to establish 
a connection. At this point the server is in a polling loop listening and waiting for a possible 
connection. A client application, on the other hand, creates a socket using the IP address of a 
particular server and the port number that the server is known to be listening on. The client 
then uses the socket to attempt to connect to the server. When the server hears the 
connection attempt, it wakes up and decides whether or not to accept the connection. 
Usually this is done by examining the IP address of the client and comparing it to a list of 
known IP addresses (some servers don’t discriminate and accept all connections). If the 
connection is accepted, the client and server begin communicating and data is transmitted.

There is one other aspect of Internet communications that should be noted. Telnet is a 
protocol that allows a computer to connect to a remote server via a terminal screen. When a 
connection is established, a telnet server sends ASCII data to the client application. The 
client application then displays the text on the terminal screen. Telnet applications typically 
use port 23.

The telnet protocol describes option negotiation (typically at the beginning of a session) 
and escaping of certain characters during the entire communication session. This 
processing is enabled by the WsTelnet property (which is True by default). If the client or 
server you are communicating with does not support telnet processing, you should set 
WsTelnet to False prior to opening the port.

Note: If WsTelnet is True, and the client or server to which you are connecting does not 
support telnet processing, it may appear that your data is being corrupted because telnet 
processing modifies the data stream.
00     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Sockets in Async Professional
Async Professional includes a device layer, dlWnsock, that utilizes Winsock for network and 
Internet communications.

The Async Professional implementation of Winsock consists of two components. 
TApdWinsockPort is a component that replaces the TApdComPort component and can be 
placed on a form at design time. TApdWinsockPort includes properties to allow you to set 
the network address, the port number, and the mode of the socket (server mode or client 
mode).

TApdWinsockPort is derived from TApdCustomComPort and therefore inherits all of its 
properties and methods. Many of these properties and methods are not applicable to 
TApdWinsockPort when operating in Winsock mode, but are retained in the descendent 
component so that TApdWinsockPort behaves exactly like TApdComPort when the 
DeviceLayer property is not set to dlWinsock. The properties and methods that do not 
apply to Winsock operation (e.g., Baud, DataBits, Parity, and StopBits) are simply ignored 
when DeviceLayer is set to dlWinsock. Certain Async Professional components (e.g., the 
modem and TAPI components) are not applicable when using the dlWinsock device layer. 
Faxing over the Internet is not supported because Internet faxing uses a different protocol 
than faxmodems.

TApdSocket is a low-level component that provides access to most standard Winsock 
services. This component is used internally by Async Professional. A global instance of this 
component, ApdSocket, is created for use by the Winsock device layer in the initialization 
code of the AwWnsock unit. In most cases you won’t need to, but you can create your own 
instance of this class.

The Winsock support in Async Professional is not intended as a full-featured Winsock 
implementation. Rather, it is intended to allow you to perform basic communications 
operations over local networks or over the Internet. Certain concessions were made (such as 
allowing only one client connection to a server socket) to allow the Winsock 
implementation to fit into the existing Async Professional communications model.

Winsock NIC selection
Some systems are configured with multiple IP addresses, perhaps a physical network card 
for local intranet access and a RAS network for Internet access. Some peripherals (i.e., IR 
ports under Windows 2000) install themselves as a separate network. The 
WsLocalAddresses and WsLocalAddressIndex property allow the developer to select which 
network to use.
Chapter 3: Winsock Components     101

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Winsock proxy/firewall support
Some systems must go through a firewall/proxy to access remote systems. In this case, the 
TApdSocksServerInfo class (via the WsSocksServerInfo property) is used to specify the 
proxy server to connect through.
02     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdSocksServerInfo Class
TApdSocksServerInformation contains the location of the proxy server. If a proxy is to use 
be used with the TApdCustomWinsockPort, these values must be properly configured 
before opening the connection. When a connection attempt is started (Open property set to 
true), the TApdCustomWinsockPort will connect to the proxy server and negotiate the 
connection to the address specified by the WsAddress and WsPort properties. When the 
connection to the destination is made, the OnWsConnect event will be generated.

If the connection attempt fails, the OnWsError event is generated and the Open property is 
set to False. The developer can test the ErrorCode parameter of the OnWsError event to 
determine whether the failure was due to the SOCKS server or due to some other type of 
failure.

Hierarchy
TPersistent (VCL)

TApdSocksServerInfo (AdWnPort)

Properties
Address

Password

SocksVersion

Port

UserCode
TApdSocksServerInfo Class     103

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Reference Section

Address run-time property

property Address : string

Specifies the address of the proxy server.

Password run-time property

property Password : string

Specifies the password needed to access the proxy server.

Port run-time property

property Port : Word

Specifies the port number of the proxy server.

SocksVersion run-time property

property SocksVersion : TApdSocksVersion

TApdSocksVersion = (svNone, svSocks4, svSocks5);

Specifies the version of the proxy server.

The SocksVersion property can be set to the following values: 

Socks4a has extended Socks4 by adding DNS lookup by the server. Both Socks4 and 
Socks4a are supported. If SocksVersion is set to svSocks4, Socks4 will be attempted if the 
WsAddress property contains a dotted-quad IP address, or Socks4a will be used if the 
WsAddress property contains a domain name.

Value Meaning

svNone No proxy support is required. Opening the port will
establish a connection by using the WsAddress and WsPort
properties directly.

svSocks4 Specifies Socks4.

svSocks5 Specifies Sock5.
04     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

More information on Socks4 can be found on 
http://www.socks.nec.com/protocol/socks4.protocol and 
http://www.socks.nec.com/protocol/socks4a.protocol

More information on Socks5 can be found on http://www.eborder.nec.com/index2.htm, 
http://www.socks.nec.com/rfc/rfc1928.txt and http://www.socks.nec.com/rfc/rfc1929.txt. 

UserCode run-time property

property UserCode : string

Specifies the user name or code needed to access the proxy server.
TApdSocksServerInfo Class     105

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
 TApdWinsockPort Component
The TApdWinsockPort component provides a Winsock port that can be used to establish a 
TCP/IP connection. In addition, it provides all of the services of the standard 
TApdComPort component. For a description of the properties, events, and methods of 
TApdComPort, see “TApdComPort Component” on page 22. To put the TApdWinsockPort 
in Winsock mode, simply set the DeviceLayer property to dlWinsock.

If you use the TApdWinsockPort in Winsock mode, it cannot be used with the TAdModem 
because in this case Async Professional is not directly controlling a modem. It also cannot be 
used with TApdSendFax or TApdReceiveFax because in this case Async Professional is not 
directly communicating with a faxmodem or fax machine.

The TApdWinsockPort component is an implementation of the Winsock version 1.1 API.

Example
This example shows how to connect to the Library of Congress via telnet. Create a new 
project, add the following components, and set the property values as indicated in Table 3.1.

Double-click on the Open button’s OnClick event handler in the Object Inspector and 
modify the generated method to match this:

procedure TForm1.OpenClick(Sender : TObject);
begin

ApdWinsockPort1.Open := True;
end;

Table 3.1: Example components and property values

Component Property Value

TApdWinsockPort DeviceLayer dlWinsock

WsAddress locis.loc.gov

AutoOpen False

TAdEmulator

TAdTerminal Columns 80

Rows 25

TButton Caption Open

TButton Caption Close
06     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Double-click on the Close button’s OnClick event handler in the Object Inspector and 
modify the generated method to match the following code:

procedure TForm1.CloseClick(Sender : TObject);
begin

ApdWinsockPort1.Open := False;
end;

Establish a connection to the Internet (e.g., using Windows Dialup Networking).

Compile and run the example. Of course, this is a bare-bones application—but it 
demonstrates the potential of the TApdWinsockPort.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

" TApdComPort (AdPort) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

TApdWinsockPort (AdWnPort)

Properties
" AutoOpen

" BaseAddress

" Baud

" BufferFull

" BufferResume

" ComHandle 

" ComNumber

" CTS 

" DataBits

" DCD 

" DeltaCTS 

" DeltaDCD 

" DeltaDSR 

" DeltaRI 

DeviceLayer

" DSR 

" DTR

" FlowState 

" HWFlowOptions

" InBuffFree 

" InBuffUsed 

" InSize

" LineBreak

" LineError

" LogAllHex

" Logging

" LogHex

" LogName

" LogSize

" ModemStatus 

Open

" OutBuffFree 

" OutBuffUsed 

" Output 

" OutSize

" Parity

" RI 

" RS485Mode

" RTS

" StopBits

" SWFlowOptions

" TapiMode

" TraceAllHex

" TraceHex

" TraceName
TApdWinsockPort Component     107

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
" TraceSize

" Tracing

" UseEventWord

! Version

WsAddress

WsLocalAddresses

WsLocalAddressIndex

WsMode

WsPort

WsSocksServerInfo

WsTelnet 

" XOffChar

" XOnChar

Methods
" ActivateDeviceLayer 

" AddDataTrigger

" AddStatusTrigger

" AddTimerTrigger

" AddTraceEntry

" CharReady

" CheckForString

" FlushInBuffer

" FlushOutBuffer

" ForcePortOpen

" GetBlock

" GetChar

" InitPort

" PeekBlock

" PeekChar

" ProcessCommunications

" PutBlock

" PutChar

" PutString

" RemoveAllTriggers

" RemoveTrigger

" SendBreak

" SetBreak

" SetStatusTrigger

" SetTimerTrigger

Events
" OnPortClose

" OnPortOpen

" OnTrigger

" OnTriggerAvail

" OnTriggerData

" OnTriggerLineError

" OnTriggerModemStatus

" OnTriggerOutbuffFree

" OnTriggerOutbuffUsed

" OnTriggerOutSent

" OnTriggerStatus

" OnTriggerTimer

OnWsAccept

OnWsConnect

OnWsDisconnect

OnWsError
08     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

DeviceLayer property

property DeviceLayer : TDeviceLayer

TDeviceLayer = (dlWin16, dlFossil, dlWin32, dlWinsock);

Default: dlWinsock

Determines the hardware interface used by the port.

The DeviceLayer property determines whether the TApdWinsockPort is acting as a 
Winsock port (dlWinsock) or as a serial port (dlWin32). Since the TApdWinsockPort is a 
descendent of the TApdCustomComPort, this component can be used almost 
interchangeably with the TApdComPort component. To switch between Winsock and serial 
ports, change the DeviceLayer property. DeviceLayer must be dlWinsock to connect via 
Winsock.

You can create custom device layers by deriving them from TApdBaseDispatcher and 
creating a new port descendant from TApdCustomComport where you override 
ActivateDeviceLayer to return the newly defined device layer.

OnWsAccept event

property OnWsAccept : TWsAcceptEvent

TWsAcceptEvent = procedure (
Sender : TObject; Addr : TInAddr; var Accept : Boolean) of object;

Defines an event handler that is called when a client attempts to connect to a server. 

This event is generated when an application is acting as a server (WsMode equals WsServer) 
and a client application attempts a connection. Addr is the network address of the client. To 
accept the connection, set Accept to True. To refuse the connection, set Accept to False. 
OnWsAccept is not generated when an application is acting as a client.
TApdWinsockPort Component     109

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The following example calls a user-supplied function named GoodAddress to determine 
whether the network address is one for which connection will be accepted. If GoodAddress 
returns True, Accept is set to True and the connection is made. If GoodAddress returns 
False, Accept is set to False and the connection is refused.

procedure TForm1.WsPortWsAccept(
Sender : TObject; Addr : TInAddr; var Accept : Boolean);

begin
if GoodAddress(Addr) then begin

Status.Caption := 'Accepted!';
Accept := True;

end else begin
Status.Caption := 'Connection Denied';
Accept := False;

end;
end;

See also: OnWsConnect, WsMode

OnWsConnect event

property OnWsConnect : TNotifyEvent

Defines an event handler that is called when a Winsock connection is established. 

When an application is operating as a client (WsMode equals WsClient,) it usually attempts 
to connect to a server. This event is generated when the server accepts the connection. This 
event is not generated when an application is acting as a server.

The following example illustrates a client application receiving notification that a 
connection to the server was established and accepted by the server:

procedure TForm1.WsPortWsConnect(Sender : TObject);
begin

Status.Caption := 'Connected';
{ do some processing… }

end;

See also: OnWsAccept, OnWsDisconnect, WsMode
10     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnWsDisconnect event

property OnWsDisconnect : TNotifyEvent

Defines an event handler that is called when a Winsock connection is dropped. 

A connection can be dropped as the result of an error or when a transmission is complete 
and one end terminates the connection.

If WsMode equals WsServer, OnDisconnect is generated when the client is disconnected. 
The Open property stays True and the TApdWinsockPort continues to listen for other 
clients attempting to connect. If WsMode equals WsClient, OnDisconnect is generated 
when the connection is lost. Async Professional then sets the Open property to False.

The following example illustrates a server application receiving notification that the client 
has disconnected:

procedure TForm1.WsPortWsDisconnect(Sender : TObject);
begin

Status.Caption := 'Bye!';
end;

See also: OnWsConnect, Open, WsMode

OnWsError event

property OnWsError : TWsErrorEvent

TWsErrorEvent = procedure(
Sender : TObject; ErrorCode : Integer) of object;

Defines an event handler that is generated when a Winsock error occurs. 

ErrorCode contains the Winsock error code. See “Error Handling and Exception Classes” 
on page 900 for a list of error codes.
TApdWinsockPort Component     111

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

"

Open property

property Open : Boolean

Default: False

Determines whether the Winsock port is open and initialized.

Open must be set to True before a Winsock port can send or receive characters. When Open 
is set to True, the TApdWinsockPort uses all current property settings to allocate input and 
output buffers, create a socket, open the Winsock port, and enable or disable tracing and 
logging. It then registers a low-level trigger handler, which gets the first look at all trigger 
events and passes control on to the appropriate OnTriggerXxx event handlers.

When Open is set to False, the TApdWinsockPort sets the tracing and logging properties to 
tlDump (which creates output files if any information was buffered), closes the Winsock 
port, and deallocates input and output buffers.

There is no harm done by setting Open to True when it is already True, or setting it to False 
when it is already False. If WsMode equals WsServer and you set Open to True, a socket is 
created and it listens at the port designated by the WsPort property. If WsMode equals 
WsClient and you set Open to True, the component attempts to connect to a server at the 
designated WsAddress and WsPort.

WsAddress property

property WsAddress : string

The network address used to make a Winsock connection. 

WsAddress accepts the IP address in dot notation (165.212.210.10) or as a host name 
(telnet.turbopower.com). If a host name is used, Async Professional does a DNS lookup to 
determine whether a DNS entry exists for the host name. If an IP address can be found, the 
port is opened. If an IP address cannot be found, a EApdSocketException is raised.

Caution: Do not add leading zeros in dot notation addresses (e.g., 165.212.210.010). 
Leading zeros will cause the number to be interpreted as an octal value.
12     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

WsLocalAddresses read-only, run-time property

property WsLocalAddresses : TStringList

Lists the IP addresses for each network interface that is installed.

WsLocalAddresses is a read-only TStringList containing the IP address for each network 
interface installed on the computer. This is property is populated when the 
TApdCustomWinsockPort is created. The network interface to use is specified by the 
WsLocalAddressIndex property.

See also: WsLocalAddressIndex

WsLocalAddressIndex run-time property

property WsLocalAddressIndex : Integer

Determines the network interface to use.

To select a network intefacee, set WsLocalAddressIndex to the index of the network 
interface listed in the WsLocalAddresses property.

See also: WsLocalAddresses

WsMode property

property WsMode : TWsMode

TWsMode = (wsClient, wsServer);

Default: WsClient

Determines whether the application operates as a server or a client. 

If WsMode is WsServer, the application acts as a server. When the Open property is set to 
True, the application begins listening for possible connections on the port specified by 
WsPort.

If WsMode is WsClient, the application operates as a client. When the Open property is set 
to True, the client attempts to connect to the server at the address specified by WsAddress. 
When Open is set to False, the client disconnects from the server and the socket is closed.

See also: Open, WsAddress, WsMode, WsPort 
TApdWinsockPort Component     113

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

WsPort property

property WsPort : string

Default: “telnet”

The Winsock port used to establish a network connection. 

WsPort is the Winsock port on which to connect (for a client application) or on which to 
listen (for a server application). WsPort accepts the port as an integer or a service name 
(e.g., telnet). If a service name is used, Winsock performs a lookup when the port is opened 
to match the service name with a port number. For a list of service names and their 
corresponding port numbers, see the SERVICES file in the Windows directory (for 
Windows NT it is in the WINNT\SYSTEM32\DRIVERS\ETC directory.

See also: WsAddress

WsSocksServerInfo run-time property

property WsSocksServerInfo : TApdSocksServerInfo

Contains the Firewall/Proxy configuration.

WsSocksServerInfo contains the configuration of the proxy server and the type of proxy 
server in use. If a proxy server is in use, this must be properly configured before opening the 
port.

WsTelnet property

property WsTelnet : Boolean

Default: True

Indicates whether telnet processing is enabled. 

For most uses of the TApdWinsockPort (such as connecting to telnet servers or 
communication between TApdWinsockPort components) the default value of True is 
appropriate. However, if you communicate with a server or client that does not support 
telnet processing you should set WsTelnet to False.

WsTelnet cannot be changed while the port is open. The value of WsTelnet when the port is 
opened is used by the device layer for the duration of that communication session.
14     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdSocket Component
The TApdSocket component is a low-level class that provides many standard Winsock 
services. It is essentially a thin wrapper around the Winsock API and transparently handles 
tasks such as loading, starting, and shutting down Winsock. It is used internally by the 
Async Professional Winsock device layer and the TApdWinsockPort component. In most 
cases you won’t need to make use of the TApdSocket component directly, but it is 
documented here in case you do.

A global instance of the TApdSocket class (ApdSocket) is created in the initialization code of 
the Winsock device layer unit (AwWnsock), and is available for use in your application. To 
use its services, simply add AwWnsock to your unit’s uses clause. Because it is a low-level 
class, the Winsock services it provides access to are not documented in detail here. There are 
many Winsock references available to consult. The following were useful in the development 
of TApdSocket:

• Microsoft Winsock API help file

• Microsoft Developer Network CD

• Dumas, Programming Winsock, Sam’s Publishing, ISBN 0-672-30594-1

• Quinn and Shute, Windows Sockets Network Programming, Addison-Wesley, 
ISBN 0-201-63372-8

• Roberts, Developing for the Internet with Winsock, Coriolis Group Books, 
ISBN 1-883577-42-X

• Chapman, Building Internet Applications with Delphi 2, Que, ISBN 0-7897-0732-2
TApdSocket Component     115

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdSocket (AdSocket)

Properties
Description 

Handle 

HighVersion 

LastError 

LocalAddress

LocalHost 

MaxSockets 

SystemStatus

! Version

WSVersion 

Methods
AcceptSocket

BindSocket

CheckLoaded

CloseSocket

ConnectSocket

CreateSocket

htonl

htons

ListenSocket

LookupAddress

LookupName

LookupPort

LookupService

NetAddr2String 

ntohl

ntohs

ReadSocket

SetAsyncStyles

String2NetAddr

WriteSocket

Events
OnWsAccept

OnWsConnect

OnWsDisconnect

OnWsError

OnWsRead

OnWsWrite
16     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

AcceptSocket method

function AcceptSocket(
Socket : TSocket; var Address : TSockAddrIn) : TSocket;

TSockAddrIn = packed record
case Integer of

0: (sin_family : Word;
sin_port : Word;
sin_addr : TInAddr;
sin_zero : array[0..7] of AnsiChar);

1: (sa_family : Word;
sa_data : array[0..13] of AnsiChar)

end;

Accepts a client that is trying to attach to a listening socket. 

Socket is the handle of the socket. Address is a structure that contains information used by 
Winsock.

See also: ListenSocket

BindSocket method

function BindSocket(
Socket : TSocket; Address : TSockAddrIn) : Integer;

TSockAddrIn = packed record
case Integer of

0: (sin_family : Word;
sin_port : Word;
sin_addr : TInAddr;
sin_zero : array[0..7] of AnsiChar);

1: (sa_family : Word;
sa_data : array[0..13] of AnsiChar)

end;

Associates a local network address and port number with a socket. 

Socket is the handle of the socket. Address is a structure that contains information used by 
Winsock. Typically a server application calls BindSocket with a specified address and port 
number prior to calling ListenSocket. A client application does not typically bind to a 
specific address and port.

See also: CreateSocket, ListenSocket
TApdSocket Component     117

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

CheckLoaded method

procedure CheckLoaded;

Determines whether the Winsock DLL is loaded and initialized. 

Call CheckLoaded to see if Winsock is ready for use. If Winsock is not initialized, 
CheckLoaded raises an EApdSocketException. This exception can be caught in your 
application and responded to accordingly.

CloseSocket method

function CloseSocket(Socket : TSocket) : Integer;

Closes a socket. 

CloseSocket closes a socket and frees the memory allocated for it. Socket is the handle of the 
socket to close.

See also: CreateSocket

ConnectSocket method

function ConnectSocket(
Socket : TSocket; Address : TSockAddrIn) : Integer;

TSockAddrIn = packed record
case Integer of

0: (sin_family : Word;
sin_port : Word;
sin_addr : TInAddr;
sin_zero : array[0..7] of AnsiChar);

1: (sa_family : Word;
sa_data : array[0..13] of AnsiChar)

end;

Establishes a network connection. 

ConnectSocket is used by a client to connect the socket specified by Socket to a remote host. 
Address is a structure that contains information used by Winsock to find the remote host.

See also: BindSocket, CreateSocket
18     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

CreateSocket method

function CreateSocket : TSocket;

Creates a socket. 

If the socket is created successfully, CreateSocket returns a unique socket descriptor that is 
used to refer to this socket in subsequent Winsock operations. If the socket cannot be 
created, CreateSocket raises an EApdSocketException.

See also: BindSocket, CloseSocket

Description read-only, run-time property

property Description : string

Contains a string that describes the Winsock DLL. 

Description is a read-only property that contains a textual description of the current 
Winsock DLL. Since there are so many different Winsock DLLs, the string returned depends 
on the Winsock vendor. For the standard Windows NT 4.0/2000 Winsock DLL, the string is 
“Winsock 2.0.” For the standard Windows 95/98/ME Winsock DLL, the string is “Microsoft 
Windows Sockets version 1.1.”

See also: HighVersion, SystemStatus, Version

Handle read-only, run-time property

property Handle : HWnd

The window handle for the TApdSocket class. 

Winsock uses the window handle to send messages to the TApdSocket object. The Winsock 
messages received by the object generate the OnWsAccept, OnWsConnect, 
OnWsDisconnect, OnWsError, OnWsRead, and OnWsWrite events.

HighVersion read-only, run-time property

property HighVersion : Word

Contains the highest version of the Winsock specification supported by the current 
Winsock DLL. 

For the Windows NT 4.0 and 2000 Winsock, HighVersion is 2.2, which indicates that it can 
support version 2.2 of the Winsock specification. For the Windows 95/98/ME Winsock, 
HighVersion is 1.1.

See also: WSVersion
TApdSocket Component     119

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

htonl method

function htonl(HostLong : LongInt) : LongInt;

Translates a 32-bit value from host byte order to network byte order. 

IBM-compatible computers typically store data in memory in little-endian byte order (the 
least significant byte stored first followed by the most significant byte) or host byte order. 
TCP/IP stipulates that data should be sent in big-endian byte order (most significant byte 
followed by least significant byte) or network byte order.

See also: htons, ntohl, ntohs

htons method

function htons(HostShort : Word) : Word;

Translates a 16-bit value from host byte order to network byte order. 

IBM-compatible computers typically store data in memory in little-endian byte order (the 
least significant byte stored first followed by the most significant byte) or host byte order. 
TCP/IP stipulates that data should be sent in big-endian byte order (most significant byte 
followed by least significant byte) or network byte order.

See also: htonl, ntohl, ntohs

LastError read-only, run-time property

property LastError : Integer;

Contains the error code of the last Winsock error. 

If a Winsock operation fails, you can use LastError to get the Winsock error code. See “Error 
Handling and Exception Classes” on page 900 for a list of the error codes.

See also: OnWsError
20     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ListenSocket method

function ListenSocket(
Socket : TSocket; Backlog : Integer) : Integer;

Tells a socket to listen for a connection attempt. 

ListenSocket is used by a server application to enter listening mode. Socket is the socket on 
which to listen. Backlog is the maximum length of the queue for waiting connection 
attempts. If ListenSocket is successful, 0 is returned. If ListenSocket is not successful, it raises 
the EApdSocketException.

See also: BindSocket, CreateSocket

LocalAddress read-only, run-time property

property LocalAddress : string

Contains the local machine’s network address. 

LocalAddress contains a text string of the local machine’s network address in dot notation 
(e.g., “165.212.210.12”).

See also: LocalHost

LocalHost read-only, run-time property

property LocalHost : string

Contains the local machine’s network name. 

LocalHost contains a textual description of the local machine’s network name
(e.g., “garyf-testmachine”).

See also: LocalAddress
TApdSocket Component     121

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

LookupAddress method

function LookupAddress(InAddr : TInAddr) : string;

TInAddr = packed record
case Integer of
0 : (S_un_b : SunB);
1 : (S_un_w : SunW);
2 : (S_addr : LongInt);

end;

Gets a host name for the Internet address specified by InAddr. 

The following example uses String2NetAddr to fill in a TInAddr structure from a text string 
containing an Internet address. It then calls LookupAddress to get the host name for the 
address.

var
MyAddr : TInAddr;

with TApdSocket.Create(self) do try
MyAddr := String2NetAddr('165.212.210.12');
HostLabel.Caption := LookupAddress(MyAddr);

finally
Free;

end;

See also: LookupName, String2NetAddr

LookupName method

function LookupName(const Name : string) : TInAddr;

TInAddr = packed record
case Integer of
0 : (S_un_b : SunB);
1 : (S_un_w : SunW);
2 : (S_addr : LongInt);

end;

LookupName gets an Internet address for the host name specified by Name. 

The Internet address is returned as a TInAddr structure.
22     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The following example gets an Internet address from the host name 
“www.turbopower.com” and then uses the NetAddr2String method to display the address in 
a label:

var
MyAddr : TInAddr;

with TApdSocket.Create(Self) do try
MyAddr := LookupName('www.turbopower.com');
AddressLabel.Caption := NetAddr2String(MyAddr);

finally
Free;

end;

See also: LookupHost, NetAddr2String

LookupPort method

function LookupPort(Port : Integer) : string;

Gets a text string of the service name for the port specified by Port. 

There are certain well-known ports used in Winsock. For example, port 25 is typically used 
for SMTP (mail), port 23 is used for telnet, and port 119 is used for NNTP (news):

with TApdSocket.Create(Self) do try
ServiceLabel.Caption := LookupPort(25);

finally
Free;

end;

See also: LookupService
TApdSocket Component     123

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

LookupService method

function LookupService(const Service : string) : Integer;

Gets the port number for the service name specified by Service. 

The service name should be one of the Winsock well-known services (such as “SMTP”). If 
the service cannot found, LookupService returns an empty string.

var
MyPort : Integer;

with TApdSocket.Create(Self) do try
MyPort := LookupService('smtp');

finally
Free;

end;

See also: LookupPort

MaxSockets read-only, run-time property

property MaxSockets : Word

The maximum number of sockets available for the current version of Winsock.

NetAddr2String method

function NetAddr2String(InAddr : TInAddr) : string;

TInAddr = packed record
case Integer of
0 : (S_un_b : SunB);
1 : (S_un_w : SunW);
2 : (S_addr : LongInt);

end;

Translates the 32-bit network address in InAddr to a string. 

The string is in dot notation (e.g., “165.212.210.12”).
24     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

The following example converts an Internet address to a string. The string is then displayed 
in a label component.

var
MyAddr : TInAddr;

with TApdSocket.Create(Self) do try
MyAddr := LookupName('www.turbopower.com');
AddressLabel.Caption := NetAddr2String(MyAddr);

finally
Free;

end;

See also: String2NetAddr

ntohl method

function ntohl(NetLong : LongInt) : LongInt;

Translates a 32-bit value from network byte order to host byte order. 

IBM-compatible computers typically store data in memory in little-endian byte order (the 
least significant byte stored first followed by the most significant byte) or host byte order. 
TCP/IP stipulates that data should be sent in big-endian byte order (most significant byte 
followed by least significant byte) or network byte order.

See also: htonl, htons, ntohs

ntohs method

function ntohs(NetShort : Word) : Word;

Translates a 16-bit value from network byte order to host byte order. 

IBM-compatible computers typically store data in memory in little-endian byte order (the 
least significant byte stored first followed by the most significant byte) or host byte order. 
TCP/IP stipulates that data should be sent in big-endian byte order (most significant byte 
followed by least significant byte) or network byte order.

See also: htonl, htons, ntohl
TApdSocket Component     125

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

OnWsAccept event

property OnWsAccept : TWsNotifyEvent

TWsNotifyEvent = procedure(
Sender: TObject; Socket: TSocket) of object;

Defines an event handler that is called when the server accepts a connection. 

This event is primarily used when an application is operating as a server. The server 
application listens on a specific port for possible connections. When a client socket tries to 
connect, the OnWsAccept event is generated.

See also: OnWsConnect

OnWsConnect event

property OnWsConnect : TWsNotifyEvent

TWsNotifyEvent = procedure(
Sender: TObject; Socket: TSocket) of object;

Defines an event handler that is called when a Winsock connection is established. 

When a server application accepts a connection, the OnWsConnect event is generated to 
notify the client application.

See also: OnWsDisconnect

OnWsDisconnect event

property OnWsDisconnect : TWsNotifyEvent

TWsNotifyEvent = procedure(
Sender: TObject; Socket: TSocket) of object;

Defines an event handler that is called when a Winsock connection is dropped. 

A connection can be dropped as the result of an error or when a transmission is complete 
and one end terminates the connection.

See also: OnWsConnect
26     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

OnWsError event

property OnWsError : TWsSocketErrorEvent

TWsSocketErrorEvent = procedure(Sender : TObject;
Socket : TSocket; ErrorCode : Integer) of object;

Defines an event handler that is called when a Winsock error occurs. 

Socket identifies the socket for which the error occurred. ErrorCode contains the Winsock 
error code. See “Error Handling and Exception Classes” on page 900 for a list of the error 
codes.

See Also: LastError

OnWsRead event

property OnWsRead : TWsNotifyEvent

TWsNotifyEvent = procedure(
Sender : TObject; Socket : TSocket) of object;

Defines an event handler that is called when data is available to be read on a socket. 

See also: OnWsWrite

OnWsWrite event

property OnWsWrite : TWsNotifyEvent

TWsNotifyEvent = procedure(
Sender : TObject; Socket : TSocket) of object;

Defines an event handler that is called when Winsock can accept more data from a socket. 

See also: OnWsRead

ReadSocket method

function ReadSocket(
Socket : TSocket; var Buf; BufSize, Flags : Integer) : Integer;

Reads data from a socket. 

Socket is the socket from which to receive data. Buf is the buffer where the data is stored. 
BufSize is the size of Buf in bytes. Flags determines how the receive operates. Set Flags to 
zero for normal operation, or see your Winsock documentation for other possible values. 
ReadSocket returns the number of bytes read.

See also: WriteSocket
TApdSocket Component     127

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

SetAsyncStyles method

function SetAsyncStyles(
Socket : TSocket; lEvent : LongInt) : Integer;

Tells Winsock to send notification of certain network events. 

Socket is the socket for which events should be reported. lEvent is the event or events that 
should be reported. The notification event constants for which you can receive notification 
are FD_READ, FD_WRITE, FD_CONNECT, and FD_ACCEPT. See the WSAAsyncSelect 
function in your Winsock documentation for more information.

When an event that notification is requested for occurs, Winsock sends a 
CM_APDSOCKETMESSAGE message to the TApdSocket class. The low word of lParam is 
the network event that occurred and the high word is an error code if an error occurred.

String2NetAddr method

function String2NetAddr(const S : string) : TInAddr;

TInAddr = packed record
case Integer of

0 : (S_un_b : SunB);
1 : (S_un_w : SunW);
2 : (S_addr : LongInt);

end;

Translates a string to a network address. 

String2NetAddr translates S into a 32-bit value in network byte order. It is returned in the 
form of a TInAddr structure. S should be in dot notation (e.g., “165.212.210.12”).

The following example creates a socket and then turns the string address “165.212.210.12” 
into an network address. The network address could then be used to connect to a server.

var
MyAddr : TInAddr;

with TApdSocket.Create(Self) do try
MyAddr := String2NetAddr('165.212.210.12');

finally
Free;

end;

See also: Net2StringAddr
28     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

SystemStatus read-only, run-time property

property SystemStatus : string

Contains the current status of the Winsock DLL. 

SystemStatus usually returns “Running under” Windows 95/98/ME or Windows NT 
4.0/2000.

See also: Description

WriteSocket method

function WriteSocket(
Socket : TSocket; var Buf; BufSize, Flags : Integer) : Integer;

Sends data to a socket. 

Socket is the socket on which to send data. Buf is the buffer that contains the data. BufSize is 
the size of Buf in bytes. Flags determines the send method. Set Flags to zero for normal 
operation or see your Winsock documentation for other possible values.

WriteSocket does not send the data directly to the receiving end. Winsock queues the data 
and sends it when possible. The return value from WriteSocket is the number of bytes 
queued for transmission.

See also: ReadSocket

WsVersion read-only, run-time property

property WsVersion : Word

Contains the version number of the current Winsock DLL. 

WsVersion is a 16-bit value. The high-order byte contains the major version number and the 
low-order byte contains the minor version number.
TApdSocket Component     129

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following example gets the version number, translates it into a text string, and displays it 
in a label component:

var
MyVer : Word;

with TApdSocket.Create(Self) do try
MyVer := WsVersion;
VerLabel.Caption := Format('%d.%d', [LoByte(MyVer),

HiByte(MyVer)]);
finally

Free;
end;

See also: HighVersion
30     Chapter 3: Winsock Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 4: Data Packet Component

The purpose of the data packet component is to provide a simple solution to the common 
task of looking for a particular sequence of bytes in the incoming data. Data packet 
components collect data that has certain properties and pass that data as a complete unit to 
the client application.
     131

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdDataPacket Component
The TApdDataPacket component provides automatic data packet delivery from the 
incoming data stream based on simple properties set in the component.

A data packet can be thought of as an advanced data trigger. Packets automatically collect 
data from the incoming data stream based on criteria specified in the properties of the data 
packet component, and deliver the data when the criteria have been met. As opposed to 
traditional data triggers, data packets do their own buffering. This means that data packets 
do not have the same limitation as data triggers (that data may no longer be available in the 
input buffer for processing when the data trigger fires).

You would typically use data packets in place of data triggers when the data you are looking 
for has a fixed length or starts or ends with a known string of data. These conditions can be 
set in the data packet component at design time or run time.

Data as packets
Most data arriving at the serial port can be described as a packet. It will have a start 
condition (something that defines the beginning of the data) and an end condition 
(something that defines the end of the data). The TApdDataPacket component supports 
start conditions of a character or characters, or any data. The TApdDataPacket component 
supports end conditions of a character or characters, timeout, or a specific number of 
characters. The simplest data packet is a single string, such as “hello”, and can progress 
through more complicated packets that define other packets within the collected data. In 
broad strokes, packets can be categorized as follows:

• A specific character/string: The StartString defines the packet in its entirety. Set 
StartCond to scString (the default) and StartString to the string to detect:

...
ApdDataPacket1.StartCond := scString;
ApdDataPacket1.StartString := 'hello';
...

• A bracketed packet: This is the most common usage, where the beginning and ending 
of the data is defined by known characters/strings. For example, you may be 
expecting data starting with an <STX> (#2) character, followed by a chunk of data, 
32     Chapter 4: Data Packet Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
terminated by an <ETX> (#3) character. Set StartCond to scString, StartString to the 
“start of packet” character/string, EndCond to [ecString] and EndString to the “end 
of packet” character/string:

...
ApdDataPacket1.StartCond := scString;
ApdDataPacket1.StartString := #2; // STX char
ApdDataPacket1.EndCond := [ecString];
ApdDataPacket1.EndString := #3; // ETX char
...

Note: C++Builder uses a more difficult implementation of sets than Delphi does, use the 
following syntax to set the EndCond property:

...
ApdDataPacket1->EndCond.Clear();
ApdDataPacket1->EndCond << ecString;
...

• A known start character/string followed by data of known length: An example might 
be an <STX> (#2) followed by 18 characters without a terminating character/string. 
To detect this packet, set StartCond to scString, StartString to the “start of packet” 
character/string, EndCond to [ecPacketSize] and PacketSize to the length of the data. 
If IncludeStrings is True, add the length of your StartString to PacketSize.

...
ApdDataPacket1.StartCond := scString
ApdDataPacket1.StartString := #2; // STX char
ApdDataPacket1.EndCond := [ecPacketSize];
ApdDataPacket1.IncludeStrings := True;
ApdDataPacket1.PacketLength := 19; // 18 data chars,

1 start char
...

• A known number of data chars, with a terminating character/string: An example of 
this type of packet could be a log in sequence, where you would prompt for a user 
name and want to collect everything up to a <CR>.

...
ApdDataPacket1.StartCond := scAnyData;
ApdDataPacket1.EndCond := [ecString];
ApdDataPacket1.EndString := #13; // CR char
...

These are only a few of the possibilities. Your data may vary. You may have a start string, 
followed by a character indicating the length of the data (use two data packets, one to collect 
the start string and length char, the other to capture the next “length” number of chars), or 
TApdDataPacket Component     133

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
you may have something that needs a more liberal packet interpretation. If you can 
conceptualize the expansibility of the packet format, you can usually work something up 
that works for your conditions.

Data ownership
There is no limit on the number of data packet components for a port, however, any 
incoming character can be part of only one data packet. The first enabled data packet that 
has its start condition met takes ownership of all incoming data until the packet is complete. 
If a data packet times out, the data it has collected up to that point is made available to any 
other enabled data packets for the port.

The TApdDataPacket component has a component editor, shown in Figure 4.1, where all 
properties can conveniently be set at once. You can invoke it by right clicking on the context-
menu of the component.

Packet Start Condition
The Packet Start Condition defines the start of the packet. You have the option to start the 
packet as soon as any data is received or you can start data collection when a particular 
string is received.

Refer to the StartCond and StartString properties in the reference section for more 
information on starting a packet.

 Figure 4.1: TApdDataPacket component editor.
34     Chapter 4: Data Packet Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Packet End Condition
The Packet End Condition defines when the packet is complete. Packet completion can 
either occur after a certain number of characters have been received, or when a particular 
string is received to terminate the packet. If both types of conditions are defined, the first 
condition met will cause the packet delivery event to fire.

Refer to the EndCond, EndString and PacketSize properties in the reference section for 
more information on terminating a packet.

Additional properties
The additional properties define details about how the packet should operate: Whether it 
should be initially enabled, whether it should automatically re-enable after having been 
received (the default is that it re-enables itself), whether case should be ignored on the start 
and end strings, whether or not the start and end strings should be included in the packet 
delivered in the OnPacket events and whether the packet collection logic can time out for 
this packet and what the time-out period should be.

Refer to the AutoEnable, IgnoreCase, IncludeStrings and TimeOut properties in the 
reference section for more information on these additional properties.

Non-printable characters and wildcards in the packet
The TApdDataPacket supports some translations in the StartString and EndString 
properties. These include support for non-printable characters (control chars) and 
wildcards. To specify a control character, you can use either caret (‘^’) or decimal notation, 
or you can enter the literal char at run time. For example, to add the <ACK> character, you 
can enter “^F” or “#6” at design time, or just #6 at run time. Since a caret (‘^’) and pound 
(‘#’) are control character escapes, they must be enclosed in quotes to detect a literal ‘^’ in 
the data stream.

Wildcards in the packet definition can be very useful. The wildcard character is a single 
question mark (‘?’). This is interpreted as any single character. Since a single ‘?’ is now 
considered a wildcard, use “\?” to detect a literal ‘?’ in the data stream.

For example, a relatively common packet will contain a block of data terminated by a 
character that is followed by a checksum character. This can be captured by setting the 
EndString to the terminating character and a ‘?’:

...
ApdDataPacket1.EndString := #3 + '?'; // ETX and the next char
...

If IncludeStrings is True, the last char in the collected data will be the checksum.
TApdDataPacket Component     135

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Example
This example demonstrates the use of a TApdDataPacket component to retrieve a modem’s 
response to the ATI3 command. Create a new project, add the following components, and 
set the property values as indicated in Table 4.1.

Double-click on the button’s OnClick event handler in the Object Inspector and modify the 
generated source code to match this:

procedure TForm1.Button1Click(Sender : TObject);
begin

ApdComPort1.PutString('ATI3'#13);
end;

Double-click on the TApdDataPacket component OnStringPacket event handler in the 
Object Inspector and modify the generated source code to match this:

procedure TForm1.ApdDataPacket1StringPacket(
Sender : TObject; Data : String);

begin
Caption := trim(Data);

end;

Compile and run the application. When prompted, select a serial port that has a modem 
attached. When you press the button, you should see the caption change to the data set 
name (the response to ATI3) reported by the modem.

Table 4.1: Example components and property settings

Component Property Value

TApdComport

TApdDataPacket StartString ‘ATI3’#13

EndString ‘OK’#13

EndCond [ecString]

IncludeStrings False

TButton
36     Chapter 4: Data Packet Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdDataPacket (AdPacket)

Properties
AutoEnable

ComPort

Enabled

EndCond

EndString

IgnoreCase

IncludeStrings

PacketSize

StartCond

StartString

TimeOut

! Version

Events
OnPacket OnTimeout OnStringPacket
TApdDataPacket Component     137

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference Section

AutoEnable property

property AutoEnable : Boolean

Default: True

Determines whether a data packet is automatically re-enabled. 

AutoEnable controls what happens after the packet is received (the start string and end 
condition for the packet are met in the data stream). If AutoEnable is True, the data packet is 
enabled again and TApdDataPacket starts watching for the start string again. If AutoEnable 
is False, the data packet is disabled.

ComPort property

property ComPort : TApdCustomComPort

Determines the port used by the data packet. 

Enabled property

property Enabled : Boolean

Default: True

Determines whether a packet is allowed to collect data. 

You can have as many TApdDataPacket components as you like. You can conveniently turn 
them on or off using the Enabled property. Changing the Enabled property is allowed from 
within event handlers. This lets you chain packets together. See the QRYMDM example 
program for an example of how to do this.
38     Chapter 4: Data Packet Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

EndCond property

property EndCond : TPacketEndSet

TPacketEndSet = set of TPacketEndCond;

TPacketEndCond = (ecString, ecPacketSize);

Default: []

Determines when a complete packet has been received. 

The valid values for EndCond are:

Note: C++Builder uses a more difficult implementation of sets than Delphi does, use the 
following syntax to set the EndCond property:

...
ApdDataPacket1->EndCond.Clear();
ApdDataPacket1->EndCond << ecString;

...

See also: EndString, PacketSize, StartString

Value Result

[] The string specified by StartString is.
considered to be the entire packet (this is
equivalent to a traditional data trigger).

[EcString] The packet ends when the string specified
by EndString is received.

[EcPacketSize] The packet ends when the number of
characters specified by PacketSize is
received.

[EcString and ecPacketSize] The packet ends when either the string
specified by EndString is received or the
number of characters specified by
PacketSize is received.
TApdDataPacket Component     139

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

EndString property

property EndString : string

The string that completes a data packet. 

If EndCond contains ecString, the packet stops collecting data when the string specified by 
EndString is received.

See the StartString property on page 143 for information about specifying characters and 
using fixed-length wildcards in the string. 

See also: EndCond, StartString

IgnoreCase property

property IgnoreCase : Boolean

Default: True

Determines whether the StartString and EndString properties are case-sensitive.

See also: EndString, StartString

IncludeStrings property

property IncludeStrings : Boolean

Default: True

Determines whether the strings that define a packet are made available to the event handler. 

For example, assume that StartString is “Async”, EndString is “al”, and the string “Async 
Professional” arrives at the port. If IncludeStrings is True, the packet will contain “Async 
Professional.” If IncludeStrings is False, the packet will contain “Profession.”

See also: EndString, StartString
40     Chapter 4: Data Packet Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnPacket event

property OnPacket : TPacketNotifyEvent

TPacketNotifyEvent = procedure(
Sender : TObject; Data : pointer; Size : Integer) of object;

Defines an event handler that is called when a complete data packet is available. 

Data is a pointer to the actual collected data. Size is the length of the collected data. The data 
at Data is only valid for the duration of this event. Since Data is temporary, you can move the 
collected data into your own buffer for storage or further processing outside of this event. 
The following snippet demonstrates one technique of doing this:

var
Buffer: array[0..255] of byte;

procedure TForm1.ApdDataPacket1Packet(
Sender: TObject; Data: Pointer; Size: Integer);

begin
Move(Data^, Buffer[0], Size);

end;

void __fastcall TForm1::ApdDataPacket1Packet(
TObject *Sender, Pointer Data, int Size)

{
char* MyData = new char[Size];
Move(Data, MyData, Size);

}

OnTimeout event

property OnTimeout : TNotifyEvent

Defines an event handler that is called when a timeout occurs during receipt of a packet. 

The OnTimeout event is generated when a packet is in data collection mode but hasn’t 
completed within the number of ticks specified by TimeOut. By default, packets are disabled 
when they time out, but they can be re-enabled from within the event handler if desired.

The data collected up to the point of the timeout is available through the GetCollectedString 
and GetCollectedData methods.

The timeout timer does not start until the start condition has been met. If StartCond = 
scString, the timer starts once the string defined by StartString has been received. If 
StartCond = scAnyData, the timer starts once the data packet has been enabled. If you need 
to start the timer once the packet starts actually collecting data, set the StartCond to scString 
and StartString to the wildcard char (‘?’).
TApdDataPacket Component     141

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnStringPacket event

property OnStringPacket : TStringPacketNotifyEvent

TStringPacketNotifyEvent = procedure(
Sender : TObject; Data : string) of object;

Defines an event handler that is called when a complete data packet is available.

Data is the actual data in the packet. The data packet is only available for the duration of 
the event.

Note that a null character (#0) in the collected data may terminate the Data string 
prematurely. This is due to the way that Delphi and C++Builder implement huge strings. If 
you are expecting null characters in the collected data, use the OnPacket event instead.

See also: OnPacket

PacketSize property

property PacketSize : Integer

Default: 0

Determines the size of a packet. 

If EndCond contains ecCharCount, PacketSize determines the size of the data packet.

If IncludeStrings is True, PacketSize will not compensate for the length of the start and end 
strings. For example, assume that the StartString is “Async”, PacketSize is 13 and the string 
“Async Professional” arrives at the port. If IncludeStrings is True, the collected data will 
contain “Async Profess” (13 characters); if IncludeStrings is False, the collected data will 
contain “Professional.”

See also: EndCond
42     Chapter 4: Data Packet Component



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

StartCond property

property StartCond : TPacketStartCond

TPacketStartCond = (scString, scAnyData);

Default: scString

Determines when a packet should start collecting data.

The valid values for StartCond are:

See also: StartString

StartString property

property StartString : string

The string that causes a packet to start collecting data. 

If StartCond is scString, the packet starts collecting data when the string specified by 
StartString is received.

To specify a control character in the string, use a caret ‘^’ symbol (e.g. ^L^M). To specify a 
character with ordinal value greater than 127, use the #nnn notation, where nnn is an integer 
in the range 128 to 255. Since ‘^’ and ‘#’ are used in this special way as escape characters, if 
you want a ‘^’ or ‘#’ as a printable character in the string, it must be enclosed in quotes. To 
mix printable and non-printable characters in a string, enclose the printable characters in 
quotes.

The following example sets the StartString to “123 #”, followed by a <Ctrl C>, followed by 
“Sample ^ ^”, followed by the unprintable character 255:

ApdDataPacket.StartString := '123 # '^C'Sample ^ ^ '#255;

Value Result

scString The packet starts collecting data when the string specified
by StartString is received.

scAnyData The packet starts collecting data as soon as data is
available in the input queue.
TApdDataPacket Component     143

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

StartString also supports fixed-length wildcards. The character ? within a string is 
interpreted as a wildcard character place-holder which will match any character in the input 
stream. Wildcards can occur anywhere in the StartString and EndString properties, 
including at the beginning or end of the strings. For example:

  'ATI?'^M^J will match 'ATI0^M^J, 'ATI1^M^J...,

  'END??' will match 'END12', 'END99'...,

  '??BEGIN' will match 'AABEGIN', 'BBBEGIN'..., etc.

Since ? is now interpreted as a wildcard, an actual ? in the packet must be escaped by \ 
(backslash). To specify an actual \, use \\. For example:

  '+FMFR\?' really means '+FMFR?' where the ‘?’ is a literal ‘?’.
'\\ASC' really means '\ASC' where the ‘\’ is a literal ‘\’.

See also: EndString, StartCond

TimeOut property

property TimeOut : Integer

Default: 2184 (~ 2 minutes)

Determines how long a data packet waits for completion of a data stream. 

If TimeOut is non-zero, it determines how long (in ticks) a data packet is allowed to wait for 
completion after it has started collecting data. After TimeOut ticks, the data packet 
relinquishes ownership of the data stream. If TimeOut is zero, the data packet holds 
ownership of the data stream until the EndString is received.

The timeout timer does not start until the start condition has been met. If StartCond = 
scString, the timer starts once the string defined by StartString has been received. If 
StartCond = scAnyData, the timer starts once the data packet has been enabled. If you need 
to start the timer once the packet starts actually collecting data, set the StartCond to scString 
and StartString to the wildcard char (‘?’).

See “Data ownership” on page 134 for more information.

See also: EndString, OnTimeOut
44     Chapter 4: Data Packet Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 5: Script Component

This chapter describes the TApdScript component, which contains properties and methods 
for automating basic communications sessions. 

A script is a list or file containing communications commands. Script languages are often 
provided by general-purpose communications programs to automate standard operations 
like logging on and off, file upload, and file download. The scripting support in TApdScript 
provides similar, though much simpler, script facilities for Async Professional applications.
     145

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdScript Component
The AdScript unit provides a single documented component: TApdScript. TApdScript 
implements a script language of about a dozen commands. While you wouldn’t want to 
build a complete BBS using just these commands, they provide enough features to automate 
and simplify many standard tasks.

The script language
The basic syntax of the script language is shown in the following line of code:

<command> <data1> <data2>;<comment>

In this line of code, <command> describes the action to perform, <data1> and <data2> are 
optional arguments, and <comment> is an optional comment. The format of the arguments 
vary among commands. The various components of each line must be separated by at least 
one space or a comma. Additional spaces are permitted, but ignored. Commands are not 
case-sensitive.

The following is a list of supported commands followed by brief descriptions and 
discussions of the relationships between various commands: 

:<label> GOTO <label>
DISPLAY 'XX XX' ;<comment>
SENDBREAK <duration in ms> INITPORT <1..99>
DELAY <duration in ms> IF CONNECTED <label>
SET <option> <data> DONEPORT
UPLOAD <protocol> SEND 'XXXXXX'
DOWNLOAD <protocol> CHDIR <pathname>
DELETE <filemask> RUN <command> <wait>
EXIT <exitcode> IF SUCCESS <label>
WAIT 'XXXX' <timeout in ms> IF TIMEOUT <label>
IF FAIL <label> IF 1,2,3...127
WAITMULT 'XXX|YYY|ZZZ' <timeout in ms>

:<label>

A point in the script file that can be jumped to via a GOTO or IF instruction. A label name 
can be any type of string without embedded spaces. For example “:TopOfLoop”, 
“:TOP_OF_LOOP” are both acceptable; “:top of loop” is not.

;<comment>

Any line that starts with a semicolon is considered a comment. Blank lines are also 
considered comments and may be freely added for readability.
46     Chapter 5: Script Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
INITPORT <Com1..Com99>

Opens the specified port. Only one port at a time may be opened. This number directly 
correlates with the ComNumber property of the TApdComPort component.

DONEPORT

Closes a port previously opened with INITPORT.

SEND 'XXXXXX'

Transmits the string “XXXXXX”. Control characters may transmitted by preceding a 
character with ‘^’. For example, a control C character is represented by “^C”. You’ll use this 
feature most often when sending carriage returns. For example, SEND “myname^M” might 
be an appropriate response to a logon prompt where you would normally type your name 
and press Enter. 

Note: Unlike Object Pascal, control characters must be inside the quote marks, if quote 
marks are necessary.

If the string does not contain any embedded blanks the beginning and ending quotes can be 
omitted. The quotes are required if the string has embedded blanks. For example:

  SEND ABC      sends ABC

  SEND ‘ABC’    sends ABC

  SEND A B C    sends only the A ('B C' is considered a comment)

  SEND ‘A B C’  sends A B C

WAIT 'XXXXX' <timeout in ms>

Waits up to <timeout in ms> milliseconds for a particular received string. The string 
comparison is always case insensitive. However, the string comparison need not be 
complete. If, for example, a host returns the string “Host XXXX ready” where XXXX might 
vary from session to session, the WAIT command should wait for “ready” only. As with the 
SEND command, beginning and ending quotes are only required if the string contains 
embedded blanks.

This command sets one of three conditions: SUCCESS, FAIL or TIMEOUT, which can be 
tested with the IF command. SUCCESS is set if the string is received before the timeout. 
TIMEOUT is set if the timeout expires before the string is received. FAIL is set if the timeout 
expires and all retries are exhausted.

IF SUCCESS/TIMEOUT/FAIL <label>

Tests the condition set by the last command and, if the tested condition is True, script 
execution jumps to <label>. If the condition is not True then execution continues with the 
next statement.
TApdScript Component     147

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
WAITMULTI 'XXX|ZZZ|YYY', <timeout in ms>

Waits up to <timeout in ms> milliseconds for one of several substrings. The bar character 
(|) separates the substrings. The comparisons are always case insensitive. The maximum 
length of the entire string is 255 characters. As with the SEND command, beginning and 
ending quotes are only required if the string contains embedded blanks.

This command sets a numeric condition result based on the substring received: ‘1’ is set if 
the first substring is received, ‘2’ is set if the second substring is received, and so on. If none 
of the strings are received, then TIMEOUT is set. If all retries have been exhausted, then 
FAIL is set.

IF 1,2,3...127 <label>

Tests the condition set by the last WAITMULTI command and, if the tested condition is 
True, script execution jumps to <label>. If the condition is not True, then execution 
continues with the next statement.

The following example sends a modem dial command, then waits for one of CONNECT, 
NO CARRIER, or BUSY responses. If none of the responses are received then control falls 
through to the GOTO statement:

send 'atdt260-9726^m'
waitmulti 'connect|no carrier|busy' 60000
if 1 HandleConnect
if 2 HandleNoConnect
if 3 HandleBusy
goto HandleTimeout
:HandleConnect

...proceed with session
:HandleNoConnect

...handle noconnect error
:HandleBusy

...handle busy error
...

GOTO <label>

Unconditionally jumps to <label>.

DISPLAY 'Just did something'

Generates a call to the TApdScript component’s OnScriptDisplay event handler. If the 
DisplayToTerminal property is True and a terminal component exists on the form, then the 
string is also displayed to the terminal. This can be used to monitor the progress of the script 
and to aid in debugging.
48     Chapter 5: Script Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
SENDBREAK <duration in ms>

Transmits a break of <duration in ms> milliseconds.

DELAY <duration in ms>

Delays for <duration in ms> milliseconds. The script doesn’t yield during delays so you 
should keep the delays as short as possible.

SET <option> <data>

Sets or resets a variety of port, script and protocol options. Some options require an 
additional argument, others do not. Table 5.1 shows a list of all options.

Table 5.1: SET options 

BAUD <number> Sets the Baud property of the
associated TApdCustomComPort
component. For further information
regarding the allowable values,
refer to the Baud property of
TApdComPort.

DATABITS <5,6,7,8> Sets the DataBits property of the
associated TApdCustomComPort
component. Allowable values are 5, 6,
7 or 8.

FLOW <RTS/CTS,XON/XOFF,NONE> Sets flow control options for the
associated TApdCustomComPort
component. Allowable values are
RTS/CTS for hardware flow control,
XON/XOFF for software flow control,
and NONE to turn off all flow
control.

PARITY <NONE,ODD,EVEN,MARK,SPACE> Sets the Parity property of the
associated TApdCustomComPort
component. Allowable values are
NONE, ODD, EVEN, MARK or SPACE.

STOPBITS <1,2> Sets the StopBits property of the
associated TApdCustomComPort
component. Allowable values are 1 and
2.
TApdScript Component     149

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
RETRY <data> Sets an internal retry count that is
incremented whenever WAIT or
WAITMULTI result in a TIMEOUT
condition. When <retry count>
TIMEOUTs have occurred the FAIL
condition is set. The default is 1,
meaning no retries are attempted.

DIRECTORY <pathname> Sets the destination directory used
during protocol receives.

FILEMASK <filemask> Sets the file mask used during
protocol file transfers. For non-
batch protocols this must be a
specific file name rather than a
mask.

FILENAME <filename> Sets the received file name for
protocols that do not transfer the
file name (all Xmodem protocols).

WRITEFAIL Sets the WriteFailAction property to
wfWriteFail for all protocols except
Zmodem. This means that if an
incoming file already exists the
incoming file is skipped.

WRITERENAME Sets the WriteFailAction property to
wfWriteRename for all protocols
except Zmodem. This means that if an
incoming file already exists the
incoming file is renamed (the first
character of the file name is
replaced with $).

WRITEANYWAY Sets the WriteFailAction property to
wfWriteAnyway for all protocols
except Zmodem. This means that if an
incoming file already exists the
existing file is overwritten.

ZWRITECLOBBER Sets the ZmodemFileOption property
to zfoWriteClobber. This means that
if an incoming file already exists
the existing file is overwritten.

Table 5.1: SET options  (continued)
50     Chapter 5: Script Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
UPLOAD <protocol>

Starts transmitting files using <protocol>. <protocol> must be one of the following: 
XMODEM, XMODEM1K, XMODEM1KG, YMODEM, YMODEMG, ZMODEM or 
KERMIT. All files matching the mask previously specified by SET FILEMASK are 
transmitted.

DOWNLOAD <protocol>

Starts receiving files using <protocol>. <protocol> must be one of the following: 
XMODEM, XMODEM1K, XMODEM1KG, YMODEM, YMODEMG, ZMODEM or 
KERMIT. When using any of the Xmodem protocols, you must call SET FILENAME before 
DOWNLOAD to specify the name of the received file.

CHDIR <pathname>

Changes the current directory to the one specified by <pathname>. If the directory does not 
exist, the FAIL condition is set.

DELETE <filemask>

Deletes all files matching <filemask>. If no path is specified the current directory is used.

ZWRITEPROTECT Sets the ZmodemFileOption property
to zfWriteProtect option. This means
that if an incoming file already
exists the incoming file is skipped.

ZWRITENEWER Sets the ZmodemFileOption property
to zfWriteNewer option. This means
that if an incoming file already
exists the existing file is
overwritten only if the incoming file
is newer.

ZSKIPNOFILE <True/False> Sets the ZmodemSkipNoFile property
to True or False. When this option is
True incoming files are skipped if
they do not already exist on the
receiving machine.

Table 5.1: SET options  (continued)
TApdScript Component     151

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
RUN <command> <wait>

Executes the specified command, batch file or program. <wait> can be True or False and 
determines whether the script waits for the command to complete its execution. <wait> is 
True by default.

Following is an example script showing how these commands might be used to log on to a 
host or terminal server:

SET RETRY 10 ;Try 10 times
:Again
SEND ^C ;Send an attention character
WAIT 'READY' 182 ;Wait 10 seconds for response
IF SUCCESS Logon ;Got prompt, continue with logon
IF TIMEOUT Again ;Try again if we timed out
IF FAIL, Done ;Give up after 10 tries
:Logon
SEND 'Name, password^M' ;Send name and password
...
:Done
SEND 'Bye^M'

EXIT <exitcode>

This will terminate the script and return the exit code as the Condition parameter in the 
OnScriptFinish event. If the exitcode is not specified, a Condition of SUCCESS will be 
passed to the OnScriptFinish event.

The exitcode parameter can be SUCCESS, TIMEOUT, FAIL or an integer value.

User functions and variables 
User functions and variables are designed to provide a means by which your scripts can 
interact with the host application. When a user function or user variable are encountered, 
the script will fire events to either handle the event or to supply the value for the user 
variable.

User functions
User functions are indicated by a ‘&’ as the first character in the name of the function. User 
functions can take a single optional parameter. 

When a user function is encountered in the script, it will generate the 
OnScriptUserFunction event. This event will pass the name of the function converted to 
upper case and with the leading ‘&’ removed in the Command parameter of the event. If a 
parameter has been specified for the user function, this will be passed in the Parameter 
parameter.
52     Chapter 5: Script Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Following are examples of calls to user functions. In all cases, the OnScriptUserFunction 
event will be called with a Command parameter of “MYFUNCTION.” In the first example, 
the value of Parameter is empty. In the second and third examples, the value of Parameter is 
the string “Parameter” and “1234” respectively:

&MyFunction
&MyFunction 'Parameter'
&MyFunction 1234

User variables
User variables are indicated by a ‘$’ as the first character in the name of the variable. User 
variables can appear in any place where a parameter is expected and they can appear as the 
parameter to a user function. In the latter case, the user variable will be evaluated before the 
user function.

When a user variable is encountered in the script, it will generate the OnScriptUserVariable 
event. The name of the user variable will be passed in the Variable parameter of the 
OnScriptUserVariable event. The name of the variable will be exactly as it appears in the 
script (including the leading ‘$’). You will need to specify the value of the variable in the 
NewValue parameter of the event.

Following are examples of using user variables:

DISPLAY $MyVariable
&MyFunction $MyVariable

Executing scripts
A script is a list of commands in the format described in the previous section. The script can 
be an external ASCII text file or can be contained within a TStringList component. Scripts 
must be prepared with a call to PrepareScript before they can be executed. Preparing the 
script translates (compiles) it into memory. Syntax errors cause the EApxScriptError 
exception to be raised with one of the following error messages:

Not a valid script command. Line #
Bad format for first parameter. Line #
Bad format for second parameter. Line #
Label is referenced but never defined. Line #
Bad option in SET command. Line #
Error XXX while processing script. Line #
TApdScript Component     153

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Scripts are always executed in the background in a fashion similar to file transfer protocols. 
Scripts are started with a call to StartScript, which returns immediately. If no script 
commands have been prepared (or can be prepared) StartScript raises the EApxScriptError 
exception. If the script was started successfully it continues in the background until 
completion (either successfully or due to an error). When the script is finished, it generates 
the OnScriptFinish event.

Other components
The script component always needs a TApdCustomComPort component descendent (i.e., 
TApdComPort or a user created descendent). When a TApdScript component is created, it 
searches the form for a TApdCustomComPort component and uses the first one it finds. If a 
TApdCustomComPort isn’t found, StartScript creates one with all default values. In many 
cases it’s best to create and customize the TApdCustomComPort yourself before starting the 
script.

A program using a script may also use a terminal window (TAdTerminal). No special action 
is required to associate the terminal with the TApdScript component. However, if the 
TApdScript component finds a terminal component it does two things. One, it deactivates 
the terminal during file transfers; and two, it sends the strings from DISPLAY commands to 
the terminal if the script property DisplayToTerminal is True. Even if no DISPLAY 
commands are used, the terminal window is useful during script development and 
debugging because it displays all received data.

If the script calls either UPLOAD or DOWNLOAD a TApdProtocol component is required. 
As with the TApdCustomComPort, the script will automatically create a TApdProtocol if it 
can’t find one on the form. However, also like the TApdCustomComPort, the script provides 
only a few commands to customize the protocol so it’s better to create the protocol 
component yourself before starting the script.

Debugging scripts
A script file is really an interpreted program and TApdScript is the interpreter. Like any 
program you write, script files may require a bit of debugging. Simple syntax errors will 
always be detected and reported by PrepareScript. Logic errors, however, may require some 
debugging effort on your part to find and correct.

TApdScript provides a variety of tools for debugging scripts. First, it provides three events 
for tracking the progress of the script:

1.  OnScriptCommandStart—called before each command is executed.

2.  OnScriptCommandFinish—called after each command is executed.

3.  OnScriptFinish—called when the entire script completes.
54     Chapter 5: Script Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
It also provides the OnScriptDisplay event, which is called in response to each DISPLAY 
command in the script.

Finally, you can use the debug log available within the TApdComPort component to 
examine the data sent and received during a script session.

Example
This example creates a very simple script file to send the ATI4 command to a modem and 
wait for the OK response. Because this example includes a terminal window, the results of 
the ATI4 command are displayed in that window.

Create a new project, add the following components, and set the property values as 
indicated in Table 5.2.

Double-click on the Start button and modify the generated method to look like this:

procedure TForm1.StartClick(Sender: TObject);
begin

ApxScript1.StartScript;
end;

This method starts the script. StartScript returns immediately while the script continues 
running in the background. Note that PrepareScript was not called. StartScript calls 
PrepareScript itself when either ScriptCommands contains commands or ScriptFile 
contains a file name. If the script contains any syntax errors, StartScript will raise an 
EApdScriptError exception.

Table 5.2: Script example property values

Component Property Value

TApdComPort ComNumber <as required>

TAdTerminal

TApdScript ScriptCommands “send ati4^m”

“wait ok 36”

TButton Name Start
TApdScript Component     155

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Double-click on the script component’s OnScriptFinished event handler in the Object 
Inspector and modify the generated method to look like this:

procedure TForm1.ApdScript1ScriptFinish(
CP: TObject; Condition: Integer);

begin
ShowMessage('Script finished!');

end;

This method displays a message box when the script is finished.

Run the project and experiment with the generated program.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (AdMisc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomScript (AdScript)

TApdScript (AdScript)

Properties
ComPort

DisplayToTerminal

InProgress 

Protocol

ScriptCommands

ScriptFile

Terminal

! Version

Methods
CancelScript PrepareScript StartScript

Events
OnScriptCommandStart

OnScriptCommandFinish

OnScriptDisplay

OnScriptFinish

OnScriptParseVariable

OnScriptUserFunction
56     Chapter 5: Script Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

!

Reference Section

CancelScript method

procedure CancelScript;

Cancels the background script.

Once a script is started, it executes all commands in the background without any help or 
interference from the foreground process. The only way to stop the script, short of letting it 
run to completion, is to call CancelScript. CancelScript stops the script and removes any 
resources (i.e., triggers, event handlers) the script may have installed. CancelScript does not 
free any components (TApdComPort or TApdProtocol) that the script may have created. 
Those components are re-used in subsequent calls to StartScript and are freed only when the 
script component is destroyed.

ComPort property

property ComPort : TApdCustomComPort

The comport component used by the script to send and receive data.

When the script is created it assigns the first comport component it finds on the form to 
ComPort. ComPort is also automatically filled in if a comport is created after the script 
component. If ComPort is unassigned when StartScript is called, StartScript dynamically 
creates a TApdComPort component and fills in ComPort. 

DisplayToTerminal property

property DisplayToTerminal : Boolean

When True, the script DISPLAY commands display data to the terminal window.

Set this to True if the application has a terminal window and the terminal window should be 
used to display the strings from the script’s DISPLAY commands. If the application doesn’t 
have a terminal window this property is ignored. If this property is set to False or the 
application doesn’t have a terminal window, the application must implement an 
OnScriptDisplay event handler in order to see the contents of the scripts’s DISPLAY 
commands.
TApdScript Component     157

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

InProgress run-time, read-only property

property InProgress : Boolean

Returns True while a script is executing in the background.

Use this property to determine whether or not a script is executing in the background. A 
typical use would be to prevent a user from starting a new script or any other 
communications operation until the current script is finished.

OnScriptCommandFinish event

property OnScriptCommandFinish : TScriptCommandEvent

Generated after each script command is executed.

This event complements the OnScriptCommandStart event and can also be used to 
implement single-stepping or for tracking the progress of the event. See 
OnScriptCommandStart for a description of the types and constants used by 
OnScriptCommandFinish.

For script commands that include a “wait” (WAIT, WAITMULTI, UPLOAD, DOWNLOAD) 
OnScriptCommandFinish is generated after setting up for the command and before the 
command actually finishes waiting. The indication that the command has finished waiting 
(or transferring) is the OnScriptCommandStart of the next command.

See also: OnScriptCommandStart
58     Chapter 5: Script Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

OnScriptCommandStart event

property OnScriptCommandStart : TScriptCommandEvent

TScriptCommandEvent = procedure(
CP : TObject; Node : TApdScriptNode;
Condition : SmallInt) of object;

TApdScriptNode = class(TObject)
Command : TApdScriptCommand; Data : String; Option : TOption;
Timeout : Word; Condition : Word;

TApdScriptCommand = (
scNone, scComment, scLabel, scInitPort, scDonePort, scSend,
scWait, scWaitMulti, scIf, scDisplay, scGoto, scSendBreak,
scDelay, scSetOption, scUpload, scDownload, scChDir, scDelete,
scRun, scExit);

 Generated before each script command is executed.

The primary purpose of this event is to provide a mechanism for single stepping through a 
script file or for tracking the progress of a script. Node contains the command to be 
executed. Node.Command is one of the TApdScriptCommand values shown above. 
Condition contains the current condition code, one of ccXxx values shown above.

See also: OnScriptCommandFinish

OnScriptDisplay event

property OnScriptDisplay : TScriptDisplayEvent

TScriptDisplayEvent = procedure(
CP : TObject; const Msg : String) of object;

Generated in response to script DISPLAY commands.

The script processor doesn’t make any assumptions about how to display the contents of 
DISPLAY commands. Instead, it generates an OnScriptDisplay event passing Msg, the string 
to be displayed. The application can then display the string in whatever manner necessary.

One exception to this process occurs when the DisplayToTerminal property is True and the 
script component finds a TAdTerminal window component on the form. In that case the 
contents of the DISPLAY command are shown in the terminal window before 
OnScriptDisplay is generated.
TApdScript Component     159

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnScriptFinish event

property OnScriptFinish : TScriptFinishEvent

TScriptFinishEvent = procedure(
CP : TObject; Condition : SmallInt) of object;

Generated at the end of the script.

This event is generated when the end of the script file or script list is reached and there are 
no more script commands to execute. It is also generated if the script encounters a fatal error 
during processing.

If an application dynamically creates a TApdScript component it should not free that 
component, or any component that the script uses, during this event. Instead, it should set a 
flag or post a message to itself noting that the script component can safely be destroyed at 
some later point in the program.

See also: InProgress

OnScriptParseVariable event

property OnScriptParseVariable : TScriptParseVariableEvent

TScriptParseVariableEvent = procedure(
CP : TObject; const Variable : String;
var NewValue : String) of object;

Generated when a value is needed for a user variable.

This event is generated when a user variable is encountered in the script. User variables can 
appear any place where a parameter is expected. They are indicated by a leading ‘$’. The 
name of the user variable will be passed exactly as it is seen in the script (including the ‘$’). 
In this event handler, the value of the user variable needs to be specified in the NewValue. If 
this value is not specified, the value of the variable will be assumed to be blank.

Refer to the section “User functions and variables” on page 152 for more information.

See also: OnScriptUserFunction
60     Chapter 5: Script Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

OnScriptUserFunction event

property OnScriptUserFunction : TScriptUserFunctionEvent

TScriptUserFunctionEvent = procedure(
CP : TObject; const Command : String;
const Parameter : String) of object;

Generated when a user function has been encountered in the script.

This event is generated when a user function is encountered in the script. User functions are 
indicated by a leading ‘&’. The name of the function will be passed to this event in the 
Command parameter. This name will be converted to upper case and have the leading ‘&’ 
removed. Whatever functionality is needed to handle the user function should be 
implemented in this event.

Refer to the section “User functions and variables” on page 152 for more information.

See also: OnScriptParseVariable

PrepareScript method

procedure PrepareScript;

Prepares the script command list and checks for syntax errors.

Before a list or file of script commands can be processed, it must first be prepared. This is 
similar in concept to compiling a program. Each script command is read, checked for syntax 
errors, and written to an internal list of compiled commands. When StartScript is called, it is 
this internal list of compiled commands that is executed.

When PrepareScript finds a syntax error it raises an EApxScriptError exception with one of 
the following error messages and the offending line number:

Not a valid script command. Line #
Bad format for first parameter. Line #
Bad format for second parameter. Line #
Label is referenced but never defined. Line #
Bad option in SET command. Line #
DOS error XXX while processing script. Line #
TApdScript Component     161

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Protocol property

property Protocol : TApdCustomProtocol

Determines the protocol used by UPLOAD and DOWNLOAD commands.

When the script component is created it searches the form for an existing 
TApdCustomProtocol and uses the first one it finds. If it doesn’t find any, it uses the first 
TApdCustomProtocol later dropped onto the form.

If an UPLOAD or DOWNLOAD command is processed and Protocol is unassigned, the 
script component creates a TApdProtocol component with default values. That protocol 
component is destroyed when the script component is destroyed. The automatic creation of 
the protocol component provides very little control over the protocol. The recommended 
approach is for the application to create the protocol before the script is executed.

ScriptCommands property

property ScriptCommands : TStrings

The list of script commands.

Although declared as a TStrings component, this component is treated as a TStringList and 
uses the TStringList property editor for adding and editing script commands at design time.

Note that ScriptCommands are used only when the ScriptFile property is empty. If the 
ScriptFile contains a file name, then script commands are read from that file regardless of 
the contents of ScriptCommands.

For convenience, at design time the script component loads the commands from ScriptFile 
into ScriptCommands whenever a new ScriptFile property value is set. If the contents of 
ScriptCommands are changed the script component automatically writes those changes to 
ScriptFile, but only when the script component is destroyed or a new ScriptFile set. If the 
contents of ScriptCommands is changed and the project is run without first closing, the 
project the changes to ScriptCommands will be lost.

ScriptFile property

property ScriptFile : String

A file containing script commands.

When ScriptFile contains a file name PrepareScript and StartScript always read that file to 
build/execute the script, ignoring the current contents ScriptCommands.

See ScriptCommands for more information concerning the relationship of 
ScriptCommands and ScriptFile.
62     Chapter 5: Script Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

StartScript method

procedure StartScript;

Begins executing the script in the background.

StartScript checks the internal table of compiled commands. If that table is empty, it calls 
PrepareScript to compile the commands in the file specified by ScriptFile. If ScriptFile is 
empty, PrepareScript tries to compile the list of commands specified by ScriptCommands. If 
that list is also empty, the EApdScriptError exception is raised.

If StartScript finds or creates a list of compiled commands, it begins executing those 
commands. It continues executing commands until it encounters a command requiring a 
“wait” (WAIT, WAITMULTI, UPLOAD, DOWNLOAD). It then sets up appropriate triggers 
and trigger handlers and exits back to the application. When the triggers occur, the script 
engine regains control in the background and continues executing until the next wait 
command, when this process is repeated.

Terminal property

property Terminal : TApdBaseWinControl

Determines the terminal component used by the DISPLAY commands.

When the script component is created it searches the form for an existing terminal and uses 
the first one it finds. If it doesn’t find any, it uses the first terminal later dropped onto the 
form. Unlike comport and protocol components, the script component never creates a 
terminal component.

If DisplayToTerminal is True, the contents of DISPLAY commands are written to this 
terminal window.
TApdScript Component     163

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
64     Chapter 5: Script Component



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 6: State Machine Components

A state machine is simply a device or technique that receives input and acts upon that input 
based on the current condition of the device or technique. Async Professional uses state 
machines for a variety of tasks; such as managing protocol file transfers, sending and 
receiving faxes, collecting data packets, and monitoring the progress of a connection 
attempt.

State machines are one of the fundamental techniques used for asynchronous 
communications, where a command is transmitted and the reply is received later in the 
session. Consider the simple task of initializing a modem to detect Caller ID information 
and answering a call. The first step (after opening the correct serial port) is to send a generic 
initialization command (“ATZ”<CR>), then wait for the modem to return either a success 
response (“OK”) or a failure response (“ERROR”). The next step is to send the AT 
command to enable Caller ID detection and text responses (“AT#CID=1”<CR>) and wait 
for either a success or failure response. Finally, the project waits for the modem’s ring 
indicator (“RING”), answers the call (“ATA”<CR>) and waits for the connection response 
(“CONNECT”). Each instance of a command and response can be thought of as a separate 
state in a state machine, as Table 6.1 illustrates.

Table 6.1: Simple State Machine

State Output Input Next State

Send Init "ATZ"<CR> "OK" Send CID

"ERROR" Fail

Send CID "AT#CID=1"<CR> "OK" Wait for 1st ring

"ERROR" Fail

Wait for 1st ring "RING" Wait for 2nd ring

Wait for 2nd ring "RING" Answer

Answer "ATA"<CR> "CONNECT" Connected

"NO CARRIER" Fail

Fail Cleanup and report
the error

Connected Continue the
session
     165

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
A simple, two or three-state state machine is relatively painless to create. The state machine 
is usually driven by TApdDataPacket components monitoring for success or fail conditions. 
When TApdDataPacket’s OnStringPacket event is generated, the state machine progresses 
according to the collected data. Once a state machine grows to twenty or thirty states, with 
multiple conditions defining the state progression, the project code can get cumbersome, 
difficult to maintain, and hard to visualize.

The TApdStateMachine and TApdState components exist in order to assist in the 
development of orderly, well-defined, and easy to maintain and visualize state machines. 
The TApdStateMachine component is a container for TApdState components. TApdState 
components contain conditions that determine the accepted input to drive the state 
machine. To aid in the visualization of your state machine, the TApdStateMachine and 
TApdState components are visual components, showing connection lines with captions and 
customizable colors. When the state machine is executing, the currently active state is 
highlighted to aid in debugging and to show the progression of the state machine.

State machine philosophy
In order for the Async Professional state machine components to be useful, their design 
philosophy should be understood. The TApdStateMachine component contains and 
manages the TApdState components. The TApdState components own a TCollection 
descendent that determines the conditions required to progress to another TApdState. Each 
TApdState component can have either a single or multiple conditions. When the 
TApdStateMachine activates a state, the TApdStateMachine creates a list containing 
TApdDataPacket components configured according to the properties of each condition. 
Once one of those conditions is met, the next state is activated and the TApdStateMachine 
awaits further input to satisfy the new state’s conditions.

The TApdStateMachine is the only state machine component that interfaces with the 
TApdComPort or TApdWinsockPort. The TApdState components merely define the 
conditions that the TApdStateMachine monitors.

States and conditions
A TApdState component contains a TCollection descendent (TApdStateConditions); which 
contains TCollectionItem descendents (TApdStateCondition). The TApdStateCondition 
class defines conditions for the TApdState.

A condition, in the realm of the state machine, consists of a StartString and an EndString, a 
PacketSize, and a Timeout to determine the condition’s data requirement. The condition 
also contains a pointer to the next state to activate when the data conditions are met; and an 
ErrorCode to keep track of the relative success or failure of the state machine. The condition 
also defines visual aspects (called a “Connectoid”) such as the caption, line color and line 
width.
66     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
A TApdState component can be either activated or deactivated, and only activated or 
deactivated by a TApdStateMachine. When a TApdState is activated, the TApdStateMachine 
assembles the collection of conditions into a list of TApdDataPackets, and assigns internal 
event handlers as appropriate. When the TApdDataPacket’s data match conditions, or 
timeout, is met, the current state is deactivated and the next state is activated.

Adding, editing, and deleting conditions
The multiple-condition capability of the TApdState component does not lend itself very well 
to programmatic modification, or modification through the Object Inspector. The 
TApdState component installs a state condition editor dialog accessed by right-clicking the 
component and selecting the “Edit condition...” menu item. A dialog box is displayed, as 
shown in Figure 6.1, which provides access to add, edit and delete conditions.

The grid displays the current values for the installed conditions. To add a new condition to 
this TApdState component, click Add; to edit the selected condition click Edit; to delete the 
selected condition click Delete. When the modifications are complete, click OK to update 
the collection of conditions. To cancel any changes and revert to the original conditions, 
click Cancel.

 Figure 6.1:  TApdState component editor.
Chapter 6: State Machine Components     167

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
When a condition is added or edited, the Condition editor, shown in Figure 6.2, is displayed. 
This dialog box permits editing the fields of the TApdStateCondition being added or edited.

The controls are preinitialized with the current TApdStateCondition values when the 
condition is being edited, and preinitialized with default values when the condition is being 
added. Most of the controls are self-explanatory, with the exception of the “Next state” and 
“Color” drop-down combo boxes. The drop-down list for “Next state” contains the names 
of all TApdState components owned by the TApdStateMachine that owns the TApdState 
being edited. The “Color” drop-down list contains the system colors and Delphi color 
constants. Hex or RBG representations are not supported. Click OK to accept the changes or 
click Cancel to cancel the changes. Note that the changes will not take effect until the 
TApdState component editor is terminated.

The state machine in action
For illustration, we will create a simple state machine that will initialize a modem, initialize 
the modem for Caller ID detection, collect the Caller ID information, and answer an 
incoming call. This process can be broken up into four states: initialization, Caller ID 
initialization, waiting for the ring signals from the modem, and answering the call. As you 
will see, the multiple condition capability of the TApdState, and some carefully planned 
recursion, will let us wait for the rings and detect the Caller ID information in a single 
TApdState.

 Figure 6.2:  TApdStateCondition property editor.
68     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Due to the number of properties that are available when defining the state conditions, only 
the properties that will be changed will be mentioned, other properties can be left at their 
default values.

Create a new project and drop a TApdComPort component and a TApdStateMachine 
component onto the new form. Next, drop four TApdState components onto the 
TApdStateMachine. 

Select ApdState1, change the OutputOnActivate property to “ATZ^M”. Right-click the 
component and select the “Edit conditions...” menu. Add a new condition with a StartString 
of “OK” and set the NextState to ApdState2. This will tell the TApdState that we want to send 
“ATZ”<CR> when activated and we will wait for an “OK” before ApdState2 is activated.

Select ApdState2, change the OutputOnActivate property to “‘AT#CID=1’^M”. Invoke the 
conditions property editor and add a new condition with a StartString to “OK” and the 
NextState set to ApdState3. This will tell the ApdState2 that we want to send 
“AT#CID=1”<CR> when the state is activated and wait for an “OK.”

Select ApdState3, and invoke the conditions property editor. In this state, we will wait for 
two “RING” signals, and the three Caller ID tags. Invoke the conditions property editor and 
add a new condition with StartString set to “RING.” Don’t set the NextState yet; it will be set 
programmatically so the two “RING’s” can be captured. Add another condition and set the 
StartString to “DATE:”, EndString to “^M” and NextState to ApdState3. Add two more 
conditions identical to the last except for a StartString of “NAME:” and “NMBR:”. These 
conditions will tell ApdState3 that we want to know when “RING” is received, and when the 
Caller ID tags are received. Since we may or may not receive the Caller ID tags, and they may 
be in a different order, their NextState properties will point to their own TApdState. 
Chapter 6: State Machine Components     169

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
We will stay in this state until we tell the state that we want to progress to the next state. We 
will also want to record the Caller ID information for later processing. To do this, create the 
OnStateFinish event handler for ApdState3 and enter the following:

procedure TForm1.ApdState3StateFinish(State: TApdCustomState;
Condition: TApdStateCondition; var NextState: TApdCustomState);

begin
{ decide what to do when we receive "RING"s }
if Condition.StartString = 'RING' then begin
{ it's our RING condition }

State.Tag := State.Tag + 1;
if State.Tag > 1 then

{we've seen at least 2 rings, progress to the next state}
NextState := ApdState4

else
{ we've seen less than 2 rings, wait for more }
NextState := ApdState3;

end else if Condition.StartString = 'DATE:' then
{ it's our Date CID tag }
CIDDate := ApdStateMachine1.DataString

else if Condition.StartString = 'NMBR:' then
{ it's our Number CID tag }
CIDNumber := ApdStateMachine1.DataString

else if Condition.StartString = 'NAME:' then
{ it's our Name CID tag }
CIDName := ApdStateMachine1.DataString;

end;

Select ApdState4 and change the OutputOnActivate property to “ATA^M”. Invoke the 
conditions property editor, add a new condition and change the StartString to 
“CONNECT.” 

Next, select the ApdStateMachine1 component on the form, set the StartState property to 
ApdState1 and the TerminalState property to ApdState4. Add an OnStateMachineFinish 
event handler to provide notification when the state machine is complete and we are 
connected. A simple ShowMessage(“Connected”) will suffice for our purposes here.

Finally, drop the obligatory TButton on the form and create the OnClick event handler. This 
event is where we will start the state machine. Add the following code to the OnClick event 
handler:

procedure TForm1.Button1Click(Sender: TObject);
begin

ApdStateMachine1.Start;
end;
70     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
One implementation of the preceding example is illustrated in Figure 6.3.

Compile and run the project. Click the button to start the state machine. As the states are 
activated they will be highlighted in yellow (change the TApdStateActiveColor property of 
the TApdState component to change the default highlight color). The modem will first be 
initialized with “ATZ”, after the “OK” is received the Caller ID initialization is sent. After OK 
is received, ApdState3 will be highlighted waiting for incoming calls. When a call is detected 
by the modem, ApdState3 will wait for two “RING”s, collecting whatever Caller ID 
information is available. After two “RING”s, “ATA” is sent to the modem to answer the call 
and we will wait for the “CONNECT” response from the modem.

 Figure 6.3:  State machine example.
Chapter 6: State Machine Components     171

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdStateMachine Component
The TApdStateMachine component manages TApdState components to provide an easy to 
use, easy to maintain, and easy to visualize state machine. The TApdStateMachine 
component creates internal data collection mechanisms to monitor for conditions defined 
by the owned TApdState components, and activates and deactivates the owned TApdState 
components according to the collected data.

Hierarchy
TScrollingWinControl (VCL)

! TApdBaseScrollingWinControl (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomStateMachine (AdStMach)

TApdStateMachine (AdStMach)

Properties
ComPort

CurrentState

Data

DataSize

DataString

LastErrorCode

StartState

StateNames

TerminalState

! Version

Methods
Cancel Start

Events
OnStateChange OnStateMachineFinish
72     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

Reference Section

Cancel method

procedure Cancel;

Cancels the state machine.

Call the Cancel method to cancel the TApdStateMachine. The current state will be 
deactivated, and the OnStateMachineFinish event will be generated. All resources allocated 
by the TApdStateMachine to manage the current state will be deallocated. 

When the Cancel method is used to terminate the TApdStateMachine, the ErrorCode 
parameter of the OnStateMachineFinish event will be ecCancelRequested.

See also: OnStateMachineFinish

ComPort property

property ComPort : TApdCustomComPort

Determines the serial port used by the TApdStateMachine component.

A properly initialized TApdComPort or TApdWinsockPort must be assigned to this 
property before starting the TApdStateMachine.

ComPort is usually set automatically at design time to the first TApdCustomComPort 
component that the TApdStateMachine finds on the form. Use the Object Inspector to select 
a different TApdCustomComPort component, if needed.

Setting the ComPort property at run time is necessary only when using a dynamically 
created TApdCustomComPort or TApdStateMachine, or when selecting among several 
TApdCustomComPort components.

To use this component through a TAPI interface, start the TApdStateMachine after the 
OnTapiPortOpen event has been generated (after TAPI hands the application an initialized 
and open serial port).
TApdStateMachine Component     173

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

CurrentState read-only, run-time property

property CurrentState : TApdCustomState

The TApdCustomState that is currently active.

During the execution of a state machine, different states will be activated and deactivated 
depending on the data that is received. CurrentState is the TApdCustomState component 
that is currently active.

At run time, the current state will be displayed with a highlighted background.

Data read-only, run-time property

property Data : Pointer

A pointer to the collected data.

As a TApdStateMachine manages an active TApdState component, internal 
TApdDataPackets collect the data defined by the conditions. Data is identical to the Data 
parameter of TApdDataPacket’s OnPacket event handler. 

See also: DataSize, DataString

DataSize read-only, run-time property

property DataSize : Integer

The size of the collected data.

As the TApdStateMachine manages an active TApdState component, internal 
TApdDataPackets collect the data defined by the conditions. DataSize is the size of the 
collected data. DataSize is identical to the Size parameter of TApdDataPacket’s OnPacket 
event handler.

See also: Data, DataString

DataString read-only, run-time property

property DataString : string

The collected data.

As the TApdStateMachine manages an active TApdState component, internal 
TApdDataPackets collect the data defined by the conditions. DataString is the string that 
was collected. DataString is identical to the Data parameter of TApdDataPacket’s 
OnStringPacket event handler.

See also: Data, DataSize
74     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

LastErrorCode read-only, run-time property

property LastErrorCode : Integer

The ErrorCode of the last TApdStateCondition.

When a TApdState is deactivated, the condition whose data requirements were met defines 
an ErrorCode value. ErrorCode is intended to provide a numerical result of the condition. 
For example, if the TApdState conditions defined a log in sequence, and the failure 
condition was met, ErrorCode could be set to TPS_LOGINFAIL (an Async Professional 
predefined constant found in AdExcept.pas). This property can be used for status reporting, 
or to provide a reason for a state machine failure. The TApdStateMachine ignores this value.

See also: OnStateMachineFinish

OnStateChange event

property OnStateChange : TApdStateMachineStateChangeEvent

TApdStateMachineStateChangeEvent = procedure(
StateMachine : TApdCustomStateMachine;
FromState : TApdCustomState;
var ToState : TApdCustomState) of object;

Defines an event handler that is called when the CurrentState changes.

When the TApdStateMachine progresses through the owned TApdState components the 
TApdState components are deactivated and the next state is activated. The OnStateChange 
event is generated immediately after the deactivation. The next state is activated 
immediately after this event handler returns.

This event handler can be used to provide status indicators, or to modify the next state based 
on the collected data. To specify a different TApdState, set the ToState parameter to the new 
state to activate. To terminate the TApdStateMachine, set ToState to nil.

StateMachine is the TApdCustomStateMachine that generated the event. FromState is the 
TApdCustomState component that was deactivated. ToState is the TApdCustomState that 
StateMachine will activate.

See also: CurrentState, OnStateMachineFinish
TApdStateMachine Component     175

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

OnStateMachineFinish event

property OnStateMachineFinish : TApdStateMachineFinishEvent

TApdStateMachineFinishEvent = procedure(
StateMachine : TApdCustomStateMachine;
ErrorCode : Integer) of object;

Defines an event handler that is called when the state machine terminates.

When the TApdCustomState machine terminates, this event is generated to provide 
notification of the termination. The TApdCustomStateMachine can terminate due to the 
Cancel method, upon activation of the TerminalState TApdState, or when a condition is met 
and the NextState property is nil or invalid.

StateMachine is the TApdCustomStateMachine that generated the event. ErrorCode is an 
integer defining the reason for the termination. If the TApdCustomStateMachine was 
terminated due to the Cancel method, ErrorCode will be ecCancelRequested. For all other 
reasons, ErrorCode will be the value assigned to the ErrorCode property of the condition 
whose data match parameters were met.

See also: Cancel, LastErrorCode

Start method

procedure Start;

Start starts the state machine.

The Start method starts the state machine. Once Start is called, the TApdState determined 
by the StartState is activated. The StartState property must be assigned prior to calling Start.

See also: Cancel, StartState,

StartState property

property StartState : TApdCustomState

Determines the state that is activated first.

When the Start method is called, the TApdState component determined by StartState is 
activated, which starts the state machine. If Start is called and StartState is not assigned, the 
EStartStateNotAssigned exception will be raised.

See also: OnStateChange, Start
76     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

StateNames read-only, run-time property

property StateNames : TStrings

Provides the names of all TApdState components associated with the state machine.

The StateNames property is primarily for internal use, to provide the names of all TApdState 
components that are associated with the TApdStateMachine. The Strings value is the Name 
of the TApdState component.

TerminalState property

property TerminalState : TApdCustomState

Determines the state that terminates the state machine.

The TApdCustomStateMachine can terminate due to the Cancel method, upon activation of 
the TerminalState TApdState, or when a condition is met and the NextState property is nil or 
invalid. The TerminalState property determines which state is the terminal state. When this 
state is activated, the OutputOnActivate property is transmitted through the serial port, and 
any conditions defined by the TerminalState configured. When one of the conditions is met, 
the TerminalState is deactivated and the OnStateMachineFinish event is generated.

See also: Cancel, OnStateMachineFinish
TApdStateMachine Component     177

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdState Component
The TApdState component defines the conditions for which the state machine is monitoring 
at a given time during execution of the state machine. The TApdState component does not 
interact with the port, it simply contains the data requirements and state progression 
elements of the state it is representing.

The TApdState component maintains a collection of state conditions, which means that a 
single TApdState component can define several different conditions at one time. For 
example, at the beginning of a ZModem file transfer, the transmitter can begin the transfer 
by sending “rz”<CR>, or a ZInit block (“**[18]B00000000000000[0D]??”). This can be 
represented in a single TApdState component by adding two conditions, with their 
NextState properties pointing to the TApdState that responds with the ZRInit packet.

The conditions are contained in the Conditions property of TApdState, which is a 
TCollection descendent. This property is a collection of TApdStateCondition classes, which 
are descendents of TCollectionItem. The TApdStateCondition defines data match strings 
and timeouts similar to the TApdDataPacket, as well as a TApdStateConnectoid which 
defines the visual connectoid between the states. The TApdStateConditions, 
TApdStateCondition and TApdStateConnectoid classes do not lend themselves well to 
programmatic manipulation, they are better suited to changing from the Object Inspector 
and property editors.

TApdStateCondition
The TApdState component maintains TApdStateConditions, which define the conditions to 
satisfy the state. TApdStateCondition is a TCollectionItem descendent, and has the 
properties shown in Table 6.2.

Table 6.2: TApdStateConditions 

Name Type Description

StartString String Defines the beginning of the data
match string.

EndString String Defines the ending of the data match
string.

IgnoreCase Boolean Determines whether the data match
string must match case or not.

PacketSize Integer Defines packet length criteria for
the data match string.
78     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
StartString, EndString, IgnoreCase and PacketSize are very similar to the TApdDataPacket 
properties of the same name. The interface is simplified somewhat with the omission of the 
StartCond and EndCond properties. If StartString is an empty string the data collection 
mechanism begins immediately once the state is activated. If StartString is not an empty 
string the data collection mechanism begins when the StartString has been received. If 
PacketSize is 0 the size of the collected data is ignored. If PacketSize is greater than 0 then 
condition will be satisfied when PacketSize characters have been received. If EndString is an 
empty string the condition is satisfied if either the StartString has been received or 
PacketSize characters have been received. If EndString is not an empty string the condition 
is satisfied when the EndString has been received after the data collection mechanism 
begins.

Hierarchy
TGraphicContro l (VCL)

! TApdBaseGraphicControl (OOMisc)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomState (AdStMach)

TApdState (AdStMach)

ErrorCode Integer Defines an error code when this
condition is satisfied.

NextState TApdCustomState Defines the state that is activated
once this condition is satisfied.

Connectoid TApdStateConnectoid Defines how the link from this state
to NextState is rendered.

Table 6.2: TApdStateConditions  (continued)

Name Type Description
TApdState Component     179

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Properties
Active

ActiveColor

Conditions

Glyph

GlyphCells

InactiveColor

OutputOnActivate

! Version

Methods
Terminate

Events
OnStateActivate OnStateFinish
80     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

Reference Section

Active read-only, run-time property

property Active : Boolean

Default: False

Indicates whether this state is active or not.

As the TApdStateMachine component progresses through the TApdState components that 
define the state machine, the TApdStateMachine component activates and deactivates the 
TApdStates. This property indicates whether this TApdState is active or not.

When the TApdStateMachine component activates a TApdState, the conditions that define 
the state are read from the collection maintained by the Conditions property of TApdState, 
and corresponding TApdDataPackets are created. When the first condition is satisfied, the 
TApdStateMachine deactivates the current state and activates the next TApdState. Active is 
set after the data collection mechanism is configured, and after the data collection 
mechanism is destroyed.

See also: OutputOnActivate

ActiveColor property

property ActiveColor : TColor

Default: clYellow

Determines the color of the component when the state is active.

When the TApdState is active, it will be rendered with a background color determined by 
the ActiveColor property. When the state is inactive it will be rendered with a background 
color determined by the InactiveColor property. If the Glyph property is assigned, that 
image will be rendered instead with a background determined in part by GlyphCells.

See also: Active, Glyph, GlyphCells, InactiveColor
TApdState Component     181

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Conditions property

property Conditions : TApdStateConditions

TApdStateConditions = class(TCollection)
public

function Add : TApdStateCondition;
property Items[Index: Integer] : TApdStateCondition;

end;

Defines the collection of conditions for the state.

This property is a collection of TApdStateCondition classes, which defines the data match 
conditions for this TApdState component. The TApdStateConditions property defines a 
property editor, which is the same as the component editor for this component. This design 
time editor is discussed earlier in this chapter.

Glyph property

property Glyph : TBitmap

Defines a bitmap used to illustrate the state.

If the Glyph property is not assigned, the TApdState component is rendered as an empty 
rectangle with a caption. If the Glyph property is assigned a valid bitmap, the component is 
rendered with the bitmap. 

The Glyph can contain multiple cells to display a different image for each stage of the 
TApdState component. The GlyphCells property determines the number of cells contained 
in Glyph. See GlyphCells for a more detailed description.

See also: GlyphCells
82     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

GlyphCells property

property GlyphCells : Integer

Default: 1

Determines the number of cells contained in the Glyph property.

The Glyph property can be unassigned, it can contain a single image that is displayed for the 
duration of the state machine, or it can display a different image depending on the state of 
the TApdState. GlyphCells determines how many images are contained in Glyph. 
GlyphCells supports values from 0 through 3, and renders the cell according to the 
following:

For example, if Glyph contained a single cell that should be displayed for the duration of the 
state machine, GlyphCells can be either 0 or 1. To display one image when the Active 
property is False and another image when Active is True, GlyphCells should be 2 and the 
Glyph should contain two images with the same dimensions placed side by side.

When the Glyph cell is rendered, the Caption property will be displayed above the image. 
The Active, ActiveColor and InactiveColor properties determine the background color 
behind the Caption.

See also: Active, ActiveColor, Glyph, InactiveColor

InactiveColor property

property InactiveColor : TColor

Default: clWhite

Determines the color of the component when the state is not active.

When the TApdState is active, it will be rendered with a background color determined by 
the ActiveColor property. When the state is inactive it will be rendered with a background 
color determined by the InactiveColor property. If the Glyph property is assigned, that 
image will be rendered instead with a background determined in part by GlyphCells.

See also: Active, ActiveColor, Glyph, GlyphCells

Glyph Cell Condition When Rendered

0,1 When the TApdState is inactive.

2 When the TApdState is active.

3 After the TApdState has been deactivated.
TApdState Component     183

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnStateActivate event

property OnStateActivate : TApdStateNotifyEvent

TApdStateNotifyEvent = procedure(
State : TApdCustomState) of object;

Defines an event that is generated when the state is activated.

OnStateActivate provides notification when the TApdState component becomes active. This 
event is generated when the TApdStateMachine component activates this TApdState 
component. When this event is generated, the TApdStateMachine has already created and 
configured the data collection mechanism defined by Conditions; and the string defined by 
OutputOnActivate has already been transmitted. Use this event for notification and status 
purposes only.

State is the TApdState component that generated the event.

See also: Activate, OutputOnActivate

OnStateFinish event

property OnStateFinish : TApdStateFinishEvent

TApdStateFinishEvent = procedure(
State : TApdCustomState; Condition : TApdStateCondition;
var NextState : TApdCustomState) of object;

Defines an event that is generated when the state’s conditions are satisfied.

OnStateFinish provides notification when a TApdState’s conditions have been met. This 
event is generated immediately before this state is deactivated and the Condition’s NextState 
is activated.

State is the TApdState component that generated the event. Condition is the 
TApdStateCondition whose data match conditions were satisfied. NextState is the TApdState 
component that will be activated next. NextState can be changed during this event to 
provide a mechanism to select the next state based on collected data or other factors. If 
NextState is nil the TApdStateMachine will terminate the state machine.

See also: Active, OnStateActivate
84     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

OutputOnActivate property

property OutputOnActivate : string

Defines a string to transmit when the state is activated.

As the TApdStateMachine progresses through the state machine, successive TApdState 
components are activated and deactivated. The string defined by OutputOnActivate is 
transmitted by the TApdStateMachine through the TApdCustomComPort determined by 
TApdStateMachine’s ComPort property when the state is activated. OutputOnActivate 
provides a convenient way of initiating the state.

For example, during a modem initialization state machine you may want to transmit 
“ATZ”<CR> and wait for an “OK” or “ERROR” response from the modem. The collection 
of conditions would contain a TApdStateCondition defining a StartString of “OK” and 
another TApdStateCondition defining a StartString of “ERROR.” The OutputOnActivate 
property could be set to “ATZ^M” at design time. When the state is activated, “ATZ”<CR> 
will be transmitted and the response received by the same state’s conditions.

OutputOnActivate supports printable and non-printable characters in the string. At design 
time, enter non-printable characters in caret or pound notation. For example, to add a 
<CR> character, the “^M” or “#13” sequence (without quotes) can be used. At run time, 
the literal character can be used.

See also: Active, OnStateActivate

Terminate method

procedure Terminate(ErrorCode : Integer)

Terminates the TApdState component.

Under normal circumstances, the data match conditions defined by the Conditions 
property of TApdState would cause the TApdStateMachine to deactivate the state. The 
Terminate method can be used to stop the data collection mechanism. When the Terminate 
method is called, the TApdStateMachine will deactivate the state (causing the OnStateFinish 
event to be generated), and the OnStateMachineFinish event of TApdStateMachine will be 
generated. The ErrorCode parameter of this method will be passed along to the ErrorCode 
parameter of the OnStateMachineFinish event handler.

See also: OnStateFinish
TApdState Component     185

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
86     Chapter 6: State Machine Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 7: Status Light Components

The components included in this chapter: TApdStatusLight and TApdSLController, allow 
you to add a status light display, similar to the LEDs found on external modems, to your 
communications programs. The display can give a visual indication of modem status lights 
such as RTS and RI. 

TApdStatusLight is a simple component that displays two bitmaps, or two different colors, 
depending on whether the light is “lit” or “unlit.” The component’s Lit property determines 
which of the two states is displayed, and its Glyph property determines whether bitmaps or 
solid colors are used. This component works hand-in-hand with the TApdSLController 
component. 

The TApdSLController component monitors the status of a TApdComPort component and 
changes the state of one or more TApdStatusLight components to reflect that status. 
     187

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdStatusLight Component
TApdStatusLight is a simple component that displays two bitmaps, or two different colors, 
depending on whether the light is “lit” or “unlit.” The component’s Lit property determines 
which of the two states is displayed, and its Glyph property determines whether bitmaps or 
solid colors are used.

This component works hand-in-hand with the TApdSLController component (see page 
191). TApdSLController reacts to changes in serial port status and changes the Lit property 
of various TApdStatusLight components to reflect the status of the port.

Hierarchy
TGraphicControl (VCL)

TApdCustomStatusLight (AdStatLt)

TApdStatusLight (AdStatLt)

Properties
Glyph

Lit

LitColor

NotLitColor
88     Chapter 7: Status Light Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

Glyph property

property Glyph : TBitmap

Determines two custom bitmaps used to display the status light.

If the Glyph property is not assigned, a “lit” status light is drawn as a solid red square and an 
“unlit” one as a green square. Each square has shadowed edges to give it a three dimensional 
appearance.

Glyph can be used to display custom bitmaps instead. The Glyph bitmap is actually two 
bitmaps in one. It should be twice as wide as the component’s Width property. The bitmap 
displayed when the status light is lit is Width pixels wide starting at the left edge of the 
bitmap. The bitmap displayed when the status light is not lit is Width pixels wide starting 
Width pixels from the left edge of the bitmap.

Lit property

property Lit : Boolean

Default: False

Determines the state in which the status light is drawn.

This property is normally assigned by the trigger handlers of the TApdSLController 
component.

LitColor property

property LitColor : TColor

Default: clRed

Determines the color of a no-glyph status light in its lit state. 

If the component’s Glyph property is not set to a valid bitmap, the status light is drawn as a 
slightly raised colored square. LitColor is the color in which that square is drawn when the 
light is lit.
TApdStatusLight Component     189

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

NotLitColor property

property NotLitColor : TColor

Default: clGreen

Determines the color of a no-glyph status light in its unlit state. 

If the component’s Glyph property is not set to a valid bitmap, the status light is drawn as a 
slightly raised colored square. NotLitColor is the color in which that square is drawn when 
the light is not lit.
90     Chapter 7: Status Light Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdSLController Component
The TApdSLController component monitors the status of a TApdComPort component and 
changes the state of one or more TApdStatusLight components to reflect that status. The 
goal of the component is to give communications programs a status light display similar to 
the LEDs found on external modems.

TApdSLController is capable of monitoring the port’s line signals (DCD, DTR, CTS, and 
RI), line breaks and errors, and whether data is currently being received or transmitted.

The Lights property
The controller has a property called Lights which holds pointers to the status light 
components that the controller will be monitoring. Lights is of type TLightSet which is 
simply a class that contains a property of type TApdCustomStatusLight for each line 
condition that TApdSLController can monitor. In the Object Inspector, the Lights property 
has eight sub-properties that are used to assign status lights to the line conditions you want 
to monitor.

Table 7.1 provides a list of all Lights sub-properties and the port condition they monitor.

Using a TApdSLController
To use a TApdSLController, first create a TApdStatusLight component for each line 
condition you want the controller to monitor. Next, drop a TApdSLController component 
on the form and link it to the TApdComPort component you wish to monitor. Next, link the 
controller’s light properties to the status light components. Set the controller’s Monitoring 
property to True at run time when you want to start monitoring.

Table 7.1: Lights property sub-properties and port conditions

Sub-property Line condition

BREAKLight Lit for BreakOffTimeout ticks when a line break occurs.

CTSLight Lit when CTS signal high.

DCDLight Lit when DCD signal high.

DSRLight Lit when DSR signal high.

ERRORLight Lit for ErrorOffTimeout ticks when a line error occurs.

RINGLight Lit for RingOffTimeout ticks after RI signal goes high.

RXDLight Lit when data is being received.

TXDLight Lit when data is being transmitted.
TApdSLController Component     191

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Figure 7.1 shows the Object Inspector for a properly created TApdSLController component 
that can be used for monitoring the CTS, DCD, and DSR line signals.

When the CTS signal changes, the component named CTSMonitor is changed accordingly. 
Similarly, the component named DSRMonitor changes when the DSR signal changes and 
the DCDMonitor component changes when the DCD signal changes.

Hierarchy
TComponent (VCL)

TApdCustomSLController (AdStatLt)

TApdSLController (AdStatLt)

Properties
BreakOffTimeout

ComPort

ErrorOffTimeout

Lights

Monitoring

RingOffTimeout

RXDOffTimeout

TXDOffTimeout

 Figure 7.1:  Viewing the Object Inspector of a properly created TApdSLController component.
92     Chapter 7: Status Light Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

Reference Section

BreakOffTimeout property

property BreakOffTimeout : LongInt

Default: 36

Determines the number of ticks the BREAKLight remains lit after a line break is detected.

ComPort property

property ComPort : TApdCustomComPort

Determines the serial port monitored by the status lights.

The status light controller monitors the status of lines on a single serial port. This property 
must be linked to the TApdComPort component that will be monitored.

ErrorOffTimeout property

property ErrorOffTimeout : LongInt

Default: 36

Determines the number of ticks the ERRORLight remains lit after a line error is detected.

Lights property

property Lights : TLightSet

Determines all of the lights displayed in the status bar.

Lights is simply a class that contains properties for each port condition that 
TApdSLController can monitor. In the Object Inspector, these individual light properties 
show up as sub-properties. That is, the inspector shows a property called Lights which will 
expand into a list of individual properties when double-clicked.

For more information, see “The Lights property” on page 191.
TApdSLController Component     193

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Monitoring run-time property

property Monitoring : Boolean

Determines whether the status lights are being updated.

Setting Monitoring to True causes the status light controller to install various triggers that 
are used to update the status lights. Setting it to False removes those triggers.

ComPort must be assigned before setting Monitoring to True at run time.

RingOffTimeout property

property RingOffTimeout : LongInt

Default: 8

Determines the number of ticks the RINGLight remains lit after a ring is detected.

RXDOffTimeout property

property RXDOffTimeout : LongInt

Default: 1

Determines the number of ticks the RXDLight remains lit after a character is received.

TXDOffTimeout property

property TXDOffTimeout : LongInt

Default: 1

Determines the number of ticks the TXDLight remains lit after a character is transmitted.
94     Chapter 7: Status Light Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 8: The Terminal Components

Traditionally, a terminal is a piece of hardware with a screen and keyboard that provides a 
method to display information from a host computer and to enter information into the same 
computer. Today, more often than not, terminals are personal computers that run a program 
that emulates the original terminal; it interprets the same data in the same fashion and 
displays it in the same way. Similarly, it emulates the original keyboard and sends the same 
kind of information back to the host computer in the same format.

The data presented by the host computer takes one of two forms. The first form is intended 
for display only. The terminal will just send the stream of data directly to the screen without 
trying to interpret it in any fashion. What you see is what is sent. This is known as teletype 
mode (abbreviated as TTY). 

The other form of data sent to a terminal consists of two types, intermixed: displayable data 
and embedded terminal control sequences. The Terminal control sequences cause the 
terminal to move the cursor around the screen, to block off certain parts of the display from 
being altered, to delete text from areas of the screen, to scroll the display, to switch character 
sets, and so on. The terminal has to monitor the data being sent by the host computer, be 
able to identify the terminal control sequences in the stream, and then extract and act on 
them. All other data would be sent to the screen as usual. We usually refer to this mode as the  
terminal emulation mode.

All emulation means is that the PC is pretending to be the terminal in such a fashion that the 
host computer is not aware that there is no real terminal present, just a clever program. 
Ideally, the PC program emulates the terminal so well that the user cannot tell the difference 
between the program’s window and the original display. What you see is what was intended. 
Unfortunately, the same cannot be said of the keyboard; terminal keyboards generally have 
extra keys not available on a PC keyboard, and so the emulation program has to map 
available PC keystrokes to the original terminal keyboard keys, and obviously the user has to 
be aware of these mappings.

There are a variety of standards for terminal control sequences from such companies as 
IBM, Digital Corporation (DEC), Wyse, and so on. One of the most widely known is the 
DEC VT100 standard, which helped form the basis for the ANSI standard. Async 
Professional implements the full VT100 standard, including support for different character 
sets, scrolling regions, and keyboard application modes. By definition, this is also a subset of 
the ANSI standard. Also, since the vast majority of PCs running Windows have color 
monitors, the Async Professional VT100 emulation also supports the terminal control 
sequences needed to display text in color. 
     195

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Terminal Design Considerations
Async Professional provides terminal emulation capabilities with its terminal component, 
TAdTerminal and its emulators, all descended from TAdTerminalEmulator. These 
components have been designed with two goals in mind: first, to be usable with the 
minimum of effort on your part; and, second, to be flexible so that you can extend them to 
work with other terminal types. 

The former goal is important to those programmers who know that having a terminal that is 
compliant with the VT100 standard (or a subset of the ANSI standard) is all that is required 
for their application. They do not want to worry about linking this kind of display emulation 
with that kind of keyboard emulation to the terminal component, they would rather just 
point the emulator at the terminal component and let the components do the rest.

Catering for the latter goal, extensibility, is more difficult. There are many facets to 
emulating a terminal. You have to worry about how to store the data from the host; in other 
words, the actual displayable characters, the character attributes, the colors (both 
foreground and background), the character sets. You have to worry about interpreting the 
terminal control sequences being sent by the host and acting upon them. These terminal 
control sequences may erase parts of the display, insert extra lines, or scroll the text in 
different ways. You have to track these changes in your data. 

Once you have those kind of problems nailed down, you then have to consider the keyboard. 
Ideally, you would like to emulate the original terminal keyboard completely, but this isn’t 
generally possible. Apart from the alphabetic part of the keyboard, terminal keyboards have 
different keys. You must map some PC keys (maybe normal, Control or Alt shifted) onto 
their terminal keyboard equivalents. You have to consider what control sequence the 
terminal keyboard would send to the host when a given key was pressed.
96     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
After all that, you have to actually draw the terminal display in a normal window on the 
screen. With the terminal classes in Async Professional, the attempt has been made to 
simplify this entire process (see Figure 8.1). 

Terminal buffer
First, there is the TAdTerminalBuffer class. This class provides a non-visual buffer 
containing a representation of the data being displayed by the terminal window. The buffer 
is organized in the same fashion as the terminal display: a matrix of data organized into rows 
and columns. In fact, the buffer maintains a set of such matrices: one for the displayable 
characters, one for the attributes (bold, underline, invisible, and so on), one for the color of 
the text, one for the color of the background, and finally one for the character set identifiers. 
There is a set of methods for performing the standard terminal operations: erasing or 
deleting part of the display, inserting rows and characters, scrolling areas of the display, 
changing the default colors and attributes, writing new characters to the screen, and so on. 
The class also maintains a list of character positions and rectangles on the screen that need 
repainting. This class does not of itself understand any terminal control sequences; its 
functionality is driven by some controlling terminal emulation component. In writing a new 
terminal emulation component, you would generally use this buffer class as is; the only time 
you would create your own descendant would be if the terminal you are emulating requires 
some transformation of the display not provided by the standard class.

 Figure 8.1: Terminal design example diagram.

SERIAL 
DEVICE

TERMINAL

COMPORT

EMULATOR

PARSER

BUFFER

KEYBOARD
MAPPING

CHARACTER
SET

MAPPING
Terminal Design Considerations     197

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Terminal parser
Next, there is the TAdTerminalParser class. This class is designed to interpret terminal 
control sequences. The TAdTerminalParser class is an ancestor class, it merely defines the 
interface through which a parser should work. Async Professional provides a single 
descendant, the TAdVT100Parser class, which provides parsing capabilities for the VT100 
series of terminals. Studying the code for this class would provide hints on how to write a 
specialized parser class descendant for another terminal.

Keyboard-mapping table
Next, there is the keyboard-mapping table. This class stores the information required to 
map a PC keystroke (as reported by Windows) into the control sequence that has to be sent 
to the terminal’s host computer. This process takes place in three distinct steps, the 
information for each being stored in the same structure (actually, a hash table). First, the 
virtual key code reported by Windows is looked up in the table. If found, the name of the 
virtual key would be returned. This name, together with the state of the various shift keys 
(including Ctrl and Alt), is then looked up in the same table. If found, it will return the name 
of the terminal key to which the PC key maps. For example, with the standard VT100 
mappings provided with Async Professional, the up arrow key on the PC keyboard, VK_UP, 
is mapped to DEC_UP, the name for the up arrow on the VT100 keyboard. Finally, the 
terminal key name is looked up in the same table in order to obtain the control sequence that 
needs to be sent to the host computer. 

This seemingly repetitive triple lookup process exists to enhance comprehension and 
extensibility. Consider: the first and last lookups are fully determined by the Windows 
operating system and the terminal definition. They should not be altered. Virtual key code 
$26 is VK_UP, by definition, and the VT100 up arrow key will send either <Esc>[A or 
<Esc>OA depending on the terminal mode, again by definition. Thus, you could specify 
that virtual key code $26 will send either <Esc>[A or <Esc>OA, but it wouldn’t help with 
understanding the mapping later on; whereas a mapping of VK_UP to DEC_UP is 
immediately understandable and is easily changed. For example, if you wanted to make F6 
the same as the up arrow key, you could just add the mapping of VK_F6 to DEC_UP. You 
don’t have to manually look up the virtual key code for F6, nor the escape sequence 
generated by the VT100 up arrow key to write the mapping.

For convenience, the keyboard-mapping table can be loaded in two ways. First, the 
mappings can be read from a simply formatted text file. Second, the mappings can be stored 
in a resource linked into your application, from which the class can easily load them. The 
latter method has the advantage that no external files are required to define keyboard 
mappings. To aid in the generation of the resource file, the class has a method by which a 
binary file containing the mappings can be written. This binary file can then be compiled 
into a resource and linked into your application.
98     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Character set mapping table
Next there is the character set mapping table. This class stores the information required to 
actually display a given character on the terminal display. This class simplifies the task of 
creating one terminal that uses several different character sets for displaying text. For each 
character set, there may be a different glyph for each character. The classic example is that of 
the VT100 terminal. This terminal has several character sets, of which two are the most 
commonly used: the USASCII character set and the special graphics character set. To take as 
an example, the character ‘m’ is displayed as a lower-case m in the USASCII character set, 
but is displayed as a line draw lower left corner (the glyph that looks like an L) in the special 
graphics character set. 

The character set mapping table is a list of character ranges in character sets and the fonts 
and glyphs that should be used to display them. To aid in the display of text on the terminal 
keyboard—and to make the process more efficient—the character set mapping table will 
analyze a string to be displayed in a particular character set, and generate a script of font 
changes and the strings to be displayed in those fonts.

For convenience, the character set mapping table can be loaded in two ways. First, the 
mappings can be read from a simply formatted text file. Second, the mappings can be stored 
in a resource linked into your application, from which the class can easily load them. The 
latter method has the advantage that no external files are required to define keyboard 
mappings. To aid in the generation of the resource file, the class has a method by which a 
binary file containing the mappings can be written. This binary file can then be compiled 
into a resource and linked into your application.

Terminal emulator
The final step in writing your own terminal is possibly the most intricate: writing a terminal 
emulator component. This component will have its own buffer instance, it will have a parser 
instance and it will use a keyboard-mapping table and a character set mapping table. The 
emulator would write to a TAdTerminal window and would be passed incoming data and 
keyboard data from that component. The sequence of events for displaying something on 
the screen would go something like this:

1.  Accept a character from the input data stream.

2.  Pass the character to the parser. The parser would decide whether the character was 
displayable or part of a control sequence (a command) and pass the result back.

3.  If the parser indicated that the character was displayable, the component would pass 
the character to the buffer (equivalent to writing it to the display).
Terminal Design Considerations     199

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
4.  If the parser indicated that the character was a command, the terminal component 
would act on the command. This may be as simple as sending something back to the 
server or as complex as scrolling the display. The latter operation would be passed to 
the buffer to do.

5.  Every now and then, the terminal component would get a paint message, at which 
point it would have to interrogate the buffer to find the parts of the display that need 
repainting, and draw them in its client area.

As far as the keyboard goes, the terminal component would convert the virtual key codes 
into control sequences in the manner already described and send these sequences to the 
server. For the majority of the keys on the keyboard, the letter keys, no translation is 
required and the relevant character is sent as is.
00     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TAdTerminalBuffer Component
The TAdTerminalBuffer class defines a data structure for maintaining the data required for a 
communications terminal display. Essentially, this consists of:

• The characters that should be shown.

• The character sets from which those character glyphs are drawn.

• The color in which the character glyphs will be displayed.

• The color for the background behind the characters.

• A set of display attributes for the characters.

It is important to realize that the terminal buffer class is only a data structure; it has no 
responsibilities for the display of the data it stores. That work is delegated to the terminal 
and emulator components. In essence, an emulator component creates an instance of a 
terminal buffer to store the data that it will display on the screen. The emulator component 
will call methods of the terminal buffer to perform such tasks as writing characters, 
inserting and deleting lines, scrolling the data, changing colors and attributes, and the like. 
These tasks will, in theory, be performed in response to control sequences being received by 
the terminal from some remote program or host and being decoded by an emulator. Hence 
the methods of the terminal buffer class mimic the standard operations performed by all 
character-based terminals, but in particular by the DEC VT100 terminals.

Conceptually, the terminal buffer class manages five different screens worth of information 
as independent matrices. These matrices are representations of the terminal screen and 
hence are divided into rows and columns. One of the matrices holds the characters that 
should be displayed on the screen. Another, holds the foreground color (i.e., the color of the 
text), and yet another, holds the background color. A fourth holds the character set from 
which the characters are drawn. The final matrix holds the special display characteristics for 
the text, whether it is bold, underlined, blinking and so on. Using this scheme it is therefore 
possible for every addressable character cell on the terminal display to be a different 
character, from different character sets, using different colors and attributes. The character 
matrix stores either a single byte per character cell (ANSI mode) or two bytes per character 
(UNICODE mode), the choice being made when the terminal buffer is created. The 
identifier for the character set is assumed to be limited to one of 256 possible values, and 
hence just a single byte is stored per character cell to hold this information. The colors are 
assumed to be stored as RGB values, and hence each character cell has a 4-byte long integer 
color value for both the foreground color and the background color. (Notice that the 
terminal buffer does not enforce the rule that the colors have to be RGB values, you could 
store standard values from the 4-bit color set instead if you wished—the terminal buffer just 
TAdTerminalBuffer Component     201

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
assumes that a color is a 4-byte quantity.) The attributes are stored as a set of different 
possibilities: bold, underlined, strikethrough, blinking, reverse or invisible.

A word is required here regarding character sets. The VT100 terminal was a 7 bit device. In 
theory, characters could have ASCII values from 0 to 127; however, the first 32 characters in 
this set were control characters rather than displayable characters. Hence, there were only 96 
different characters that could be displayed. Since this was not sufficient, the VT100 had 
other sets of 96 characters that could be switched in and out, the most distinctive being the 
line-draw characters in the special graphics character set. To display a character at a 
particular position on the screen the terminal had to know which character set to take the 
displayed glyph from, and also the ASCII value of the character. (A glyph is the visual 
representation of an ASCII value in a particular character set.) Thus, on a VT100, the ASCII 
value 123 would be displayed as the left curly brace, {, if the standard character set was in 
force, or the symbol for pi, π, if the special graphics character set was in force. 

Another point should to be made about the terminal buffer: it does not parse any data 
stream for control sequences. This is the job of the emulator portion of a terminal 
component. The emulator should scan the incoming data stream for control sequences (for 
example, those beginning with “<Esc>[”), decode them, and then get the terminal buffer to 
update itself according to the operation requested. 

Apart from the data to be displayed, a terminal component requires two basic pieces of 
information: Has the cursor moved? What needs to be redisplayed? The terminal buffer 
maintains a cursor position variable: the row and column number where new characters are 
to be written should they arrive. Various methods update the cursor position, the most 
obvious ones being the cursor movement methods to move the cursor up, down, left or 
right. Again, it should be stressed that there is no visual representation of a cursor in a 
terminal buffer object: the cursor is just a pair of row and column values. It is up to the 
terminal component displaying the data from the buffer to maintain and show a cursor, for 
example, perhaps a blinking underscore or block. (By the way, this can get confusing: with 
terminals the blinking point where editing takes place is called a cursor, whereas with 
Windows programs, it is known as a caret, the cursor being the mouse pointer.) The 
terminal buffer not only maintains a cursor position, it also interfaces a routine that returns 
whether the cursor position has changed since the last time the routine was called.

If the terminal component is to have a chance of keeping up with fast data streams, it cannot 
continually redisplay the entire terminal screen every now and then. It must have a way of 
knowing what has changed on the terminal screen, so that it only needs to update that 
particular section. For example, if a character was written to the terminal, the terminal 
component needs to know how much of its window it needs to repaint. In the majority of 
cases, that’s a single character cell; the new character, in other words. In some cases, the 
terminal data needs to be scrolled before the character can be written. In this case the 
terminal display needs to repaint a lot more of the window to show the effect of writing the 
character. The terminal buffer maintains an internal list of invalidated character cells (in 
02     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
fact, as cell rectangles) and the terminal component can read these and use the information 
to redisplay parts of its window.

The terminal buffer has two views of the data: the scrollback view and the display view. The 
scrollback view shows a history of data that have scrolled off the top of the display view. The 
display view is essentially the representation of the terminal screen itself. There are typically 
more rows in the scrollback view than in the display view (otherwise there wouldn’t be 
anything to scroll back through). The number of columns in both the scrollback and display 
views is however the same.

The user of the terminal buffer will refer to positions on the terminal screen as one-based 
values. For example, on a 24 rows x 80 columns terminal, the rows are numbered from 1 to 
24 and the columns from 1 to 80. This is different from the usual Windows way of looking at 
things, where values are counted from 0 instead. The rows in the scrollback view are negative 
numbers or zero. For example, the last row to be scrolled off the display view (i.e., the 
terminal itself) will be numbered row 0, the next to last, row –1, and so on. If a 24 row 
terminal screen is cleared or erased, the entire scrollback view is scrolled up with the 
previous display, and the rows of this previous display would then be numbered –23 to 0.

The terminal buffer also supports the concept of a scrolling region. This is a region of the 
terminal screen to which the cursor is restricted. Once a scrolling region is defined and 
activated, all cursor movement is restricted to this area and characters can only be written to 
this area. When a scrolling region is activated, row and column numbers are no longer 
absolute values, counted from the top left character cell of the screen, but are now relative 
values, counted from the top left character cell of the scrolling region. For example, suppose 
a scrolling region is defined to be within rows 5 and 10 and it is activated. Moving the cursor 
to row 1, column 1, results in it being moved to the home position of the scrolling region, 
not the home position of the screen. In absolute terms, the cursor ends up at row 5, column 
1 instead. The terminal buffer maintains a definition of a scrolling region and also a flag that 
states whether the scrolling region is in force or not. If a new scrolling region is defined, the 
activation flag is automatically set, in other words, the scrolling region becomes effective 
immediately.

Generally, when a data stream is sent to a terminal, the sender does not send coloring or 
attribute information with every single character that needs to be displayed. Instead, the 
terminal is instructed to use a particular color or attribute from that point forward, until 
another color or attribute is requested. Characters written to the terminal in between these 
two instructions will automatically be in the requested color or have the requested attribute. 
The terminal also has a reset state, with default colors and attributes. The terminal buffer 
mimics this behavior by having both current values and default values for the colors, 
attribute and character set. If the terminal is reset, the terminal buffer automatically sets the 
current values equal to the default values.
TAdTerminalBuffer Component     203

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TObject (VCL)

TAdTerminalBuffer (ADTrmBuf)

Properties
BackColor

Charset

Col

ColCount

DefBackColor

DefCharset

DefForeColor

ForeColor

OriginCol

OriginRow

Row

RowCount

SVRowCount

UseAutoWrap

UseNewLineMode

UseScrollRegion

UseWideChars

Methods
ClearAllHorzTabStops

ClearAllVertTabStops

ClearHorzTabStop

ClearVertTabStop

Create

DeleteChars

DeleteLines

DoBackHorzTab

DoBackspace

DoBackVertTab

DoCarriageReturn

DoHorzTab

DoLineFeed

DoVertTab

EraseChars

EraseFromBOW

EraseFromBOL

EraseLine

EraseScreen

EraseToEOL

EraseToEOW

GetCharAttrs

GetDefCharAttrs

GetInvalidRect

GetLineAttrPtr

GetLineBackColorPtr

GetLineCharPtr

GetLineCharSetPtr

GetLineForeColorPtr

HasCursorMoved

HasDisplayChanged

InsertChars

InsertLines

MoveCursorDown

MoveCursorLeft

MoveCursorRight

MoveCursorUp

Reset

SetCharAttrs

SetCursorPosition

SetDefCharAttrs

SetHorzTabStop

SetScrollRegion

SetVertTabStop

WriteChar

WriteString
04     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

BackColor property 

property BackColor : TColor

Default: clBlack

Defines the background color for succeeding text.

The BackColor property determines the background color that will appear behind text 
displayed in the terminal.  Once the background color has been set, any new text written to 
the terminal will appear with this color until the background color is set to another value.

See also: DefBackColor, DefForeColor, ForeColor

CharSet property 

property CharSet : Byte

Default: 0

Defines the character set from which characters are drawn.

The Charset property determines the character set from which a character will be drawn. 
Once a new character set is set, all characters written to the display should be displayed with 
glyphs from this character set.

The terminal buffer class imposes no structure or valid values to a character set. It is up to 
the terminal emulator component to impose meaning to the different character set values 
(e.g., by assuming the value 0 means “default character set”).

See also: DefCharset

ClearAllHorzTabStops method 

procedure ClearAllHorzTabStops;

Removes all horizontal tab stops. 

The terminal buffer does not have any default tab stops (for example, a tab stop every 8 
characters). 

See also: ClearHorzTabStop, SetHorzTabStop
TAdTerminalBuffer Component     205

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

ClearAllVertTabStops method 

procedure ClearAllVertTabStops;

Removes all vertical tab stops. 

The terminal buffer does not have any default vertical tab stops.

See also: ClearVertTabStop, SetVertTabStop

ClearHorzTabStop method 

procedure ClearHorzTabStop;

Clears a horizontal tab stop at the current cursor column.  

If no horizontal tab stop is set for this column, ClearHorzTabStop does nothing.

See also: ClearAllHorzTabStop, SetHorzTabStops

ClearVertTabStop method 

procedure ClearVertTabStop;

Clears a vertical tab stop at the current cursor row.  

If no vertical tab stop is set for this row, ClearVertTabStop does nothing.

See also: ClearAllVertTabStops, SetVertTabStop

Col property 

property Col : Integer

Defines the column of the cursor.

The Col property refers to the cursor. Reading the Col property returns the column number 
of the cursor, and setting it moves the cursor to that column in the current row.

The value used for the Col property is one-based; in other words, columns are counted from 
1. If there are 80 columns across the terminal screen, the columns will be known as columns 
1 to 80. If the column number used is out of the range of the screen or the current scrolling 
region, it is forced silently into bounds.

If a scrolling region is activated, the values for Col will be relative to the home position of the 
scrolling region, not the home position of the screen itself. 

See also: Col, ColCount, SetCursorPosition, UseScrollingRegion
06     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ColCount property 

property ColCount : Integer

Default: 80

Defines the number of columns across the terminal screen.

The ColCount property is the number of columns displayed by the terminal screen. For the 
VT100 terminal, for example, there are two possible values: 80 and 132.

If the ColCount property is changed, it is checked to be at least 2; otherwise, an exception is 
raised.

Changing the ColCount property for an existing terminal screen does not clear the data 
being displayed by the screen; you will need to do this as a separate step. The positions of 
any horizontal tab stops are maintained, except for those that lie outside the new value for 
ColCount. However, any scrolling region is discarded, and the cursor is reset to the home 
position of the screen.

See also: Col, RowCount

Create method

constructor Create(aUseWideChars : Boolean);

Creates an instance of the TAdTerminalBuffer class.  

The aUseWideChars parameter, if True, determines whether the Terminal is configured to 
work with UNICODE characters, and allocates the underlying character matrix accordingly.

DefBackColor property 

property DefBackColor : TColor

Default: clBlack

Defines the default background color.

If Reset is called, the current background color is set to the value of DefBackColor.

See also: BackColor, DefForeColor, Reset
TAdTerminalBuffer Component     207

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

DefCharset property

property DefCharset : Byte

Default: 0

Defines the default character set value.

If Reset is called, the current character set is set to the value of DefCharset.

See also: Charset, Reset

DefForeColor property 

property DefForeColor : TColor

Default: clSilver

Defines the default color to be used for displaying text.

If Reset is called, the current foreground color is set to the value of DefForeColor.

See also: DefBackColor, ForeColor, Reset

DeleteChars method 

procedure DeleteChars(aCount : Integer);

Deletes characters from the current cursor position. 

The characters to the right of the deleted ones are moved over to take their place. The area 
on the extreme right uncovered by this action is filled with space characters using the 
current colors and attributes.

The DeleteChars method is limited to the current scrolling region.

The cursor is left in the same position.

DeleteLines method 

procedure DeleteLines(aCount : Integer);

Deletes lines from the current cursor position. 

The lines underneath the lines being deleted are moved up to take their place. The area at the 
bottom uncovered by this action is filled with space characters using the current colors and 
attributes. Deleting aCount lines is equivalent to scrolling up aCount lines.

The DeleteLines method is limited to the current scrolling region.

The cursor is left in the same position.
08     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

DoBackHorzTab method 

procedure DoBackHorzTab;

Moves the cursor left to the previous tab stop.

If there is no previous tab stop, the cursor is moved to the first column of the line. If it 
already at this position, it is not moved.

This method is limited to the current scrolling region.

See also: DoHorzTab, SetHorzTabStop

DoBackspace method 

procedure DoBackspace;

Backspaces the cursor.

The character underneath the new position of the cursor is not erased by this operation. A 
backspace is equivalent to moving the cursor one position to the left, except that, if the 
cursor is at the beginning of the row, it is not moved at all.

This method is limited to the current scrolling region.

See also: MoveCursorLeft

DoBackVertTab method 

procedure DoBackVertTab;

Moves the cursor up to the previous tab stop.

If there is no previous tab stop, the cursor is moved to the first row. If it already at this 
position, it is not moved.

This method is limited to the current scrolling region.

See also: DoVertTab, SetVertTabStop

DoCarriageReturn method 

procedure DoCarriageReturn;

Moves the cursor to the beginning of the current row.

This method is limited to the current scrolling region.

See also: DoLineFeed
TAdTerminalBuffer Component     209

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

DoHorzTab method 

procedure DoHorzTab;

Moves the cursor right to the next tab stop.

If there is no next tab stop, the cursor is moved to the last column of the line. If it already at 
this position, it is not moved.

This method is limited to the current scrolling region.

See also: DoBackHorzTab, SetHorzTabStop

DoLineFeed method 

procedure DoLineFeed;

Moves the cursor down one row.

This method has two modes of operation, distinguished by the value of UseNewLineMode. 
If UseNewLineMode is False, the cursor is moved down a row, staying in the same column. If 
the cursor is in the bottom row when this happens, the screen or scrolling region is scrolled 
up. The new row so formed is initialized to space characters using the current colors and 
attributes.

If UseNewLineMode is True, the cursor is moved down a row in the manner already 
described, except this time it is moved to the first column. 

This method is limited to the current scrolling region.

See also: DoCarriageReturn

DoVertTab method 

procedure DoVertTab;

Moves the cursor down to the next tab stop.

If there is no next tab stop, the cursor is moved to the last row. If it already at this position, it 
is not moved.

This method is limited to the current scrolling region.

See also: DoBackVertTab, SetVertTabStop
10     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

EraseChars method 

procedure EraseChars(aCount : Integer);

Erases characters from the current cursor position.

The erasing operation is done by replacing aCount characters with space characters, using 
the current colors and attributes. The EraseChars method will automatically wrap and 
continue at the end of rows, but it will not cause a scroll if the count requested exceeds the 
bottom row. The cursor position is included.

This method is limited to the current scrolling region.

EraseFromBOL method 

procedure EraseFromBOL;

Erases characters from the beginning of the row to the current cursor position.

The erasing operation is done by replacing the characters with space characters, using the 
current colors and attributes. The cursor position is included.

This method is limited to the current scrolling region.

EraseFromBOW method 

procedure EraseFromBOW;

Erases characters from the beginning of the screen to the current cursor position.

The erasing operation is done by replacing the characters with space characters, using the 
current colors and attributes. The cursor position is included.

This method is not limited to the current scrolling region; it applies to the whole screen.

EraseLine method 

procedure EraseLine;

Erases the current row.

The erasing operation is done by replacing the characters with space characters, using the 
current colors and attributes. 

This method is limited to the current scrolling region.
TAdTerminalBuffer Component     211

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

EraseScreen method 

procedure EraseScreen;

Erases the entire screen.

The erasing operation is done by replacing the characters with space characters, using the 
current colors and attributes. 

This method is not limited to the current scrolling region; it applies to the whole screen. The 
screen is erased by scrolling the entire scrollback view by RowCount rows. This has the effect 
of erasing the screen, but also saves the previous version of the screen in the scrollback area.

EraseToEOL method 

procedure EraseToEOL;

Erases characters from the current cursor position to the end of the row.

The erasing operation is done by replacing the characters with space characters, using the 
current colors and attributes. The cursor position is included.

This method is limited to the current scrolling region.

EraseToEOW method 

procedure EraseToEOW;

Erases characters from the current cursor position to the end of the screen.

The erasing operation is done by replacing the characters with space characters, using the 
current colors and attributes. The cursor position is included.

This method is not limited to the current scrolling region; it applies to the whole screen. 

ForeColor property 

property ForeColor : TColor

Default: clSilver

Defines the foreground color for new text.

The ForeColor property determines the color in which new text will be displayed in the 
terminal.  Any new text sent to the Terminal will appear in this color.

See also: DefForeColor
12     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

GetCharAttrs method 

procedure GetCharAttrs(var aValue : TAdTerminalCharAttrs);

TAdTerminalCharAttr = (tcaBold, tcaUnderline,
tcaStrikethrough, tcaBlink, tcaReverse, tcaInvisible);

TAdTerminalCharAttrs = set of TAdTerminalCharAttr;

Returns the current set of display attributes.

The display attributes define the style of new text. The attributes are bold, underlined, 
strikethrough, blink, reverse image (i.e., the text displayed in BackColor, the background in 
ForeColor), and invisible.

If you wish to add a new attribute to the current set, write code like this:

var
Attrs : TAdTerminalCharAttrs;

begin
...
MyBuffer.GetCharAttrs(Attrs);
Attrs := Attrs + [tcaUnderline];
MyBuffer.SetCharAttrs(Attrs);

See also: GetDefCharAttrs, SetCharAttrs

GetDefCharAttrs method 

procedure GetDefCharAttrs(var aValue : TAdTerminalCharAttrs);

TAdTerminalCharAttr = (tcaBold, tcaUnderline,
tcaStrikethrough, tcaBlink, tcaReverse, tcaInvisible);

TAdTerminalCharAttrs = set of TAdTerminalCharAttr;

Returns the default set of display attributes.

The display attributes define the style of new text. The attributes are bold, underlined, 
strikethrough, blink, reverse image (i.e., the text displayed in BackColor, the background in 
ForeColor), and invisible. If Reset is called, the current display attributes are set to the value 
returned by GetDefCharAttrs.

See also: GetCharAttrs, Reset, SetDefCharAttrs
TAdTerminalBuffer Component     213

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

GetInvalidRect method 

function GetInvalidRect(var aRect : TRect) : Boolean;

Returns the next invalid rectangle.

An invalid rectangle is a TRect structure that defines an area of the terminal screen that 
needs repainting. The fields of the record, Left, Top, Right, and Bottom, define the area, not 
in pixels, but in row and column numbers. Thus the rectangle (1, 2, 3, 4) describes the area 
from the top left hand corner at row 2, column 1, to the bottom right hand corner at row 4, 
column 3. The row and column numbers are absolute values and do not depend on the 
current scrolling area, even if it activated. They are one-based values.

The return value is False if there was no invalid rectangle; otherwise, it is True and aRect has 
the first invalid rectangle. The intent of this method is for the terminal display component to 
continually call this method, repainting the areas of the screen affected, until the method 
returns False.

Every change to the terminal is recorded by the terminal buffer as a list of invalid rectangles. 
Conceivably, there could be very many by the time the terminal emulator component comes 
to repainting. Rather than have the display component continually call this method to get 
the full list of invalid rectangles, if there are a large number, the buffer uses an optimization 
whereby it will merge all of the invalid rectangles into the one smallest rectangle that 
overlaps all of the others.  This is done automatically.

See also: HasCursorMoved, HasDisplayChanged

GetLineAttrPtr method

function GetLineAttrPtr(aRow : Integer) : pointer;

Returns a pointer to the first element of the display attributes array.

Each element in the display attributes array is a TAdTerminalCharAttrs set.

This method is not limited to the current scrolling region; it applies to the whole screen. 
Thus, the pointer that is returned points to the data for column 1 of the required row.
14     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

GetLineBackColorPtr method

function GetLineBackColorPtr(aRow : Integer): pointer;

Returns a pointer to the first element of the background colors array.

Each element in the background colors array is of type TColor.

This method is not limited to the current scrolling region; it applies to the whole screen. 
Thus, the pointer that is returned points to the data for column 1 of the required row.

See also: BackColor, DefBackColor, GetLineForeColorPtr

GetLineCharPtr method 

function GetLineCharPtr(aRow : Integer): pointer;

Returns a pointer to the first element of the characters array.

Each element in the characters array is either a single byte character, or a two-byte 
UNICODE character. The original call to the Create constructor defines which it is.

This method is not limited to the current scrolling region; it applies to the whole screen. 
Thus, the pointer that is returned points to the data for column 1 of the required row.

GetLineCharSetPtr method 

function GetLineCharSetPtr(aRow : Integer): pointer;

Returns a pointer to the first element of the character set array.

Each element in the character set array is a byte. It is the responsibility of the owning 
terminal display component to interpret the values.

This method is not limited to the current scrolling region; it applies to the whole screen. 
Thus, the pointer that is returned points to the data for column 1 of the required row.

GetLineForeColorPtr method 

function GetLineForeColorPtr(aRow : Integer): pointer;

Returns a pointer to the first element of the foreground colors array.

Each element in the foreground colors array is of type TColor.

This method is not limited to the current scrolling region; it applies to the whole screen. 
Thus, the pointer that is returned points to the data for column 1 of the required row.

See also: DefForeColor, ForeColor, GetLineBackColorPtr
TAdTerminalBuffer Component     215

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

HasCursorMoved method 

function HasCursorMoved : Boolean;

Returns whether the cursor has moved.

The terminal buffer maintains an internal flag that notes whether the cursor has moved at 
any time. This method returns the value of this flag and then resets it to False. Hence, if the 
return value is False, the cursor has not moved since the last time the method was called, 
and if it returns True, the cursor has moved.

HasDisplayChanged method 

function HasDisplayChanged : Boolean;

Returns whether the terminal has changed in appearance.

This method is a handy shortcut to be used instead of calling GetInvalidRect and getting 
False. 

See also: GetInvalidRect

InsertChars method

procedure InsertChars(aCount : Integer);

Inserts new chars at the cursor.

This method is equivalent to hit the space bar. The new chars inserted are initialized to space 
characters, using the current colors and attributes. The chars that are advanced out of view 
are deleted.

The number of characters to insert is aCount and is constrained by the current display 
region.

InsertLines method 

procedure InsertLines(aCount : Integer);

Inserts new lines at the cursor.

This method is equivalent to scrolling down the screen. The new rows inserted are 
initialized to space characters, using the current colors and attributes. The rows that are 
scrolled out of view are deleted.

The cursor is left in the same location.

This method is limited to the current scrolling region.
16     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

MoveCursorDown method 

procedure MoveCursorDown(aScroll : Boolean);

Moves the cursor down one row.

The cursor is moved onto the next row at the same column position. If the aScroll parameter 
is False and the cursor is currently on the bottom row, it is not moved. If the aScroll 
parameter is True and the cursor is on the bottom row, the screen or scrolling region is 
scrolled up one line and the cursor remains in the same position. The new line inserted at 
the bottom is initialized to space characters, using the current colors and attributes.

This method is limited to the current scrolling region.

MoveCursorLeft method 

procedure MoveCursorLeft(aWrap : Boolean; aScroll : Boolean);

Moves the cursor left one position.  

The column number of the cursor is decremented, unless the cursor is at the first position of 
the row. 

If, in fact, the cursor is at the row’s home position, the values for aWrap and aScroll come 
into play. If aWrap is False, the cursor does not move. If aWrap is True, the cursor moves up 
one row, and is positioned at the last column of that previous row. If, furthermore, the 
cursor was originally at the first column of the top row and aScroll was False, the cursor does 
not move. If, on the other hand, aScroll was True, the screen or scrolling region is scrolled 
down one row and the cursor then moved to the last column of the top row. The new row is 
initialized to space characters, using the current colors and attributes.

This method is limited to the current scrolling region.

See also: Col, MoveCursorRight, SetCursorPos

MoveCursorRight method 

procedure MoveCursorRight(aWrap : Boolean; aScroll : Boolean);

Moves the cursor right one position.  

The column number of the cursor is incremented, unless the cursor is at the last position 
of the row. 

If, in fact, the cursor is at the row’s last position, the values for aWrap and aScroll come into 
play. If aWrap is False, the cursor does not move. If aWrap is True, the cursor moves down 
one row, and is positioned at the first column of that next row. If, furthermore, the cursor 
was originally at the last column of the bottom row and aScroll was False, the cursor does 
TAdTerminalBuffer Component     217

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

not move. If, on the other hand, aScroll was True, the screen or scrolling region is scrolled up 
one row and the cursor then moved to the first column of the bottom row. The new row is 
initialized to space characters, using the current colors and attributes.

This method is limited to the current scrolling region.

See also: MoveCursorLeft, Col, SetCursorPos

MoveCursorUp method 

procedure MoveCursorUp(aScroll : Boolean);

Moves the cursor up one row.

The cursor is moved onto the previous row at the same column position. If the aScroll 
parameter is False and the cursor is currently on the top row, it is not moved. If the aScroll 
parameter is True and the cursor is on the top row, the screen or scrolling region is scrolled 
down one line and the cursor remains in the same position. The new line inserted at the top 
is initialized to space characters, using the current colors and attributes.

This method is limited to the current scrolling region.

OriginCol read-only property

property OriginCol : Integer

Defines the column origin of the current scrolling region.

If the scrolling region is not in effect, OriginCol is 1, being the left-most column of the 
screen. If the scrolling region is activated, OriginCol is the column number of the left-most 
column of the scrolling region. 

OriginCol is read-only. To set the scrolling region, call SetScrollRegion.

See also: OriginRow, SetScrollRegion, UseScrollRegion

OriginRow read-only property

property OriginRow : Integer

Defines the row origin of the current scrolling region.

If the scrolling region is not in effect, OriginRow is 1, being the top row of the screen. If the 
scrolling region is activated, OriginRow is the row number of the first row of the scrolling 
region. 

OriginRow is read-only. To set the scrolling region, call SetScrollRegion.

See also: OriginCol, SetScrollRegion, UseScrollRegion
18     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reset method 

procedure Reset;

Resets the current colors and attributes to their defaults.

The screen is not changed by this method.

Row property 

property Row : Integer

Defines the row of the cursor.

The Row property refers to the cursor. Reading the Row property returns the row number of 
the cursor, and setting it moves the cursor to that row in the same column.

The value used for the Row property is one-based; in other words, rows are counted from 1. 
If there are 24 rows down the terminal screen, the rows will be known as rows 1 to 24. If the 
row number used is out of the range of the screen or the current scrolling region, it is forced 
silently into bounds.

If a scrolling region is activated, the values for Row will be relative to the home position of 
the scrolling region, not the home position of the screen itself. 

See also: Col, RowCount, SetCursorPosition

RowCount property 

property RowCount : Integer

Default: 24

Defines the number of rows in the display view.

The RowCount property gets or sets the number of rows displayed by the terminal. Attempts 
to set RowCount to a value greater than SVRowCount are ignored.

See also: ColCount, Row
TAdTerminalBuffer Component     219

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

SetCharAttrs method 

procedure SetCharAttrs(const aValue : TAdTerminalCharAttrs);

TAdTerminalCharAttr = (tcaBold, tcaUnderline,
tcaStrikethrough, tcaBlink, tcaReverse, tcaInvisible);

TAdTerminalCharAttrs = set of TAdTerminalCharAttr;

Sets the current set of display attributes.

The display attributes define the style of new text. The attributes are bold, underlined, 
strikethrough, blink, reverse image (i.e., the text displayed in BackColor, the background in 
ForeColor), and invisible.

If you wish to add a new attribute to the current set, write code like this:

var
Attrs : TAdTerminalCharAttrs;

begin
...
MyBuffer.GetCharAttrs(Attrs);
Attrs := Attrs + [tcaUnderline];
MyBuffer.SetCharAttrs(Attrs);

See also: GetCharAttrs, SetDefCharAttrs

SetCursorPosition method 

procedure SetCursorPosition(aRow, aCol : Integer);

Moves the cursor to a given position.

This method is equivalent to setting the Row and Col properties individually.

See also: Col, Row
20     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

SetDefCharAttrs method 

procedure SetDefCharAttrs(const aValue : TAdTerminalCharAttrs);

TAdTerminalCharAttr = (tcaBold, tcaUnderline,
tcaStrikethrough, tcaBlink, tcaReverse, tcaInvisible);

TAdTerminalCharAttrs = set of TAdTerminalCharAttr;

Sets the default set of display attributes.

The display attributes define the style of new text. The attributes are bold, underlined, 
strikethrough, blink, reverse image (i.e., the text displayed in BackColor, the background in 
ForeColor), and invisible. If Reset is called, the current display attributes are set to the value 
set by SetDefCharAttrs.

See also: GetDefCharAttrs, Reset, SetCharAttrs

SetHorzTabStop method 

procedure SetHorzTabStop;

Sets a horizontal tab stop at the current cursor column.  

If a horizontal tab stop is already set for that column, this method has no effect.

See also: ClearAllHorzTabStops, ClearHorzTabStop

SetScrollRegion method 

procedure SetScrollRegion(aTopRow, aBottomRow : Integer);

Sets the scrolling region.

A scrolling region is a range of lines (from aTopRow to aBottomRow) within which writes to 
the screen and scrolling are restricted. This is often used for adding status lines that remain 
visible on screen while other text in the Terminal is scrolled.

Calling SetScrollRegion will automatically activate the new scrolling region.

See also: UseScrollingRegion

SetVertTabStop method 

procedure SetVertTabStop;

Sets a vertical tab stop at the current cursor row.  

If a vertical tab stop is already set for that row, this method has no effect.

See also: ClearVertTabStop, ClearAllVertTabStops
TAdTerminalBuffer Component     221

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

SVRowCount property 

property SVRowCount : Integer

Default: 200

Defines the number of rows in the scrollback view.

The SVRowCount property gets or sets the number of rows available in the scrollback 
buffer. SVRowCount is being set, and the new value is less than RowCount, RowCount is 
also set to the new value of SVRowCount.

See also: RowCount

UseAutoWrap property 

property UseAutoWrap : Boolean

Defines what happens when a character is written at the last column of a row

UseAutoWrap only has an effect if the cursor is at the last column of a row. If UseAutoWrap 
is False, the character is written at the last column of the current row, and the cursor does 
not move. If UseAutoWrap is True, the character is written at the last column of the current 
row, and then the cursor is moved to the first column of the next row, scrolling if necessary. 
(In fact, this last operation is coded as a call to MoveCursorRight with aWrap and aScroll 
both True.)

See also: MoveCursorRight

UseNewLineMode property 

property UseNewLineMode : Boolean

Defines what the DoLineFeed method does.

If UseNewLineMode is False, DoLineFeed moves the cursor down one row, scrolling if 
necessary. The cursor stays in the same column. 

If UseNewLineMode is True, DoLineFeed moves the cursor down one row, scrolling if 
necessary. The cursor is moved to the first column of the new row. 

See also: DoLineFeed
22     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

UseScrollRegion property 

property UseScrollRegion : Boolean

Defines whether the scrolling region is active.

If UseScrollRegion is False, the scrolling region is inactive and writes of text and scrolling 
apply to the whole screen. If UseScrollRegion is True, the scrolling region is in force and all 
screen changes are limited to the scrolling region.

Calling SetScrollRegion automatically forces this property to True, the new scrolling is 
brought into effect immediately.

See also: SetScrollRegion

UseWideChars read-only, run-time property 

property UseWideChars : Boolean

Defines whether UNICODE characters are being stored by the terminal buffer.

The value of UseWideChars is set by a parameter to the Create constructor. In Delphi 1, this 
value is always False; it is only an option for 32-bit programs.

See also: Create

WriteChar method 

procedure WriteChar(aCh : AnsiChar);

Writes a single character at the cursor.

The cursor is advanced after the character is written. Please see the UseAutoWrap property 
for a discussion of what happens if the cursor was on the last column of a row. The character 
is written using the current colors and attributes.

See also: UseAutoWrap, WriteString

WriteString method 

procedure WriteString(const aSt : string);

Writes a string at the cursor.

This method is coded as a simple loop calling WriteChar for each character in the string. 

See also: WriteChar
TAdTerminalBuffer Component     223

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The Terminal Parsers
The purpose of a terminal parser is to identify terminal control sequences in the stream of 
data coming into the terminal (these control sequences are also more commonly known as 
escape sequences) and return the command specified to the caller. The terminal parser is the 
class that embodies the knowledge of the terminal’s escape sequences; if another terminal is 
to be emulated then some of the first code to write is a new parser descendant to encapsulate 
the knowledge about the new terminal to be supported.

The parser ancestor class
To facilitate this process, there is an ancestor parser class, the TAdTerminalParser class. The 
main operations supported by this class are:

• Process a single character (virtual method).

• Clear the parser (virtual method).

• Get the command (property).

• Get the arguments (property).

• Get the sequence (property).

To gain a better understanding of these operations, we’ll look at them individually from a 
high level.

Processing a single character is a virtual method that must be overridden in descendants. It 
will return one of four states: 

1.  The parser did not understand the character in the current context, and so it should
 be ignored.

2.  The character is a displayable character and should be shown on the terminal screen.

3.  The character started or continued an escape sequence, however that sequence is as 
yet incomplete.

4.  The character completed an escape sequence; the parser converted it into a command 
and now this command must be processed.

It is up to the overridden method in a descendant class to determine how sequences are built 
up, and converted into commands, and so on. For an example of this process, please refer to 
the source code for the TAdVT100Parser class, the class that converts VT100 escape 
sequences into commands.
24     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The operation of clearing the parser should reset the parser into a state such that no 
sequence is being built up, and hence no knowledge of previous characters is maintained. 
(The Clear operation is a virtual method of the class, which should be overridden in 
descendants.)

If the character processing method returns a value that signifies that a command has been 
identified, the Command property will return the current unprocessed command. This 
property is reset to a null command if a sequence is being built up.

The Arguments property is an array property returning the arguments for the current 
command. If there is no current command, the values are all zero. Essentially, certain 
control sequences will define arguments or parameters for the command being defined, for 
example, the command to move the cursor left might have an argument that defines how 
many positions to move, whether just the implied 1, or several.

The Sequence property returns the actual escape sequence that has just been parsed. If the 
current command is null, this property returns the empty string. This enables you to look at 
the sequence, maybe to parse it outside the parser’s control, or to log it to a trace file.

The VT100 terminal parser
Async Professional provides one descendant of the ancestor parser class, TAdVT100Parser, 
the parser for VT100 terminals. The VT100 parser class encapsulates the knowledge of the 
standard VT100 escape sequences and to which command they refer. In addition, Async 
Professional’s VT100 parser provides support for two extensions that, strictly speaking, are 
not part of the standard VT100 command set. The first of these is the understanding of 
escape sequences that set color: the original VT100 was strictly monochromatic. The second 
extension is to support escape sequences that insert, delete and erase characters and lines.

The VT100 parser has two modes to reflect the behavior of the standard VT100 terminal. 
The two modes are known as ANSI mode and VT52 mode. When in VT52 mode, the parser 
only accepts standard VT52 escape sequences, together with the <Esc>< sequence (which is 
used to switch back to ANSI mode). In ANSI mode, the VT52 sequences are ignored. The 
command to switch from one to the other is processed immediately within the method that 
processes characters as well being returned by it.

ANSI escape sequences for the VT100 terminal (and terminals that follow the ANSI 
specification) are always of the following form:

<Esc>[P...PI...IF

<Esc> is the escape character (ASCII $27), ‘[’ is the left bracket, the Ps are ASCII characters 
in the range of $30 to $3F, the Is are ASCII characters in the range of $20 to $2F, and the final 
F is in the range of $40 to $7E. Because of this definition, if the parser does not recognize a 
particular command, it can easily discard it—the end of the escape sequence is well defined.
The Terminal Parsers     225

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
With the VT100 terminal in ANSI mode, escape sequences either start with 
<Esc>[,<Esc>#, <Esc>(, or <Esc>), or form a two character escape sequence <Esc>x 
where x is the command identifier. The <Esc>[ sequences all follow the standard ANSI 
format previously mentioned. The other three sequence types are three character sequences 
with the final character identifying the command. Hence, the VT100 parser can know when 
unknown escape sequences terminate.

With the VT100 parser in VT52 mode, all escape sequences are two character sequences of 
the form <Esc>x with the x being the command identifier. The only exception is <Esc>Y 
where the two characters following the Y also form part of the sequence (<Esc>Y is “cursor 
position” and the two following characters encode the row and column numbers 
respectively). Hence, the VT100 parser working in VT52 mode can know when unknown 
sequences terminate.

The VT100 terminal also supports one-byte control characters, characters like tab, carriage 
return, line feed and so on. The VT100 parser decodes these as well as escape sequences, 
even when the control characters appear in the middle of escape sequences.

Table 8.1 defines the control characters and escape sequences understood by the VT100 
parser. The individual characters in the escape sequence have been separated by spaces to 
make the parameters stand out more. The values Pn, Ps, Pr, or Pc denote parameters, 
meaning a numeric, switch, row or column value. Any one-byte control character not listed 
here is ignored: it will not be acted on or displayed.

Table 8.1: VT100 parser control characters and escape sequences 

Control
Sequence

TerminalMode Description

ENQ ($05) VT100/52 Generate answerback message.

BEL ($07) VT100/52 Sound bell.

BS ($08) VT100/52 Backspace (i.e., cursor left).

HT ($09) VT100/52 Move to next horizontal tab stop.

LF ($0A) VT100/52 Line feed or new line.

VT ($0B) VT100/52 Processed as LF.

FF ($0C) VT100/52 Processed as LF.

CR ($0D) VT100/52 Move to position 1 on current line.

SO ($0E) VT100 Select G1 character set.

SI ($0F) VT100 Select G0 character set.

CAN ($18) VT100/52 Cancel current escape sequence.

SUB ($1A) VT100/52 Cancel current escape sequence.

Esc # 3 VT100 Line is double height, top half.
26     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Esc # 4 VT100 Line is double height, bottom half.

Esc # 5 VT100 Line is single width, single height.

Esc # 6 VT100 Line is double width single height.

Esc # 8 VT100 Fill screen with E’s.

Esc ( A VT100 Set G0 to UK charset.

Esc ( B VT100 Set G0 to US charset.

Esc ( 0 VT100 Set G0 to special linedraw charset.

Esc ( 1 VT100 Set G0 to alternate ROM charset.

Esc ( 2 VT100 Set G0 to alternate ROM LD charset.

Esc ) A VT100 Set G1 to UK charset.

Esc ) B VT100 Set G1 to US charset.

Esc ) 0 VT100 Set G1 to special linedraw charset.

Esc ) 1 VT100 Set G1 to alternate ROM charset.

Esc ) 2 VT100 Set G1 to alternate ROM LD charset.

Esc 7 VT100 Save cursor and attributes.

Esc 8 VT100 Restore cursor and attributes.

Esc < VT100 Enter ANSI mode (ignored).

Esc = VT100 Enter application keypad mode.

Esc > VT100 Enter numeric keypad mode.

Esc D VT100 Index.

Esc E VT100 Next line.

Esc H VT100 Set tab stop at cursor.

Esc M VT100 Reverse Index.

Esc [ Pn @ VT100 enh Insert characters at cursor.

Esc [ Pn A VT100 Cursor up.

Esc [ Pn B VT100 Cursor down.

Esc [ Pn C VT100 Cursor right.

Esc [ Pn D VT100 Cursor left.

Esc [ Pr; Pc H VT100 Cursor position.

Esc [ Ps J VT100 Erase part of display to cursor.

Esc [ Ps K VT100 Erase part of display from cursor.

Esc [ Pn L VT100 enh Insert lines.

Esc [ Pn M VT100 enh Delete lines.

Table 8.1: VT100 parser control characters and escape sequences  (continued)

Control
Sequence

TerminalMode Description
The Terminal Parsers     227

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

Note: Use the escape sequence <Esc>[2l to switch into VT52 mode.

Esc [ Pn P VT100 enh Delete characters at cursor.

Esc [ Pn X VT100 enh Erase characters at cursor.

Esc [ Ps c VT100 What are you?

Esc [ Pr; Pc f VT100 Cursor position.

Esc [ Ps g VT100 Clear tab stops.

Esc [ Ps h VT100 Set mode.

Esc [ Ps l VT100 Reset mode.

Esc [ Ps; …;Ps m VT100 Set attributes, including color.

Esc [ Ps n VT100 Request terminal report.

Esc [ Ps; …;Ps q VT100 Set LEDs.

Esc [ Pt; Pb r VT100 Set scrolling region (top, bottom
row).

Esc [ 2; Ps y VT100 Invoke confidence test.

Esc c VT100 Reset.

Esc A VT52 Cursor up.

Esc B VT52 Cursor down.

Esc C VT52 Cursor right.

Esc D VT52 Cursor left.

Esc F VT52 Set special character set.

Esc G VT52 Set ASCII character set.

Esc H VT52 Cursor to home.

Esc I VT52 Reverse line feed.

Esc J VT52 Erase to end of screen.

Esc K VT52 Erase to end of line.

Esc Y VT52 Direct cursor address.

Esc Z VT52 Identify.

Esc < VT52 Enter ANSI mode.

Esc = VT52 Enter alternate keypad mode.

Esc > VT52 Exit alternate keypad mode.

Table 8.1: VT100 parser control characters and escape sequences  (continued)

Control
Sequence

TerminalMode Description
28     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TAdTerminalParser Class
The TAdTerminalParser Class is the ancestor class that defines the functionality of a 
terminal parser. A terminal parser is a class that knows how to identify and extract terminal 
control sequences (also known as escape sequences) and convert them into commands and 
arguments. The parser is not responsible for executing the commands; that task is left to the 
terminal emulation component that uses the parser.

The methods defined by the TAdTerminalParser class are all virtual in order that they can be 
overridden in descendant classes, but they are not defined as abstract. Instead, in this 
ancestor class, they are all “do nothing” methods.

Hierarchy
TObject (VCL)

TAdTerminalParser (AdTrmPsr)

Properties
Argument

ArgumentCount

Command

Sequence

Methods
Clear

Create

ProcessChar

ProcessWideChar
TAdTerminalParser Class     229

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

Argument read-only, array property

property Argument[aInx : Integer] : Integer

Returns the arguments for the current command

When a terminal control sequence has been completely received, the ProcessChar method 
will return pctComplete. Just prior to returning this success value, the parser will identify 
the command described by the sequence, and extract out the arguments (or parameters) 
from the sequence. The ArgumentCount property gives the number of arguments the parser 
finds. You can retrieve the individual arguments by using the Argument property at this 
time.

If you try and retrieve any arguments before a terminal control sequence has been 
completely received, no error or exception is generated. The return value will always be zero 
in this case. 

In this ancestor class, the Argument property always returns zero.

See also: ArgumentCount, ProcessChar

ArgumentCount read-only property

property ArgumentCount : Integer

Returns the number of arguments for the current command

When a terminal control sequence has been completely received, the ArgumentCount 
property will return the number of arguments or parameters the parser found in the 
sequence. You can use this value to know how many arguments you can read from the 
Argument array property.

If a sequence is still being built up, the ArgumentCount property will be zero. It will only 
have a non-zero value after the ProcessChar method returns pctComplete (and before 
ProcessChar is called again) and if the sequence had at least one argument. 

In this ancestor class, the Argument property always returns zero.

See also: Argument, ProcessChar
30     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Clear method

procedure Clear;

Clears the internal state of the parser

By calling Clear, you will reset the parser to a state such that no sequence is being built up 
and no command is pending.

Command read-only property

property Command : Byte

Returns the current command

Command returns the command identified by the ProcessChar method. Once ProcessChar 
identifies a complete terminal control sequence, the parser will convert the sequence into the 
relevant command and extract its arguments. It is at this point that the Command property 
will be set to the command defined by the sequence. At any other time Command is set to 
zero (the eNone constant from OOMISC.PAS). In other words, if ProcessChar returns 
pctComplete, Command will be set to the relevant command defined by the just-received 
sequence, and it will be reset to eNone the next time ProcessChar is called.

Command can take on any of the eXxx values defined in OOMISC.PAS (such as eCUB, 
eVTS and so on). Please refer to the OOMISC.PAS source file for definitions of the 
supported commands.

In this ancestor class, the Command property always returns eNone.

See also: ProcessChar

Create method

constructor Create(aUseWideChar : Boolean);

Creates the parser instance

Create allocates and initializes an instance of the parser class. The aUseWideChar parameter 
defines whether the parser will only accept wide characters (True) or single byte characters 
(False). If True, the ProcessWideChar method should be used to process the input data 
stream, character by character; if False, the ProcessChar method should be used.

See also: ProcessChar, ProcessWideChar
TAdTerminalParser Class     231

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

ProcessChar  virtual method

function ProcessChar(aCh : AnsiChar) : TAdParserCmdType; virtual;

TAdParserCmdType = (pctNone, pctChar, pctPending, pctComplete);

Processes a single character.

ProcessChar is the main workhorse of the parser class. It is the method that takes a character 
and decides whether that character forms part of a terminal control sequence or is just one 
that must be displayed. ProcessChar must maintain the current state of the parser (in other 
words, whether the parser is building up a terminal control sequence, has just completed a 
sequence, etc.).

ProcessChar can return one of several values. pctNone means that the character passed in 
was not understood by the parser. Either the character was a single-byte control character 
(in other words, a non-displayable character less than the space character) that would be 
ignored by the original terminal, or the character terminated an escape sequence, but that 
escape sequence was not known by the parser. The caller of ProcessChar can safely ignore 
the problem since there is no recovery action to take because the parser has been left in a 
correct state. pctChar means that the input character should be displayed on the terminal. 
pctPending means that the input character formed part of an escape sequence that is being 
built up, character by character. There is nothing further to do at this point since the escape 
sequence has not yet been completed. 

The last possible result value is pctComplete. This value indicates that the parser has 
captured a complete terminal control sequence. Furthermore it indicates that the parser has 
identified the command defined by the escape sequence and has set the Command property. 
It will have extracted all of the command arguments or parameters and set both the 
Argument and ArgumentCount properties. Finally, it will make sure that the Sequence 
property returns the entire escape sequence.

In this ancestor class, the ProcessChar method always returns pctNone.

If ProcessChar is called for a parser that was created to expect wide characters, a parser 
exception will be raised. 

See also: Argument, ArgumentCount, Command, Create, ProcessWideChar, Sequence
32     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ProcessWideChar method

function ProcessChar(aCh : WideChar) : TAdParserCmdType; virtual;

TAdParserCmdType = (pctNone, pctChar, pctPending, pctComplete);

Processes a single character.

ProcessWideChar is the wide character (or UNICODE) version of ProcessChar. It works in 
the same fashion with the exception of accepting UNICODE characters only. Please see the 
ProcessChar method reference for details.

In this ancestor class, the ProcessWideChar method always returns pctNone.

If ProcessWideChar is called for a parser that was created to expect single-byte ASCII 
characters, a parser exception will be raised. 

See also: Create, ProcessChar

Sequence read-only property

property Sequence : string

Returns the current terminal control sequence.

Once ProcessChar identifies a complete terminal control sequence, and is about to return 
pctComplete, the parser will set this property to the full sequence string. The property will 
maintain its value until the next time ProcessChar is called. 

If a sequence is being built up or there is no current command, the value of the Sequence 
property is the empty string. Reading the Sequence property at the wrong time generates no 
error or exception.

In this ancestor class, the Sequence property always returns the empty string.

See also: ProcessChar
TAdTerminalParser Class     233

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TAdVT100Parser Class
The TAdVT100Parser class is the descendant of the TAdTerminalParser. It defines a parser 
that understands VT100 terminal data streams.

Hierarchy
TObject (VCL)

! TAdTerminalParser (AdTrmPsr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

TAdVT100Parser (AdTrmPsr)

Properties
Argument

! ArgumentCount

! Command

InVT52Mode

! Sequence

Methods
! Clear

! Create

ProcessChar

! ProcessWideChar
34     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

Reference Section

Argument read-only, array property

property Argument[aInx : Integer] : Integer

Returns the arguments for the current command.

Please see TAdTerminalParser for a description of how the Argument property works.

Some VT100 escape sequences use default values for certain arguments. For example, the 
Cursor Right sequence is <Esc>[C, but it is also possible to specify the number of character 
positions to move. In our case the sequence would be <Esc>[2C for two positions. The 
VT100 parser in TAdVT100Parser would create a single argument of 1 (the default) for the 
first case, and a single argument of 2 (an explicit argument) for the second case. There is no 
way to find out if the parser has created an implicit default argument or used an explicit 
argument, unless you wish to parse the Sequence property yourself. In general, this would 
not matter: the value of an argument is all you need to process the command properly.

In certain cases the parser will be unable to determine the value of the default argument 
since it would depend on information it does not have. An example for this is the Set 
Scrolling Region command. This command has two arguments: the top row and the bottom 
row of the scrolling region. The defaults are the top row and the bottom row of the screen 
itself, neither of which are known by the parser. If the parser is unable to work out what the 
default value of an argument is, it will set the relevant element of the Argument array 
property to –1, meaning “default.”

There is a set of VT100 escape sequences that use the ‘?’ character in the parameter part of 
the sequence. An example is <Esc>[?3h to set the VT100 terminal into 132-column mode. 
The parser in the TAdVT100Parser class parses this escape sequence as having two 
arguments, the ‘?’ and the ‘3’. Since the Argument property only returns integers, the ‘?’ 
character must be replaced by a special integer value, in this case, –2. Hence, in our example, 
the command would have two arguments: –2 and 3. (The reason for this slightly eccentric 
behavior, versus just ignoring the ‘?’ character altogether, is that ‘?’ signifies a DEC extension 
rather than just a straightforward ANSI escape sequence. The parser needs to return this 
information as well.)
TAdVT100Parser Class     235

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

InVT52Mode read-only property

property InVT52Mode : Boolean

Returns whether the terminal has been switched to VT52 mode.

The VT100 terminal can be switched between two modes: ANSI and VT52. The terminal 
will understand different escape sequences in each of the two modes. Once the terminal is in 
a given mode, the escape sequences for the other mode will not be understood or acted on. 

The VT100 parser class tracks the escape sequences that switch the terminal from mode to 
mode and will set an internal flag to denote whether the parser should identify ANSI escape 
sequences or VT52 escape sequences. The mode switch sequences, <Esc>[?2l to switch to 
VT52 mode and <Esc>< to switch back to ANSI mode, are the only sequences that are 
tracked inside the parser, since they directly affect the operation of the parser. 

The ProcessChar method will return the eDECANM result value if the parser identifies one 
of the escape sequences that switch terminal modes. The InVT52Mode property will have 
been set by the time that ProcessChar terminates and returns this value. Hence, if 
ProcessChar returns eDECANM, you can check the value of the InVT52Mode to find out 
which mode the terminal should now be in.

See also: ProcessChar

ProcessChar method

function ProcessChar(aCh : AnsiChar) : TAdParserCmdType; override;

TAdParserCmdType = (pctNone, pctChar, pctPending, pctComplete);

Processes a single character.

Please see TAdTerminalParser for a description of how the ProcessChar method works.

The VT100 terminal (and the ANSI specification) has one peculiarity that is generally not 
well implemented by terminal emulators. The VT100 terminal supports several one-byte 
control characters: line feed ($10), carriage return ($13), horizontal tab ($09), and so on. 
Like the VT100 terminal, the VT100 parser class recognizes these one-byte control 
characters, and acts upon them, even in the middle of an escape sequence. For example, 
<Esc><CR>7 (where <CR> is the carriage return character) will be interpreted as 
<CR><Esc>7; the <CR> being acted upon immediately, rather than being ignored. For this 
example, the result values returned by ProcessChar for the three characters would be: 
pctPending for the <Esc>; pctComplete for the <CR> (and the Argument, 
ArgumentCount, Command and Sequence properties would be set accordingly); and, 
finally, pctComplete for the <Esc>7 sequence (again setting the Argument, 
36     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
ArgumentCount, Command and Sequence properties accordingly). Notice that this 
behavior necessitates that the parser save the not-quite-complete escape sequence 
somewhere: this is done automatically.

The ANSI specification details the behavior if an <Esc> character appears in the middle of 
an escape sequence: the second <Esc> cancels the original escape sequence and starts a new 
one. So, for example, with <Esc[12<Esc>7, the second <Esc> character would cancel the 
partial escape sequence that begins <Esc>[12 and start a new one.

Two one-byte control characters that have special significance are CAN ($18) and SUB 
($1A). These cancel the current escape sequence (if one is being built up). If ProcessChar is 
called with either of these characters, at any time, it will clear the VT100 parser and return 
pctNone. 

Although the ProcessChar method will successfully parse and decode the standard VT100 
escape sequences, in general it will not carry out any of the decoded commands internally. 
That job is left to the terminal component itself. However, there is an exception to the rule. 
There are two escape sequences that affect the operation of the VT100 parser. The first is the 
<Esc>[?2l sequence, which switches the terminal into VT52 mode. The second is the 
<Esc>< sequence, which switches it back to ANSI mode. The importance of these two 
modes is that the terminal recognizes different escape sequences in each of these modes and, 
hence, the parser has to be able to know when to parse the ANSI sequences and when to 
parse the VT52 sequences. For example, in ANSI mode the <Esc>D sequence is the same as 
move the cursor one line down (the “Index” operation) whereas in VT52 mode it means 
move the cursor one position left. If the parser did not recognize which state the terminal 
was in, it may parse this sequence badly. Hence, the VT100 parser class maintains the 
InVT52Mode property and this is set internally by the ProcessChar method to reflect the 
current ANSI/VT52 mode on receipt of one of these two sequences.

See also: InVT52Mode
TAdVT100Parser Class     237

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The TAdKeyboardMapping Class
The TAdKeyboardMapping class provides a simple, convenient method to specify the PC 
keystrokes that map onto the emulated terminal keystrokes, and also what control sequence 
those terminal keystrokes are going to send to the host computer.

There are three parts to the keyboard mapping. The first part is merely for convenience: it is 
a mapping of the keyboard’s virtual key codes to the virtual key names. This mapping is 
standard and is provided with Microsoft’s documentation. An example of a single mapping 
is to specify that the virtual key code $70 is the F1 key, which is usually known by the name 
“VK_F1” in Microsoft’s documentation. 

The second part of the keyboard mapping is the definition of the character or control 
sequence that is sent by the original keyboard to the host computer when a key is pressed. 
For a VT100 terminal, for example, pressing the PF1 key will either send an <Esc>P or an 
<Esc>OP sequence to the host, depending on the mode the terminal is in at the time. Again, 
this mapping is standard and is provided as part of the terminal manufacturer’s 
documentation. 

Whereas the two mappings just described are fixed by standards, the last mapping is where 
the creativity and individuality comes in. This set of mappings details which PC keystroke 
gets mapped to which terminal keystroke. There are no standards for this (though some 
mappings should be fairly obvious: for example, the up arrow key should be mapped to the 
terminal’s up arrow key), and so you can customize to a large extent which keys perform 
which action using this third mapping.

The TAdKeyboardMapping class is designed to be used by a terminal emulator. The 
terminal component will trap the user’s keystroke and pass it onto the emulator. The 
emulator will lookup the virtual key code in the keyboard mapping table and will retrieve 
the virtual key name. It will then prefix this name with the names of the shift keys that are 
active, and lookup this combination in the keyboard mapping class. If the lookup succeeds, 
the keyboard mapping class returns the name of a terminal key and this, in turn, can be 
looked up to find the character or control sequence that should be sent to the host computer. 
If at any time a lookup fails, there is no special mapping for the keystroke and so the default 
action takes over (for example, for an alphabetic key, the relevant character is sent to the 
host computer).

Although it may seem excessive to have three lookups per keystroke to get to the final 
sequence to send to the host, in reality the design it provides a balance between fast 
conversion of keystrokes and ease of specification of the various mappings. The lookups are 
performed using a hash table, which is considered the data structure of choice for this kind 
of operation. 
38     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The TAdKeyboardMapping class is convenient to use when you have to specify a large 
number of mappings. There are two methods for loading a set of mappings: first from a 
specially, yet simply, formatted text file, and, second, from a resource within the application. 
Thus, it is possible to have a default mapping linked into the application, but also to be able 
to provide a way of altering the mappings at run time. To help create the resource, the class 
also has a method to write its current mapping set to a binary file, which can then be 
compiled into a resource file. The following code shows this process:

var
KeyMap : TAdKeyboardMapping;

begin
KeyMap := TAdKeyboardMapping.Create;
try

KeyMap.LoadFromFile('ADKEYVT1.TXT');
KeyMap.StoreToBinFile('VT100.BIN');

finally
KeyMap.Free;

end;
end;

The code creates a TAdKeyboardMapping instance called KeyMap. A set of mappings is 
then read from a file called ADKEYVT1.TXT (this file is a default set of keyboard mappings 
for a VT100 emulator that is provided with Async Professional). The mappings are then 
written out to a file called VT100.BIN. This latter file can be compiled into a resource using 
the standard resource compiler that comes with Delphi (either BRCC.EXE or 
BRCC32.EXE). The resource script (RC file) required for this is as follows:

MyVT100KeyMap RCDATA VT100.BIN

If you name the resource file VT100.RC, the resource compiler will create a file called 
VT100.RES. Adding the resource to your application at that point is merely a case of adding 
the following line to your project file and recompiling:

{$R VT100.RES}

Now you can call the LoadFromRes method of your TAdKeyboardMapping instance to load 
this set of keyboard mappings.
The TAdKeyboardMapping Class     239

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TObject (VCL)

TAdKeyboardMapping (ADTrmKey)

Properties
Count

Methods
Add

Clear

Get

LoadFromFile

LoadFromRes

StoreToBinFile
40     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

Add method

function Add(const aKey : TAdKeyString;
const aValue : TAdKeyString) : Boolean;

TAdKeyString = string[63];

Adds a new keyboard mapping to the instance.

The aKey string is the lookup value (the key string) and aValue is the string associated with 
it. Add does not validate these two strings to be in any particular format, so it is possible to 
fill the instance with nonsensical strings that would never be looked up.

If the key string and its value were successfully added, Add returns True. If the key string is 
already present, Add will return False and leave the existing mapping as is.

Please see LoadFromFile for a discussion on how to define the key strings and their values.

See also: LoadFromFile

Clear method

procedure Clear;

Clears all keyboard mappings.

LoadFromFile and LoadFromRes automatically call Clear prior to loading a set of mappings. 
If you wanted to load a set of mappings from another source, you would have to call Clear 
first, and then Add for every mapping in your set.

See also: Add, LoadFromFile, LoadFromRes

Count read-only, run-time property

property Count : Integer

Determines the number of mappings in the class.

The Count property will return the number of different mappings contained in the class. It 
does not differentiate between the different types of mappings.
The TAdKeyboardMapping Class     241

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Get method

function Get(const aKey : TAdKeyString) : TAdKeyString;

TAdKeyString = string[63];

Returns the value of a looked up key string.

aKey is the key string to lookup. If it was found, the return value will be the string with 
which it is associated. If it was not found, the return value is the empty string. No exception 
is raised if the key string was not found.

See also: Add

LoadFromFile method

procedure LoadFromFile(const aFileName : string);

Loads a set of keyboard mappings from a text file.

The name of the file is given by aFileName. 

The file is a text file in a particular format. LoadFromFile will follow these rules when 
reading the file.

• Any completely blank line is ignored.

• Any line starting with a * is a comment and is skipped.

• Any line starting with at least one space is a detail line. A detail line consists of two 
“words”, where a word is a set of up to 63 characters without an embedded space and 
is case sensitive. Words are separated by spaces (not tab characters). Any other 
characters appearing after the two words is taken to be a comment and is skipped.

• Any detail line that cannot be parsed is simply ignored.

• Any line that doesn’t match the above is skipped.

The words in a detail line have some formatting associated with them. The emulator 
imposes this formatting so that it can generate the correct key strings when the user presses 
a key. The LoadFromFile method does not validate these formats in any way.

“\e” in a word means the Escape character 

\xnn, where nn is a hex number, represents that ASCII character

If you want to specify shift keys with virtual key names, use the mnemonics “shift”, “ctrl”, 
and “alt.” Combine them with the virtual key name using the + sign. If you want to specify 
more than one shifted key, make sure that they are in the order “shift”, “ctrl”, “alt.”
42     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

An example of a virtual key code to virtual key name mapping would be:

* This is the definition of F1
\x70 VK_F1

An example of a defining the sequence to be sent by a terminal key is:

* This is the definition of PF1 on a VT100
* (it sends <Esc>OP)

DEC_PF1 \eOP

An example of mapping Alt+F1 so that it acts like the PF1 key on a VT100 is:

* Map Alt+F1 to PF1
alt+VK_F1 DEC_PF1

Let’s follow how the emulator would use these mappings. The user presses Alt+F1. The 
emulator would convert the virtual key code returned by Windows (an integer equal to 70 
hex) into a string (“\x70”). It would then lookup this string in the keyboard mapping object 
and get the value “VK_F1” back. It then prefixes the “alt” keyword to this value to give 
“alt+VK_F1” and looks this up. This returns the value “DEC_PF1”. This is in turn looked 
up to return the value “\eOP”. The emulator then interprets this string as <Esc>OP in order 
to send the correct sequence to the host. If a lookup fails at any stage, the keystroke is 
assumed to be unmapped. If the emulator cannot interpret the final control sequence string, 
it will just send it as is.

Please see ADKEYVT1.TXT for a complete set of mappings that define one way of mapping 
the VT100 keys onto the PC keyboard.

The only errors than can occur with LoadFromFile are file I/O errors. Internally 
LoadFromFile uses a string list (TStringList) to read the entire file into memory and so any 
exceptions raised will be those raised by this class.

See also: Add

LoadFromRes method

procedure LoadFromRes(
aInstance : THandle; const aResName : string);

Loads a set of keyboard mappings from a resource.

The name of the resource is given by aResName, and the resource is to be found in the 
module instance given by hInstance. The resource must be in the binary format created by 
the StoreToBinFile method. If any error occurs during the load process, for example the 
resource cannot be found or the resource is not in the correct format, the mappings are 
cleared. No exception is raised.
The TAdKeyboardMapping Class     243

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

StoreToBinFile method

procedure StoreToBinFile(const aFileName : string);

Stores the current set of mappings to file.

The name of the file is given by aFileName. The binary file so created can be compiled into a 
resource that can be read by LoadFromRes.

The only errors than can occur are file I/O errors. Internally StoreToBinFile uses a file 
stream (TFileStream) and so any exceptions raised will be those raised by this class.
44     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The TAdCharSetMapping Class
The TAdCharSetMapping class provides a method to emulate the different character sets 
used by terminals by using glyphs from different fonts.

One of the problems of emulating a terminal with a Windows program is that terminals, 
especially the older ones, use specialized glyphs that are not available in the normal 
Windows fonts. The character set mapping class attempts to work around this problem by 
enabling the emulator to obtain the glyphs for different character sets from different fonts.

Before proceeding with the character set mapping class, we should define a few terms. A 
character is a binary value, usually byte-sized. The way we usually think of a character is 
both as its binary value and as its visual form. Hence, when we think of the character ‘a’, for 
example, we think of its value ($61) and of its visual form (a drawing of a lowercase letter ‘a’, 
like the one you just read just now). However, the link between the character ‘a’ and the 
visual form of the character is not fixed. Different fonts may display the character ‘a’ in 
different ways, and some visual representations (what are known as glyphs) may look 
nothing like a lowercase ‘a’. An example is the Symbol font where the character ‘a’ is drawn as 
a Greek lowercase α. With terminals, there may be several character sets that are available at 
once, and these character sets function in the same way as fonts. On the VT100, for example, 
there are two main character sets: the standard one and the special graphics one, which 
displays the line draw characters. In the first, the character ‘a’ is drawn as a lowercase ‘a’. In 
the second it is drawn as a checkerboard glyph. 

The character set mapping class is designed to be used by a terminal emulator. When the 
terminal display needs to be painted, the emulator will use a character set mapping class to 
identify which glyphs need to be painted on the terminal window. For this it will pass a 
string of characters to the mapping class, together with the character set to be used. The 
TAdCharSetMapping object will return a script to the emulator. This script will consist of a 
series of text drawing commands all of the form: “using font X, draw string Y.” Usually the 
script will consist of just one command, since the characters will generally all come from the 
standard ASCII set and hence can be drawn using just one font.
The TAdCharSetMapping Class     245

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The TAdCharSetMapping class gets its mapping data from one of two sources: a specially 
formatted text file, or a resource linked into the application. Thus it is possible to have a 
default mapping linked to the application, but, also, to be able to provide a way of altering 
the mappings at run time (maybe to suit the fonts on the user’s machine). To help create the 
resource the character set mapping class has a method to write its current mapping set to a 
binary file, which can then be compiled into a resource file. The following code shows this 
process:

var
CharSetMap : TAdCharSetMapping;

begin
CharSetMap := TAdCharSetMapping.Create;
try

CharSetMap.LoadFromFile('ADCHSVT1.TXT');
CharSetMap.StoreToBinFile('VT100.BIN');

finally
CharSetMap.Free;

end;
end;

The code creates a TAdCharSetMapping instance called CharSetMap. A set of mappings is 
then read from a file called ADCHSVT1.TXT (this file is a default set of character set 
mappings for a VT100 emulator that is provided with Async Professional). The mappings 
are then written out to a file called VT100.BIN. This latter file can be compiled into a 
resource using the standard resource compiler that comes with Delphi (either BRCC.EXE or 
BRCC32.EXE). The resource script (RC file) required for this is as follows:

MyVT100CharSetMap RCDATA VT100.BIN

If you name the resource file VT100.RC, the resource compiler will create a file called 
VT100.RES. Adding the resource to your application at that point is merely a case of adding 
the following line to your project file and recompiling:

{$R VT100.RES}

Now you can call the LoadFromRes method of your TAdCharSetMapping instance to load 
this set of character set mappings.
46     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TObject (VCL)

TAdCharSetMapping (ADTrmMap)

Properties
Count

Methods
Add

Clear

GenerateDrawScript

GetNextDrawCommand

LoadFromFile

LoadFromRes

StoreToBinFile
The TAdCharSetMapping Class     247

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Reference Section

Add method

function Add(const aCharSet : TAdKeyString;
aFromCh : AnsiChar; aToCh : AnsiChar;
aFont : TAdKeyString; aGlyph : AnsiChar) : Boolean;

TAdKeyString = string[63];

Adds a new character set mapping to the instance.

The aCharSet parameter is the name of the character set. This name is defined by the 
emulator if there is no standard name for it. The character set name must be unique. In other 
words, different character sets will have different names. aFromCh and aToCh define an 
inclusive range of characters for the mapping (if aToCh equals aFromCh, the mapping is for 
a single character). aFont is the name of the font from which the glyph or glyphs are taken. 
aGlyph is the glyph from which the mapping starts. aFromCh is mapped to aGlyph, the 
character after aFromCh is mapped to the glyph after aGlyph, and so on until aToCh.

The result value is True if the character set mapping was added, False otherwise. The latter 
result would mean that the combination of aCharSet and the supplied range clashed with a 
mapping already present.

To help in designing portable character set mappings, there is one special value that can be 
used for the font name. If the name is “<Default>”, then the emulator will use the currently 
defined font for the terminal component to display text.

For example, suppose you wish to add a character set mapping for the standard ASCII 
characters, using Courier New as the font. This is the statement you would use:

var
MyMap : TAdCharSetMapping;

begin
...
if not MyMap.Add(

'MyCharSet', ' ', '~', 'Courier New', ' ') then
..mapping not added..

This tries to add a mapping for all of the characters between space and ‘~’ in the MyCharSet 
character set to that same characters (i.e., glyphs) from the Courier New font.
48     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Clear method

procedure Clear;

Clears all character set mappings.

LoadFromFile and LoadFromRes automatically call Clear prior to loading a set of mappings. 
If you wanted to load a set of mappings from another source, you would have to call Clear 
first, and then Add for every mapping in your set.

See also: Add, LoadFromFile, LoadFromRes

Count read-only, run-time property

property Count : Integer

Determines the number of mappings in the class.

The Count property will return the number of different mappings contained in the class. It 
does not differentiate between the different character sets or ranges. It is of use primarily for 
writing out the mappings to a file or other object.

GenerateDrawScript method

procedure GenerateDrawScript(
const aCharSet : TAdKeyString; const aText : string);

Generates a draw script from a string.

The emulator, when it needs to display text on the terminal window, will separate out the 
text to be drawn into strings from different character sets. For each individual string it will 
call the GenerateDrawScript method of its internal character set mapping object to generate 
a series of drawing commands that can be used to draw the text on the screen. Each 
command will be of the form “switch to font X, write string Y.” The emulator then reads the 
commands one at a time using the GetNextDrawCommand method, and draws the text in 
the required font.

If GenerateDrawScript is called before all of the commands from the previous script have 
been read, the previous commands are destroyed and will no longer be available. 

The aCharSet parameter is the name of the character set. aText is the string of characters that 
have to be drawn using the given character set. The GenerateDrawScript method will work 
out which fonts and glyphs are required to draw the characters and generate a list of drawing 
commands that, when executed one after the other, will produce the required effect.

See also: GenNextDrawCommand
The TAdCharSetMapping Class     249

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

GetNextDrawCommand method

function GetNextDrawCommand(
var aFont : TAdKeyString; var aText : string) : Boolean;

Retrieves the next draw command from the current script.

The emulator, when it needs to display text on the terminal window, will separate out the 
text to be drawn into strings from different character sets. For each individual string it will 
call the GenerateDrawScript method of its internal character set mapping object to generate 
a series of drawing commands that can be used to draw the text on the screen. Each 
command will be of the form “switch to font X, write string Y.” The emulator then reads the 
commands one at a time using the GetNextDrawCommand method, and draws the text in 
the required font.

The GetNextDrawCommand method returns True if there is another command, and sets 
aFont to the font name required and aText to the string that needs to be drawn in that font. It 
returns False if there are no more commands in the current script. The emulator will 
continue to call GetNextDrawCommand and draw the specified text in the given font until 
the method returns False and the script is exhausted.

See also: GenerateDrawScript

LoadFromFile method

procedure LoadFromFile(const aFileName : string);

Loads a set of character set mappings from a text file.

The name of the file is given by aFileName. 

The file is a text file in a particular format. LoadFromFile will follow these rules when 
reading the file.

• Any completely blank line is ignored.

• Any line starting with a * is a comment and is skipped.

• Any line starting with at least one space is a detail line. A detail line consists of five 
“words.” A word is defined as a set of up to 63 characters without an embedded space, 
or as a set of up to 63 characters enclosed by quote marks (single or double). A word is 
case sensitive. Words are separated by spaces (NOT tab characters). Any other 
characters appearing after the five words is taken to be a comment and is skipped.

• Any detail line that cannot be parsed is simply ignored.

• Any line that doesn’t match the above is skipped.
50     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The five words, in order, are the same as the five parameters to the Add method. They 
denote the following:

• The character set name.

• The from character for the range.

• The to character for the range.

• The font name.

• The from glyph for the range.

The words that define a character can either be the character itself or be the hex 
representation of the character in the form \xnn with “nn” being the hex value. Hence, the 
space character would be represented by \x20, and the character ‘a’ would be shown by the 
single letter a. 

To help in designing portable character set mappings, there is one special value that can be 
used for the font name. If the name is “<Default>”, then the emulator will use the currently 
defined font for the terminal component to display text.

An example of defining a character set mapping for the standard ASCII characters would be

* This defines the standard ASCII characters
MyCharSet \x20 ~ 'Courier New' \x20

This would be read as: the character set name is “MyCharSet”; the range of characters is 
from the space character to the ‘~’ character, inclusive; the font name is “Courier New”; and 
the starting glyph is that for the space character.

Please see ADCHSVT1.TXT for a complete set of mappings that define one way of mapping 
the VT100 character sets keys onto standard Windows fonts.

The only errors than can occur with LoadFromFile are file I/O errors. Internally 
LoadFromFile uses a string list (TStringList) to read the entire file into memory and so any 
exceptions raised will be those raised by this class.

See also: Add
The TAdCharSetMapping Class     251

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

LoadFromRes method

procedure LoadFromRes(
aInstance : THandle; const aResName : string);

Loads a set of keyboard mappings from a resource.

The name of the resource is given by aResName, and the resource is to be found in the 
module instance given by hInstance. The resource must be in the binary format created by 
the StoreToBinFile method. If any error occurs during the load process, for example the 
resource cannot be found or the resource is not in the correct format, the mappings are 
cleared. No exception is raised.

StoreToBinFile method

procedure StoreToBinFile(const aFileName : string);

Stores the current set of mappings to file.

The name of the file is given by aFileName. The binary file so created can be compiled into a 
resource that can be read by LoadFromRes.

The only errors than can occur are file I/O errors. Internally StoreToBinFile uses a file 
stream (TFileStream) and so any exceptions raised will be those raised by this class.
52     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The TAdTerminalEmulator Class
The TAdTerminalEmulator class is the base class for all terminal emulators. An emulator is 
designed to work hand-in-hand with a terminal component to provide the look and feel of a 
particular terminal. The emulator does all the hard work: it interprets the input data stream, 
looking for terminal control sequences and ordinary text characters and processing them; it 
accepts all keystrokes from the terminal component, identifies them and converts them to 
output the correct terminal sequence. It also maintains the buffer that describes what the 
terminal display looks like, the text characters, colors, attributes and character sets. It has a 
character set mapping object that enables it to identify which fonts are used for which glyphs 
for display. Finally, and possibly the most important, it uses the terminal component’s 
canvas object to draw a representation of the current view of the terminal.

Async Professional provides two descendants of TAdTerminalEmulator. The first is the 
simplest emulator of all, the teletype or TTY emulator, TAdTTYEmulator. This emulator 
performs no keystroke conversion, no character set mapping, and no parsing of the input 
stream. Every character that is received is drawn directly onto the terminal display. All 
standard keystrokes (alphabetic characters, numeric characters, and control characters) are 
sent directly to the host computer. All other keystrokes (function keys, cursor movement 
keys, and the like) are ignored. When you drop a terminal component onto the form and do 
not use an emulator component, the terminal component will create an internal instance of 
the TTY emulator and use that instead. 

The second emulator provided by Async Professional is the VT100 terminal emulator, 
TAdVT100Emulator. This emulator provides a complete implementation of a standard 
VT100 terminal. Features provided by this emulation include:

• Double height and double width characters.

• Support for the keyboard LEDs.

• The ability to switch character sets to use the line draw characters.

• Applying the scrolling region.

• Support for the various VT100 modes, including keyboard modes.
The TAdTerminalEmulator Class     253

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The emulator also provides support for the following features that are not part of the 
standard VT100 specification, but are nevertheless generally expected to be present in an 
emulation. These features are extracted from the ANSI specification and the VT220 
specification:

• Support for erasing, deleting and inserting characters.

• Support for the different ANSI color attributes.

Finally, please note that the emulator does not support the following, sometimes optional, 
hardware characteristics of some VT100 terminals. In fact, in response to a “What Are You?” 
request (<Esc>[c) the VT100 terminal emulator will respond as a “basic VT100 with no 
options” (<Esc>[?;0c).

• Interlace mode (switching between 240 & 480 scan lines per frame).

• Smooth scrolling (the emulator performs jump scrolling all the time).

• STP processor option.

• AVO (advanced video option).

• GPO (graphics processor option).

To use an emulator component you would drop one on the form and then drop a terminal 
component onto the same form. The terminal component would find the emulator 
component and link up with it. At that point the terminal and emulator components will 
function as one composite component and will perform all the necessary work to make the 
combination act as an original terminal. There is no extra work to be done on your part. 

Obviously, if you wish to alter the behavior of an emulator, you will need to know about its 
properties, events and methods, and understand the use of the internal objects the emulator 
utilizes. If you wish to write a different terminal emulator then you would also need to know 
this extra information, but for general use of the Async Professional terminal component 
family, it will generally be “drop and go.”
54     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TAdTerminalEmulator (ADTrmEmu)

Properties
Buffer

CharSetMapping

KeyboardMapping

NeedsUpdate

Parser

Terminal

! Version

Methods
BlinkPaint

GetCursorPos

KeyDown

KeyPress

LazyPaint

Paint
The TAdTerminalEmulator Class     255

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference Section

BlinkPaint virtual method

procedure BlinkPaint(aVisible : Boolean); virtual;

Paints the blinking text.

Most terminals support blinking text. For a Windows emulation of blinking text, the text 
must first be drawn normally, then a short time later that text is erased so that it is essentially 
invisible, and then a further short time later the text is redrawn normally. The effect for the 
user is that the text blinks on and off regularly. 

The terminal component performs no painting of its own. Instead it defers that job to the 
emulator component, where the knowledge of such processing for a given terminal is 
embodied. Instead the terminal component maintains the blink timer, a timer object that 
fires at regular intervals. The terminal component will call the emulator’s BlinkPaint method 
to either display all of the blinking text (aVisible is True) or to erase it and just show the 
background color (aVisible is False). It is up to the emulator to maintain a list of regions of 
the terminal display that must be drawn and redrawn in this fashion.

See also: LazyPaint, Paint

Buffer read-only, run-time property

property Buffer : TAdTerminalBuffer

Returns the terminal buffer.

The Buffer property is the data structure that holds the elements that go to make up the 
visual representation of the terminal. These elements are the text characters, the foreground 
and background colors, the attributes of the text (underlined, blinking, and so on), and the 
character set ids for the characters. 

The emulator creates a buffer object in its Create constructor and frees it in the Destroy 
destructor. It is not possible to replace the buffer object in between those two times.

CharSetMapping read-only, run-time property

property CharSetMapping : TAdCharSetMapping

Returns the character set mapping object for the emulator.

The CharSetMapping property is the data structure that holds the various character-set-to-
font-glyph mappings for the emulator. The emulator will attempt to map a character in a 
particular character set to a glyph in a font, before displaying that character in the terminal 
component’s window.
56     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

The emulator creates a character set mapping object in its Create constructor and frees it in 
the Destroy destructor. It is not possible to replace the character set mapping object in 
between those two times. However, it is possible to replace the set of mappings for the 
character set mapping object: just call its LoadFromFile or LoadFromRes methods. This will 
have the effect of changing the functionality of the emulator.

Note that some emulators will not have a character set mapping object; reading 
CharSetMapping will return nil. This is because the emulation concerned—for example, the 
TTY emulator—does not require any character set mapping services.

GetCursorPos virtual method

procedure GetCursorPos(var aRow, aCol : Integer); virtual;

Returns the cursor position.

The emulator maintains the position of the terminal’s cursor. The terminal component can 
call the GetCursorPos method to get the row and column values for the cursor’s position, so 
that it can draw a blinking caret at this position on its client window.

Using terminal terminology, the “cursor” means the keyboard edit point. It is the place 
where new text data will be written to the screen. In Windows terminology however, this is 
known as the caret, the cursor being the mouse pointer.

KeyboardMapping read-only, run-time property

property KeyboardMapping : TAdKeyboadMapping

Returns the keyboard mapping object for the emulator.

The KeyboardMapping property is the data structure that holds the various keystroke-to-
terminal control sequence mappings for the emulator. The emulator will attempt to map a 
keystroke provided by a call to the KeyDown method into a terminal control sequence to be 
sent to the host computer by calling the Get method of the keyboard mapping object. 

The emulator creates a keyboard mapping object in its Create constructor and frees it in the 
Destroy destructor. It is not possible to replace the keyboard mapping object in between 
those two times. However, it is possible to replace the set of mappings for the keyboard 
mapping object: just call its LoadFromFile or LoadFromRes methods. This will have the 
effect of changing the functionality of the emulator.

Note that some emulators will not have a keyboard mapping object; reading 
KeyboardMapping will return nil. This is because the emulation concerned—for example, 
the TTY emulator—does not require any keyboard mapping services.
The TAdTerminalEmulator Class     257

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

KeyDown virtual method

procedure KeyDown(var Key : Word; Shift: TShiftState); virtual;

Processes a key down message from the terminal component.

The terminal component performs no keystroke processing of its own. Instead it defers that 
job to the emulator component, where the knowledge of such processing for a given 
terminal is embodied. 

The terminal component’s KeyDown method—the standard VCL KeyDown method for 
TWinControl descendants—merely calls the KeyDown method of its attached emulator and 
performs no other processing of its own. As a convenience, the terminal will also call the 
emulator’s KeyDown method for system keys (those reported by a WM_SYSKEYDOWN 
message), as well as those keystrokes that are reported through the terminal’s keyboard 
hook interface.

The emulator will use its keyboard mapping object to determine what to do with the 
keystroke. If there is a conversion defined, the emulator will use the terminal’s ComPort 
property to send the character sequence associated with the keystroke.

If there is no conversion defined in the mapping object the emulator ignores the keystroke. If 
the keystroke was an ordinary alphabetic key, the emulator’s KeyPress method will be 
eventually called by the terminal component with the character. At this point the emulator 
can send the character to the host computer. Hence, the set of mappings for the keyboard 
mapping object does not have to specify lower and upper case alphabetic, or numeric 
mappings.

KeyPress virtual method

procedure KeyPress(var Key : AnsiChar); virtual;

Processes a key press message from the terminal component.

The terminal component performs no keystroke processing of its own. Instead it defers that 
job to the emulator component, where the knowledge of such processing for a given 
terminal is embodied. 

The terminal component’s KeyPress method—the standard VCL KeyPress virtual method 
for TWinControl descendants—merely calls the KeyPress method of its attached emulator. 
The Key parameter defines the key pressed.

The usual job of the emulator at this point is to send the character to the host computer by 
means of the terminal component’s ComPort property.
58     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

LazyPaint virtual method

procedure LazyPaint; virtual;

Processes a lazy display paint request from the terminal component.

The terminal component performs no painting of its own. Instead it defers that job to the 
emulator component, where the knowledge of such processing for a given terminal is 
embodied. 

There are two types of painting to be done. The first is painting because the new data that 
has come from the serial device needs to be shown (this could be triggered by the lazy 
display processing of the terminal, for example). The second is painting due to all or part of 
the terminal component’s client window being invalidated and Windows has issued a 
WM_PAINT message. 

The LazyPaint method is called in the former case. The emulator has been parsing the 
incoming data stream and altering the buffer to reflect the new text and other changes 
embedded in the stream. The terminal component has determined that the new changes 
need to be shown on the client window. There are three ways the terminal can make that 
determination. The first is when the emulator sets its NeedsUpdate property to True to 
denote that the terminal display has changed and the new data needs to be shown. The 
second is when the terminal component is in lazy display mode (its UseLazyDisplay 
property is True), and a certain number of bytes (given by the TAdTerminal.LazyByteDelay 
property) has been processed. The third is again when the terminal component is in lazy 
display mode and the required amount of time, given by the LazyTimeDelay property, has 
elapsed. 

The emulator needs to interrogate its terminal buffer object to find out the changed 
character cells in the terminal display and to display them on the terminal component’s 
canvas.

See also: BlinkPaint, Paint

NeedsUpdate read-only, run-time property

property NeedsUpdate : Boolean

Defines whether the terminal display has changed.

The emulator sets its NeedsUpdate property to True when it makes a change to its terminal 
buffer object, for example, due to a new character being written to the terminal, or due to 
some other change, like scrolling, that has happened. The terminal component defined by 
the Terminal property will read this property every now and then, and if True will call the 
emulator’s LazyPaint method so that the emulator can update the view of the terminal.
The TAdTerminalEmulator Class     259

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Paint virtual method

procedure Paint; virtual;

Processes a paint request from the terminal component.

The terminal component performs no painting of its own. Instead it defers that job to the 
emulator component, where the knowledge of such processing for a given terminal is 
embodied. 

There are two types of painting to be done. The first is painting because the new data that 
has come from the serial device needs to be shown (this could be triggered by the lazy 
display processing of the terminal, for example). The second is painting due to all or part of 
the terminal component’s client window being invalidated and Windows has issued a 
WM_PAINT message. The Paint method is called in the latter case. The emulator should 
find out the clipping region of the invalidated window and redraw the text contained there, 
using the internal buffer object to define the colors, attributes, character sets and so on.

The Paint method of the emulator is called by the Paint method of the terminal component, 
the standard VCL virtual method for TWinControl descendants.

See also: BlinkPaint, LazyPaint

Parser run-time property

property Parser : TAdTerminalParser

Accesses the emulator’s terminal control sequence parser.

The Parser property is the engine that interprets the incoming data stream for the emulator. 
It is the parser that decides which sets of characters are terminal control sequences and 
which are merely characters to be displayed.

The emulator creates a parser object in its Create constructor and frees it in the Destroy 
destructor. Indeed, some emulator descendant classes do not require a parser object (for 
example, the TTY emulator) and hence do not ever create one. Hence, be aware that reading 
the Parser property may return nil. 

The emulator will call the ProcessChar method of the parser—if there is one—for every 
character it receives from the terminal component. It will act on the return value of this call, 
making use of the parser’s Command, Sequence, and Argument properties to alter the 
buffer object to reflect the new view of the terminal.
60     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

It is possible to replace the parser at run time. This will have the effect of altering the 
behavior of the emulator component. The class will dispose of the old parser and start using 
the new one. Be aware that it is possible to switch parsers while the old parser is in the 
middle of processing a terminal control sequence. In that case, the partially received control 
sequence is lost. It is best to replace the parser just after calling the old parser’s ProcessChar 
method, if it does not return pctPending.

Terminal property

property Terminal : TAdTerminal

Defines the visual terminal component.

The Terminal property defines the terminal component whose canvas is used for drawing 
the terminal display, and which provides access to the keyboard for the emulator. The 
terminal component also hold the reference to the serial device through its ComPort 
property.

The terminal component and emulator component use each other to provide the correct 
functionality of the terminal emulation. The terminal component holds a link to the COM 
port that provides the incoming data stream, and passes all of this data directly to the 
emulator. The emulator, by use of its terminal parser instance, will interpret the data and 
modify the buffer (a TAdTerminalBuffer instance) to hold the new representation of the 
terminal display. The terminal component will also pass to the emulator all keystrokes 
entered by the user, so that the emulator, with the use of its keyboard mapping component, 
can identify the keystroke and convert it into the correct response to the host computer. 
Every now and then, especially if the terminal component is using lazy writing, the terminal 
will tell the emulator to draw a depiction of the current state of the terminal display on the 
terminal component’s canvas.

If you set the Terminal property to nil, the emulator will detach itself from the previous 
terminal component. This component will then use its internal TTY emulator.

See also: TAdTerminal.ComPort, TAdTerminal.Emulator
The TAdTerminalEmulator Class     261

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The TAdTTYEmulator Class
The TAdTTYEmulator class emulates a teletype terminal, one that doesn’t support any 
terminal control sequences and one that merely displays every character received. Similarly 
there is no conversion of keystrokes either: if a key for a displayable characters is pressed, 
that character is sent to the host without interpretation.

The following properties are nil for a TAdTTYEmulator instance: Parser, 
KeyboardMapping, and CharSetMapping. These objects are not required by the TTY 
emulator and so are never created. The TTY emulator does maintain a terminal buffer 
object. 

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

" TAdTerminalEmulator (ADTrmEmu). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

TAdTTYEmulator (ADTrmEmu)

Properties
" Buffer

" CharSetMapping

" KeyboardMapping

" NeedsUpdate

" Parser

" Terminal

! Version

Methods
" BlinkPaint

" GetCursorPos

" KeyDown

" KeyPress

" LazyPaint

" Paint
62     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The TAdVT100Emulator Class
The TAdVT100Emulator class emulates a Digital Equipment Corporation (DEC) VT100 
terminal. It also supports some common extensions to the normal VT100 escape sequence 
set, namely support for multiple colors and support for inserting, erasing and deleting 
characters. 

The TAdVT100Emulator class provides support for the standard VT100 terminal modes. 
These are as follows:

• Line feed/newline: whether the line feed character inserts a new line or merely 
advances the cursor to the next line with a possible scroll.

• Cursor key mode: whether the cursor movement keys send application mode 
sequences or cursor mode sequences.

• ANSI/VT52 mode: whether the terminal interprets ANSI escape sequences or the 
restricted VT52 sequences.

• Column mode: whether the terminal displays 80 or 132 characters across.

• Scrolling mode: whether the terminal jump scrolls or smooth scrolls. Although the 
VT100 emulator maintains this setting, all scrolling is performed with jump scrolls.

• Screen mode: whether the display is normal or reverse-imaged.

• Origin mode: whether the home position for the cursor obeys the current scrolling 
region or not.

• Wraparound mode: whether the terminal wraps the cursor to column 1 of the next 
line when a character is displayed in the final column.

• Auto repeat: whether keys auto-repeat or not when held down.

• Interface mode: whether the terminal displays with 240 or 480 scanlines. Although 
the VT100 emulator maintains this setting, it does not perform any action when it 
changes.

• Graphic processor option: whether the terminal uses its GPO. Although the VT100 
emulator maintains this setting, it does not perform any action when it changes.

• Keypad mode: whether keys on the numeric keypad send numeric characters or 
escape sequences.
The TAdVT100Emulator Class     263

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
There are several escape sequences sent by the host computer to which the VT100 terminal 
must respond. The VT100 emulator sends the responses shown in Table 8.2.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

" TAdTerminalEmulator (ADTrmEmu). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

TAdVT100Emulator (ADTrmEmu)

Properties
ANSIMode

AppKeyMode

AppKeyPadMode

AutoRepeat

" Buffer

" CharSetMapping

Col132Mode

GPOMode

Interlace

" KeyboardMapping

LEDs

" NeedsUpdate

NewLineMode

" Parser

RelOriginMode

RevScreenMode

SmoothScrollMode

" Terminal

! Version

WrapAround

" BlinkPaint

" GetCursorPos

" KeyDown

" KeyPress

" LazyPaint

" Paint

Methods
" BlinkPaint

" GetCursorPos

" KeyDown

" KeyPress

" LazyPaint

" Paint

Table 8.2: VT100 emulator escape sequence responses

Request Response

Cursor position report The position of the cursor (<Esc>[ row ; col R).

Status report Terminal OK (<Esc>[0n).

What Are You? Base VT100, no options (<Esc>[?;0c).

VT52 Identity request VT100 acting as VT52 (<Esc>/Z).
64     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

ANSIMode run-time property

property ANSIMode : Boolean

Determines whether the terminal acts on ANSI or VT52 sequences.

The VT100 terminal can act on two different and separate sets of terminal control 
sequences. If ANSIMode is True, the parser will only interpret ANSI escape sequences, and 
VT52 sequences are ignored. If False, the parser only understands the restricted VT52 
command sequence set and all ANSI escape sequences are ignored. 

It is the host computer that determines this mode. Although you can change this property it 
is inadvisable to do so: bizarre displays may result.

AppKeyMode run-time property

property AppKeyMode : Boolean

Determines which sequences are sent for the cursor movement keys.

The VT100 terminal can send two different escape sequences for the cursor movement keys 
(the arrow keys). DEC documentation calls them application mode and cursor key mode. 

It is the host computer that determines this mode. Although you can change this property it 
is inadvisable to do so: it may result in the host computer not understanding keystrokes.

AppKeypadMode run-time property

property AppKeypadMode : Boolean

Determines which sequences are sent for the numeric keypad.

The VT100 terminal can send two different escape sequences for the numeric keypad 
(including the PF keys). DEC documentation calls them application keypad mode and 
numeric keypad mode. 

It is the host computer that determines this mode. Although you can change this property it 
is inadvisable to do so; it may result in the host computer not understanding keystrokes.
The TAdVT100Emulator Class     265

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

AutoRepeat run-time property

property AutoRepeat : Boolean

Determines whether held down keys auto-repeat.

The VT100 terminal supports turning off auto-repeat for keys held down on the keyboard. 
In general, auto-repeat is on. 

On the VT100 the user most often sets this mode, not the host computer.

Col132Mode run-time property

property Col132Mode : Boolean

Determines whether to display 80 or 132 characters across the display.

The VT100 terminal can support two display widths: 80 characters or 132 characters across. 
If Col132Mode is True, the terminal is displaying at 132-column resolution. If False, the 
norm, the terminal is displaying at 80-column resolution.

It is the host computer that determines this mode. Although you can change this property it 
is inadvisable to do so: it may result in bizarre displays since the host is assuming something 
that is no longer true.

GPOMode run-time property

property GPOMode : Boolean

Determines whether the graphics processor option is active.

Although maintained, the VT100 emulator does nothing with this property. Note that the 
VT100 emulator will respond to a “What are you?” request with a “basic VT100 with no 
options” reply, which disables any possibility of using the graphics processor option.

Interlace run-time property

property Interlace : Boolean

Determines whether to use 240 or 480 scanlines.

The VT100 terminal can display using 240 scanlines (True) or 480 (False). Although 
maintained, the VT100 emulator does nothing with this property.
66     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

LEDs read-only, run-time property

property LEDs : Integer

Returns the state of the LEDs on the VT100 keyboard.

The VT100 keyboard has a set of four LEDs embedded in the face of the keyboard. The host 
computer can set them on or off if required. The LEDs property returns an integer value as a 
binary representation of the current state of the LEDs: if the first LED is on, bit 0 is set in the 
property value; if the second LED is on, bit 1 is set and so on.

The LEDs are only visual, they do not affect the use of the keyboard or functionality of the 
terminal at all. Indeed, the host computer cannot even read their state.

NewLineMode run-time property

property NewLineMode : Boolean

Determines the action of a line feed character. 

A line feed character (hex 10) received by a VT100 terminal can do one of two things. If this 
property is False, the cursor is advanced one row down, keeping in the same column, 
scrolling the display up if necessary. The Enter key sends a single <CR> character.

If this property is True, the cursor is advanced one row down, moving to the first column, 
scrolling the display up if necessary. The Enter key sends a pair of characters: <CR><LF>.

It is the host computer that determines this mode. Although you can change this property it 
is inadvisable to do so: it may result in bizarre displays since the host is assuming something 
that is no longer true.

RelOriginMode run-time property

property RelOriginMode : Boolean

Determines where the home position is to be found.

If this property is False, the cursor home position is at the top left corner of the display, even 
if a scrolling region has been defined. Rows and columns are counted from this origin (this 
can be viewed as absolute position mode). Rows and columns are always counted from 1. 
Cursor position commands can act outside the active scrolling region.
The TAdVT100Emulator Class     267

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

If this property is True, the cursor home position is at the top left corner of the scrolling 
region. Rows and columns are counted from this origin (this can be viewed as relative 
position mode—positions are relative to the scrolling region). Rows and columns are always 
counted from 1. Cursor position commands only act inside the active scrolling region.

It is the host computer that determines this mode. You can change this property to write text 
outside of the scrolling region, but it is advisable to change it back immediately; otherwise, it 
may result in bizarre displays since the host is assuming something that is no longer true.

RevScreenMode run-time property

property RevScreenMode : Boolean

Determines whether the display is in reverse image or not.

If this property is False, normal text is shown as white on black. If True, normal text is shown 
in reversed: as black on white. 

On the VT100 the user most often sets this mode, not the host computer, although the host 
can change the mode if it wishes.

SmoothScrollMode run-time property

property SmoothScrollMode : Boolean

Determines whether scrolling is smooth or jumps.

The VT100 terminal can scroll the display in two modes: a smooth scroll, or a jump scroll. 
Although maintained, the VT100 emulator does nothing with this property.

WrapAround run-time property

property WrapAround : Boolean

Determines whether displayed text wraps at the right margin.

If this property is False, text received when the cursor is at the right hand side does not cause 
the cursor to be moved to the first column of the next row.

If this property is True, text received when the cursor is at the right hand side will cause the 
cursor to be moved to the first column of the next row to display all the text.

It is the host computer that determines this mode. It is inadvisable to change this mode, 
otherwise it may result in bizarre displays since the host is assuming something that is no 
longer true.
68     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The TAdTerminal Component
The TAdTerminal component represents the visual part of a terminal. It is the only visual 
component in the Async Professional family of terminal classes. It is responsible for 
maintaining the window handle and for performing the low-level processing to get all the 
possible keystrokes available on a PC keyboard.

Apart from this, it performs next to no work itself, handing off most of the display and other 
capabilities to an emulator component (a descendant of TAdTerminalEmulator). Essentially, 
the terminal component acts as a conduit between the PC screen and keyboard and the 
other classes that perform all of the work.

The main behaviors of the terminal component and its associated objects are as follows:

• Receives characters from the serial device and passes them onto the emulator for 
interpretation and processing.

• Traps all keystrokes and passes them onto the emulator for conversion into their 
terminal equivalents.

• The emulator maintains a buffer of several matrices, one for each of text, background 
color, text color, attributes, and character sets. This buffer stores the information 
needed to show the visual representation of the terminal.

• The terminal has the capability of maintaining a scrollback buffer to enable the user 
to scroll back through old data that has scrolled off the display. The terminal will 
automatically show scrollbars in that case.

• The terminal will automatically display scrollbars if the client window is smaller than 
the terminal display.

• If the terminal component is dropped onto a form and there is no existing emulator 
component on that form, the terminal will create an internal instance of a TTY 
(teletype) emulator. This means that the terminal component can be used as is for 
simple tasks.

In order for the terminal’s window to show data, there are two objects that must be 
connected to it: the COM port (a TApdComPort component), and an emulator (a 
TAdTerminalEmulator descendant component). To use a terminal component, you would 
drop a terminal, a COM port, and a terminal emulator onto the form and connect them up 
by setting the ComPort and Emulator properties of the terminal. Once they are connected 
up in this fashion, you can set the terminal’s Active property to True and start using the 
terminal.
The TAdTerminal Component     269

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The COM port provides the terminal with incoming bytes from a serial communications 
device, such as a serial port or Winsock layer. The terminal, in turn, provides the data that 
must be output to the serial device. In and of itself, the terminal component doesn’t know 
what to do with the incoming data; it has no built in knowledge of terminal control 
sequences and how to separate the text from them. Hence, it passes the incoming data 
stream directly to the terminal emulator component. This component in turn would use a 
parser object to identify terminal control commands, a buffer object to store the displayable 
data, and so on. The terminal would also pass all keyboard input to the emulator as well, so 
that the emulator can process the keystrokes and determine what to pass back to the host (it 
would use a keyboard mapping object to do this). The emulator will use the COM port of 
the terminal component to pass back data through the serial device to the host computer.

As for display, the emulator would assume control over the window handle of the terminal 
component and draw directly onto its canvas. 

The reason for this more complex design—rather than rolling the emulator and terminal 
components into one—is flexibility. With this design it is possible to switch emulators on the 
fly without having to destroy the window handle used by the terminal and thus avoiding 
flicker. Hence, you can easily start off with a TTY emulator for the terminal, and switch to a 
VT100 emulator later on. The terminal component thus stores generic information about a 
terminal (e.g., the number of characters across and down), whereas the emulator 
component holds specific information about a specific terminal (e.g., whether to accept 
VT52 or ANSI sequences for a VT100 terminal).
70     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Figure 8.2 shows the interrelationship between the client window, the terminal display and 
the scrollback buffer.

The client window acts as a viewport on the terminal display. In general, you would make 
sure that the client window was large enough to display all of the data in the terminal display. 
If that is so, no scroll bars are shown. Should the client window be smaller vertically, or 
horizontally, or both, than the terminal display, the relevant scrollbars are automatically 
shown to enable the user to scroll though and view the entire terminal display.

 Figure 8.2: Interrelationship between the client window, the terminal display, and the scrollback buffer.

Columns

ClientCols

ROW 

ClientRows

Sc
ro

llb
ac

kR
ow

s

-1
0
1
2

Rows

SCROLLBACK
BUFFER

TERMINAL
DISPLAY

TERMINAL
CLIENT

WINDOW

ClientOrigin
The TAdTerminal Component     271

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
If scrollback mode is activated, the client window acts as a viewport on the entire scrollback 
buffer, not just on the terminal display. Scrollbars would automatically be shown, if 
required, to enable the user to scroll through the entire buffer. In scrollback mode, the 
terminal component no longer processes any data from the serial device nor does it trap 
keyboard messages and pass them on to the emulator.

The terminal component also supports a lazy write mode. In this mode, incoming data is 
processed but not displayed until one of two conditions occurs: either a certain number of 
bytes is received, or a certain amount of time has elapsed. Once the required time has gone 
by or the number of bytes has been received, the terminal component will force its display to 
be updated, and the process starts all over again. Fine tuning of these two properties will 
result in a terminal that is more responsive, and has more efficient and smoother behavior.

Font handling
The issue of fonts becomes complex when dealing with a terminal that should support 
displaying non-standard glyphs for characters. For example, when emulating the VT100 
terminal, the standard Windows fixed pitch fonts do not have every single glyph. The 
CharSet mapping class attempts to ameliorate the situation by providing a mapping from a 
character in a character set to a glyph in a Windows font. Apart from the simple TTY 
emulation, there will unfortunately be several fonts in action for the usual terminal 
emulations. The ability to switch fonts easily as with simple components cannot apply in the 
case of the terminal. The terminal’s situation is entirely more complex: text displayed may 
contain glyphs from several unrelated fonts. 

What the terminal component and its associated classes attempt to do is to make the 
displayed glyphs the same point size. The point size of the fonts used by the terminal is taken 
to be the same as the Size property of its Font property. Hence, to change the size of the text 
displayed by the terminal, you would need to change the Font.Size property. For certain 
emulations, the terminal’s Font property will in fact determine the font with which the text is 
displayed—in other words, there is no CharSet mapping required. 

The terminal classes will allow the use of proportional fonts. However, it should be noted 
that text displayed using these proportional fonts will be shown in fixed size character cells, 
and proportional fonts displayed in fixed pitch can look awkward and clunky. Our advice is 
to try and stick to fixed pitch fonts wherever possible.
72     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Capturing data
The terminal component has a built-in facility to capture data, that is, to write all data 
received by the serial port to a capture file. The capture file can be used for later review of an 
on-line session.

The data is written to the capture file before the emulator has an opportunity to see the data 
stream and to parse out the terminal control sequences. Hence, the capture file is not a 
simple text file, it could consist of numerous control characters and escape sequences as well 
as normal text.

Characters typed at the keyboard are not saved in the capture file. However, such characters 
usually end up in the capture file anyway, since the host computer echoes them back to the 
terminal.

Using the clipboard
The terminal window provides support for copying displayed text to the Windows 
clipboard. Because the text in a terminal window is read-only, cutting and pasting are not 
supported. Block marking using the cursor keys is also not supported by the terminal 
window, since it implies that you can move the caret and in general it is the remote computer 
that controls the location of the caret.

The terminal window does support the following:

• Normal mode block marking using the mouse.

• Scrollback mode block marking using the mouse.

• Copying the marked block to the clipboard.

When in normal mode, only the visible contents of the terminal window can be marked. 
When in scrollback mode, the visible contents can be marked and, by moving the cursor 
above or below the window, the window can be scrolled to allow any part of the scrollback 
buffer to be marked.
The TAdTerminal Component     273

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

"

You can copy the marked block to the clipboard by calling the terminal window routine 
CopyToClipboard.

Caution: Although the CopyToClipboard method will copy the marked text to the 
clipboard, you should be aware that what you see may not be what you get. The terminal 
classes in Async Professional support the notion of different character sets. In other words, 
with certain emulations, the glyphs that are displayed on the terminal display may seem to 
have no connection with the characters that are actually there. For example, with a VT100 
terminal, when using the USASCII character set the character ‘m’ will be displayed as a 
lowercase ‘m’. However, when using the special graphics character set, the character ‘m’ is 
rendered as the lower left corner of the line draw set (the glyph that looks like an ‘L’). The 
problem is that, when you copy the marked text to the clipboard, you will lose the character 
set definition for each character. Hence, you will just get the character ‘m’ in the clipboard 
and not know whether it really was shown as an ‘m’ or some other glyph.
74     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TWinControl (VCL)

! TApdBaseWinControl (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TAdTerminal (ADTrmEmu)

Properties
Active

Attributes

BackColor

BlinkTime

Capture

CaptureFile

CharHeight

CharSet

CharWidth

Columns

ComPort

Emulator

ForeColor

HalfDuplex

LazyByteDelay

LazyTimeDelay

Line

Rows

ScrollbackRows

Scrollback

UseLazyDisplay

! Version

WantAllKeys 

Methods
Clear

ClearAll

CopyToClipboard

CreateWnd

Create

Destroy

DestroyWnd

WriteChar

WriteString

Events
OnCursorMoved
The TAdTerminal Component     275

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Reference Section

Active property

property Active : Boolean

Default: True

Determines whether the terminal is accepting serial events.

Setting Active to True causes the terminal to start processing serial and keyboard data and to 
display this information in the terminal window. At run time, if an attempt is made to set 
Active True without a serial port component being assigned to the ComPort property, or 
without an emulator component being assigned to the Emulator property, the attempt is 
ignored. It is acceptable to set Active to True at design time; this causes the terminal to start 
processing events automatically when the form is created at run time.

You must set Active to False if the terminal is being used in combination with another 
component, such as a file transfer component, that needs exclusive access to some or all of 
the data stream. During a file transfer, set Active to False for the duration of the transfer and 
True when the transfer is over and data should appear in the terminal window again.

The following example sets Active to False as it starts receiving a file to prevent the terminal 
from displaying the received data. An OnProtocolFinish event re-enables the terminal 
window once the protocol informs the application that the transfer is complete.

AdTerminal1.Active := false;
ApdProtocol1.StartReceive;
...
procedure TMyForm.ProtocolFinish(

CP : TObject; ErrorCode : Integer);
begin

AdTerminal1.SetFocus;
AdTerminal1.Active := true;

end;

See also: ComPort, Emulator
76     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

Attributes run-time, array property

property Attributes[aRow, aCol : Integer] : TAdTerminalCharAttrs

TAdTerminalCharAttr = (tcaBold, tcaUnderline, tcaStrikethrough,
tcaBlink, tcaReverse, tcaInvisible);

TAdTerminalCharAttrs = set of TAdTerminalCharAttr;

Accesses the attributes of text in the display.

Attributes enables the direct manipulation of the attributes for characters displayed by the 
terminal. Attributes is an array property indexed by a combination the row number (aRow) 
and the column number (aCol). Both aRow and aCol are one-based: the home position of 
the terminal display is at row 1 column 1. Note, however, that if you have a scrollback buffer 
that aRow can take on negative values, as well, to identify non-visible rows in the scrollback 
buffer. 

The result value is a set of possible attributes. They are tcaBold for bold text; tcaUnderline 
for underlined text; tcaStrikethrough for text that has a line through it, as if it had been 
deleted (this text is struck through); tcaBlink for blinking text; tcaReverse for reversed text; 
and tcaInvisible for text that is not visible.

The following example sets all text on row 5 to blinking:

for I := 1 to AdTerminal1.Columns do begin
AdTerminal1.Attributes[5, I] :=

AdTerminal1.Attributes[5, I] + [tcaBlink];

However, do notice that this direct manipulation is fairly inefficient.

See also: BackColor, CharSet, ForeColor
The TAdTerminal Component     277

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

BackColor run-time, array property

property BackColor[aRow, aCol : Integer] : TColor

Accesses the background color of text in the display.

BackColor enables the direct manipulation of the background color for characters displayed 
by the terminal. BackColor is an array property indexed by a combination the row number 
(aRow) and the column number (aCol). Both aRow and aCol are one-based: the home 
position of the terminal display is at row 1 column 1. Note, however, that if you have a 
scrollback buffer that aRow can take on negative values, as well, to identify non-visible rows 
in the scrollback buffer. 

However, do notice that this direct manipulation is fairly inefficient.

See also: Attributes, CharSet, ForeColor

BlinkTime property

property BlinkTime : Integer

Default: 500

Defines the time in milliseconds between cycles for blinking text.

Some terminals enable text displayed by the terminal to be blinking. The BlinkTime 
property defines the elapsed time for a full cycle for the text being displayed, being invisible, 
and being displayed again. 

Note that, to provide this functionality, the terminal sets up a timer to tick at this rate. A 
Windows timer is low-priority; if the PC is performing other work, it will seem as if the 
blinking text has either stopped blinking or has disappeared completely. Also, if you set the 
BlinkTime property too low, the terminal and emulator will spend most of their time 
updating the window, especially if there’s a lot of blinking text.

Capture property

property Capture : TAdCaptureMode

TAdCaptureMode = (cmOff, cmOn, cmAppend);

Default: cmOff

Defines whether the data received by the terminal is captured to file.

The Capture property has only two values on reading: whether the terminal is capturing 
data (cmOn will be returned) or not (cmOff will be returned). 
78     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

It has three possible values on writing: cmOn, cmOff, or cmAppend. If the value written is 
cmAppend and the current value is cmOff, the capture file is opened in non-sharing mode 
for appending data and the value of the Capture property is then set to cmOn. Note that if 
the file doesn’t exist at the time the property is set, it will be created. If the value written is 
cmAppend and the current value is cmOn, the assignment is ignored and nothing happens. 

If the value written is cmOn and the current value is cmOff, the file is created. If it existed 
prior to the assignment, it will be overwritten.

The name of the file where captured data is written is given by the CaptureFile property.

All data coming into the terminal is written to the file without any effort being made to parse 
it or identify terminal control sequences. Thus for a complex terminal emulation the data in 
the capture file will consist of intermingled text and terminal control sequences.

If the CaptureFile property has not been set to the name of a file (i.e., it is the empty string), 
setting Capture to cmOn or cmAppend will have no effect. The attempt will be ignored and 
no exception will be raised. If the CaptureFile property has been set, an attempt is made to 
create or open the file so named. This operation can of course fail for any of a number of 
different reasons. Internally, the terminal uses a file stream—TFileStream—to access the 
file, so any I/O exceptions raised will be those used by the standard Delphi class.

See also: CaptureFile

CaptureFile property

property CaptureFile : string

Default: “APRO.CAP”

Defines the name of the file where the terminal writes captured data.

It is possible to change the name of the file where captured data is sent while data is being 
captured. Internally, the terminal component sets the Capture property to cmOff, changes 
the value of the CaptureFile property to the new filename, and then sets the Capture 
property to cmOn again. This does mean that the file named by the new value of CaptureFile 
is created afresh: the old file, if it exists, is overwritten. If you wish to append to the file with 
the new name, you will need to manually set Capture to cmOff, set the value of CaptureFile 
to the new filename, and then set Capture to cmAppend.

See also: Capture
The TAdTerminal Component     279

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

CharHeight read-only, run-time property

property CharHeight : Integer

Defines the height in pixels of a character cell for the terminal.

The terminal display can be viewed as a matrix of fixed-sized character cells. There are Rows 
cells vertically and Columns cells horizontally. The size of these character cells is calculated 
as the maximum required to display all of the possible characters in all of the possible 
character sets. Since different characters in different character sets could be displayed using 
different Windows fonts, the character cell size can be viewed as a function of the different 
possible Windows fonts used by the emulator. The value of CharHeight is the maximum 
needed to display any glyph.

The overall size of the characters displayed by the terminal is given by the Size property of 
the Font property of the terminal component. The Font property is used as the default font 
for those terminal emulations that don’t support character sets. For terminals that do 
support character sets, the size of the glyphs is given by the Font.Size value. 

See also: CharWidth

CharSet run-time, array property

property CharSet[aRow, aCol : Integer] : Byte

Accesses the character set of text in the display.

The Async Professional terminal supports the notion of different character sets for different 
text on the display. Normally the text is shown in one character set only, but in certain cases 
(for example, the line draw glyphs with the VT100 terminal) the glyphs shown on the 
terminal are drawn from other character sets. Rather than define an enumerated type or 
class for each character set used by the terminal, character sets are identified by an 
anonymous byte value. It is up to the emulator to define which byte value represents which 
character set.

CharSet enables the direct manipulation of the character set for characters displayed by the 
terminal. CharSet is an array property indexed by a combination the row number (aRow) 
and the column number (aCol). Both aRow and aCol are one-based; the home position of 
the terminal display is at row 1 column 1. Note, however, that if you have a scrollback buffer 
that aRow can take on negative values, as well, to identify non-visible rows in the scrollback 
buffer. 

However, do notice that this direct manipulation is fairly inefficient.

See also: Attributes, BackColor, ForeColor
80     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

CharWidth read-only, run-time property

property CharWidth : Integer

Defines the width in pixels of a character cell for the terminal.

The terminal display can be viewed as a matrix of fixed-sized character cells. There are Rows 
cells vertically and Columns cells horizontally. The size of these character cells is calculated 
as the maximum required to display all of the possible characters in all of the possible 
character sets. Since different characters in different character sets could be displayed using 
different Windows fonts, the character cell size can be viewed as a function of the different 
possible Windows fonts used by the emulator. The value of CharWidth is the maximum 
needed to display any glyph.

The overall size of the characters displayed by the terminal is given by the Size property of 
the Font property of the terminal component. The Font property is used as the default font 
for those terminal emulations that don’t support character sets. For terminals that do 
support character sets, the size of the glyphs is given by the Font.Size value. 

See also: CharHeight

Clear method

procedure Clear;

Clears the terminal display.

To clear the display, the terminal component will internally scroll the window up by Rows 
lines. This means that the current display will scroll into the non-visible part of the 
scrollback buffer and can be viewed in scrollback mode. The top lines of the scrollback 
buffer will of course disappear, being completely scrolled off the top of the buffer.

(The Clear method is the equivalent of the ClearWindow method of the deprecated 
TApdTerminal.)

See also: ClearAll
The TAdTerminal Component     281

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

"

ClearAll method

procedure ClearAll;

Clears the entire scrollback buffer including the terminal display.

To clear the scrollback buffer, the terminal sets all characters in the buffer to the space 
character; all attribute values to the empty set (equivalent to “normal” text); all background 
color values to the Color property; all foreground color values to Font.Color; all charset 
values to 0.

(The ClearAll method is the equivalent of the ClearBuffer method of the deprecated 
TApdTerminal.)

See also: Clear

Columns property

property Columns : Integer

Default: 80

Defines the number of columns across the terminal display.

The value of the Columns property is the number of standard-sized characters that can be 
written across the terminal display. In general, it is a value like 80, but in certain 
circumstances it could be 132. If the original terminal supports double-width characters, the 
value of Columns reflects that for standard-sized characters, not the double-width ones. 

Altering the value of Columns will cause the underlying buffer to be resized. The terminal 
will attempt to save as much of the original data as possible during the resize operation.

Setting the value of Columns to less than that supported by the original terminal itself is 
liable to produce funny looking displays, since the host computer will assume that the 
terminal is the correct size and position text accordingly.

If the host computer switches the terminal into a mode with a different number of columns 
(say, from 80 to 132 characters across), the value of Columns will change to reflect that 
switch.

Caution: Because of the structure of the buffer class, in Delphi 1, the product of Columns 
and ScrollbackRows cannot exceed 16,383. For an 80 column display, that means the 
number of scrollback rows cannot exceed 204. There is no such limitation with 32-bit 
compilers.
82     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ComPort property

property ComPort : TApdCustomComPort

Defines the serial device to which the terminal is connected.

ComPort is usually set automatically at design time to the first TApdCustomComPort 
descendant component the terminal component finds on the form. If necessary, use the 
Object Inspector to select a different TApdCustomComPort descendant component.

Setting the ComPort property at run time is necessary only when using a dynamically 
created TApdCustomComPort object or when selecting among several 
TApdCustomComPort descendant components.

Note that setting the value of ComPort may not be enough to get the terminal to display 
data. You must also activate the terminal by ensuring that Active is set to True, and you must 
also supply a terminal emulator component by setting the Emulator property to process the 
incoming data stream.

See also: Active, Emulator

CopyToClipboard method

procedure CopyToClipboard;

Copies the marked block to the clipboard.

This routine copies the currently marked block to the Windows clipboard. The block is 
copied in CF_TEXT format, where a carriage return/line feed follows each line.

Please read the caution within the section entitled “Using the clipboard” on page 273 in the 
introduction to the TAdTerminal component. This discusses why, after calling this method, 
the clipboard may not contain what you see on the display.

Create constructor

constructor Create(aOwner : TComponent); override;

Creates an instance of the terminal component.

The constructor will also create an instance of a teletype emulator (TTY emulator) for use 
when the Emulator property is not set. This ensures that the terminal at least functions as a 
TTY terminal without any extra work. 

See also: Destroy
The TAdTerminal Component     283

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

CreateWnd method

procedure CreateWnd; override;

Creates the window handle for the terminal component.

Once the window handle has been created, this method installs a keyboard hook in order to 
trap all keystrokes made by the user.

See also: DestroyWnd

Destroy destructor

destructor Destroy; override;

Destroys an instance of the terminal component.

The destructor will free all memory and resources allocated by the instance. Of particular 
note is that if data is being captured when Destroy is called, the capture file is closed 
properly first. 

See also: Create

DestroyWnd method

procedure DestroyWnd; override;

Destroys the window handle of the terminal component.

If a keyboard hook was properly installed by the CreateWnd procedure, DestroyWnd will 
remove it before destroying the window handle associated with the terminal component.

See also: CreateWnd

Emulator property

property Emulator : TAdTerminalEmulator

Defines the terminal emulator that processes incoming data.

The terminal component is merely a conduit between the serial device defined by the 
ComPort property and the terminal emulator defined by Emulator. The terminal 
component also provides the window handle, and hence, the canvas, that the emulator will 
use to draw the terminal display.
84     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The emulator processes the input data stream looking for terminal control sequences. It will 
then use the terminal component’s window handle to paint a representation of the terminal 
screen. The terminal component also traps keystrokes and passes them to the emulator. The 
emulator will then convert these keystrokes into valid messages or sequences for the host 
computer and use the terminal’s ComPort to pass them back.

The Emulator property is usually set automatically at design time to the first 
TAdTerminalEmulator descendant component the terminal component finds on the form. If 
necessary, use the Object Inspector to select a different TAdTerminalEmulator descendant 
component.

Usually, setting the Emulator property at run time is necessary only when switching 
between different terminal emulations. The terminal does not clear the display at such 
times, it is up to the new terminal emulator to reset its buffer and to display the cleared 
screen.

Note that setting the value of Emulator may not be enough to get the terminal to display 
data. You must also activate the terminal by ensuring that Active is set to True, and you must 
also supply a COM port component by setting the ComPort property to an appropriate 
TApdCustomComPort component.

See also: Active, ComPort

ForeColor run-time, array property

property ForeColor[aRow, aCol : Integer] : TColor

Accesses the foreground color of text in the display.

ForeColor enables the direct manipulation of the foreground color (the color of the glyphs 
themselves) for characters displayed by the terminal. ForeColor is an array property indexed 
by a combination the row number (aRow) and the column number (aCol). Both aRow and 
aCol are one-based: the home position of the terminal display is at row 1 column 1. Note, 
however, that if you have a scrollback buffer that aRow can take on negative values, as well, 
to identify non-visible rows in the scrollback buffer. 

See also: Attributes, BackColor, CharSet
The TAdTerminal Component     285

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

HalfDuplex property

property HalfDuplex : Boolean

Default: False

Determines whether local data is echoed to the terminal display.

If HalfDuplex is False (the default), data entered at the local keyboard is displayed only if the 
remote host computer echoes it back.

If HalfDuplex is True, data entered at the local keyboard is automatically displayed in the 
terminal window. If the host computer is echoing the input data back as well, each character 
is displayed twice.

LazyByteDelay property

property LazyByteDelay : Integer

Default: 128

Determines the number of bytes received before the display is forcibly repainted.

The TAdTerminal supports a lazy writing mode. When this mode is active, rather than 
update the display every time a new character appears from the serial device, the terminal 
and its associated classes will only display new data after a certain amount of time, or after a 
certain number of bytes have been received, or both. This gives the terminal a more efficient 
and smoother feel. The value of LazyByteDelay defines how many bytes must be received 
before the terminal window is updated. The default value is a compromise between 
efficiently handling the display and providing timely visual feedback to the user.

See also: LazyTimeDelay, UseLazyWrite

LazyTimeDelay property

property LazyTimeDelay : Integer

Default: 250

Determines the number of elapsed milliseconds before the display is forcibly repainted.

The TAdTerminal supports a lazy writing mode. When this mode is active, rather than 
update the display every time a new character appears from the serial device, the terminal 
and its associated classes will only display new data after a certain amount of time, or after a 
certain number of bytes have been received, or both. This gives the terminal a more efficient 
and smoother feel. The value of LazyTimeDelay defines how many milliseconds must pass 
before the terminal window is updated. The default value is a compromise between 
efficiently handling the display and providing timely visual feedback to the user.

See also: LazyByteDelay, UseLazyWrite
86     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

"

!

Line run-time, array property

property Line[aRow : Integer] : string

Accesses the text data for a row in the display.

Line returns and sets the characters that make up a row in the terminal. It enables the direct 
manipulation of the text displayed by the terminal. Line is an array property indexed by the 
row number (aRow). aRow is one-based: the home position of the terminal display is at row 
1 column 1. Note, however, that if you have a scrollback buffer that aRow can take on 
negative values, as well, to identify non-visible rows in the scrollback buffer. 

However, do notice that this direct manipulation is fairly inefficient.

Caution: Line returns the character values that make up a row. For some terminals, the 
glyph you see on the terminal for a particular character value is not only based on the 
character value itself, but also on the character set that is being used to display that character. 
For example, on a VT100 terminal, if the character ‘m’ is displayed using the USASCII 
character set, you will see the usual lower case ‘m’ glyph on the display. However, if the same 
character ‘m’ is displayed using the Special Characters character set, you will see the lower 
left corner linedraw glyph (the one that looks like an ‘L’). All the Line property will return is 
the ‘m’ character value at that particular column position. 

See also: Attributes, BackColor, CharSet, ForeColor

Rows property

property Rows : Integer

Default: 24

Defines the number of rows down the terminal display.

The value of the Rows property is the number of standard-sized characters that can be 
written vertically on the terminal display. In general, it is a value like 24 or 25. If the original 
terminal supports double-height characters then the value of Rows still reflects that for 
standard-sized characters, not the double-height ones. 
The TAdTerminal Component     287

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Notice that Rows is the number of rows on the original terminal, not the number of rows in 
the scrollback buffer. The terminal display will consist of Rows lines, with Columns 
characters in each.

Altering the value of Rows may cause the underlying buffer to be resized. The terminal will 
attempt to save as much of the original data as possible during the resize operation. The data 
will be preserved from the bottom of the terminal upwards. In other words, if you reduce the 
number of rows from 20 to 15, say, you will see the bottom 15 rows of the original display 
after the operation completes, not the top 15.

Setting the value of Rows to less than that supported by the original terminal itself is liable to 
produce funny looking displays, since the host computer will assume that the terminal is the 
correct size and position text accordingly.

The rows in the terminal display are counted from 1, with the top row of the terminal being 
row 1.

Scrollback property

property Scrollback : Boolean

Default: False

Defines whether the terminal is in scrollback mode.

If Scrollback is set True, the terminal is placed into scrollback mode. In this mode, 
keystrokes are no longer translated into their terminal equivalents and instead serve to 
navigate through the scrollback buffer. Hence, in scrollback mode, the Page Up/Page Down 
keys will move the user through the scrollback buffer, as will the standard arrow keys.

If scrollback mode is activated, the terminal will also no longer receive data from the serial 
device. It is recommended that you impose flow control on the COM port when you switch 
into scrollback mode (either send an XOFF character or drop a hardware flow control 
signal), to help avoid the dispatcher’s input buffer overflowing. The terminal does not do 
this itself. Imposing flow control helps keep the terminal data stable to allow the user to 
navigate though the scrollback buffer in a profitable manner. Obviously, when you leave 
scrollback mode, you would end the flow control condition to allow more data to come 
through and be processed.

See also: ScrollbackRows
88     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ScrollbackRows property

property ScrollbackRows : Integer

Default: 200

Defines the number of rows in the scrollback buffer.

The scrollback buffer consists of the visible part of the terminal display, together with the 
previous data that has scrolled off the top of the terminal display. In general you would set 
ScrollbackRows such that you could hold four or five screens’ worth of previous data. 

The value of the ScrollbackRows property must be greater than or equal to the value of 
Rows. If you attempt to set ScrollbackRows to a value less than Rows, the new value is 
adjusted to be equal to Rows. No exception is generated in this situation. If the original 
terminal supports double-height characters then the value of ScrollbackRows still reflects 
that for standard-sized characters, not the double-height ones. 

Altering the value of ScrollbackRows may cause the underlying buffer to be resized. The 
terminal will attempt to save as much of the original data as possible during the resize 
operation. If the value of ScrollbackRows is reduced the data is removed from the top of the 
buffer rather than the bottom.

The rows in the terminal display are counted from 1, with the top row of the terminal being 
row 1. The rows above the actual terminal display in the scrollback area are counted 
backwards from 1. Hence, the row above the top row of the actual terminal display is row 0, 
the one above that row –1, and so on.

UseLazyDisplay property

property UseLazyDisplay : Boolean

Default: True

Defines whether the terminal immediately displays new incoming data or not.

The TAdTerminal supports a lazy writing mode. When this mode is active, rather than 
update the display every time a new character appears from the serial device, the terminal 
and its associated classes will only display new data after a certain amount of time, or after a 
certain number of bytes have been received, or both. This gives the terminal a more efficient 
and smoother feel. 

If UseLazyDisplay is False, the terminal will display every incoming character as and when it 
arrives. If UseLazyDisplay is True, the terminal will display the new data on the screen after 
LazyByteDelay bytes have been received since it last updated the window, or after 
LazyTimeDelay milliseconds have elapsed.
The TAdTerminal Component     289

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The lazy writing mode only applied to data written to the terminal, either from the serial 
device, or from the keyboard in half duplex mode, or from data explicitly written from 
calling WriteChar or WriteString. If the terminal component’s window is invalidated due to 
another window covering it and then being moved, or from the application being 
minimized and then restored, the terminal display is immediately repainted.

See also: LazyByteDelay, LazyTimeDelay

WantAllKeys property

property WantAllKeys : Boolean

Default: True

Defines whether the terminal component hooks and retrieves all keystrokes.

Part of the job of a terminal component is the ability to map the PC keyboard onto a 
terminal keyboard. This latter keyboard might be a completely different layout than the PC 
keyboard and, apart from the alphabetic key section, have different keys for different host 
functions. The keyboard mapping should attempt to match PC keys (whether they are alt-
shifted, ctrl-shifted, or whatever) onto appropriate terminal keys. 

A problem that will occur is that keys like F1, F10, Enter, Tab, and so on, have a well-defined 
meaning in the Windows world. Normally, controls on a form would ignore these keys since 
they have dialog-specific or application-wide meanings. However, for a terminal component 
it often makes sense to have these keys perform a terminal related function and to suppress 
the standard Windows meaning. If WantAllKeys is True, the terminal component will 
attempt to hook and trap all keystrokes generated while it has focus. Hence, for example, F1 
will not bring up the help system (it will not cause a WM_HELP message to be sent to the 
control), F10 will not activate the main menu of the application, and so on.

If WantAllKeys is False, the terminal component will not perform anything special with 
regard to the keyboard. It will just trap WM_KEYDOWN and WM_SYSKEYDOWN 
messages and pass them on to the emulator for processing. Standard Windows keys will 
perform their usual functions.
90     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

WriteChar method

procedure WriteChar(aCh : AnsiChar);

Writes a single character to the terminal.

The character written to the terminal will go through the same steps that a character that 
had arrived from the serial device would go through. In other words, the character is first 
passed to the emulator, which decides what to do with it. If the emulator decides that the 
character is part of a terminal control sequence, it would appear as if the character had not 
been accepted—it would not appear on the display—when in reality it had. 

The terminal will accept a character written with WriteChar at any time, even when it is 
actively receiving data from the serial device. Be aware that under these circumstances, the 
character written with WriteChar will intermingle with data from the serial device and may 
cause some bizarre behavior and displays.

Note also that the lazy write mode still applies to text written to the terminal with WriteChar. 
If UseLazyDisplay is True, the text will appear at the appropriate time. You can force the new 
data to be displayed in this case by calling the Update method.

WriteString method

procedure WriteString(const aSt : string);

Writes a string to the terminal.

The string written to the terminal will go through the same steps that characters that have 
arrived from the serial device would go through. In other words, the characters in the string 
are first passed to the emulator, which decides what to do with them. If the emulator decides 
that certain characters are part of a terminal control sequence, it would appear as if the 
string had not been fully accepted—it would not appear on the display—when in reality it 
had. You can therefore use WriteString to send terminal control sequences to the terminal to 
alter its behavior. Note that the host computer would be unaware of this change in behavior.

The terminal will accept a string written with WriteString at any time, even when it is 
actively receiving data from the serial device. Be aware that under these circumstances, the 
characters written with WriteString will intermingle with data from the serial device and 
may cause some bizarre behavior and displays.

Note also that the lazy write mode still applies to text written to the terminal with 
WriteString. If UseLazyDisplay is True, the text will appear at the appropriate time. You can 
force the new data to be displayed in this case by calling the Update method.
The TAdTerminal Component     291

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
92     Chapter 8: The Terminal Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 9: IP Telephony

Async Professional includes components to transmit data over phone lines and networks, 
and components to transmit wave recordings through voice modems, APRO also includes a 
component to transmit audio and video through the network through IP Telephony.

IP (Internet Protocol) Telephony is a technology where audio and video can be streamed 
across a network. As it’s name implies, IP Telephony uses IP as the transport layer. This 
transport layer is provided through TCP/IP. IP Telephony, in APRO, also uses TAPI 3.x, 
which is only available for Windows 2000 (future Windows versions should also support this 
implementation). TAPI 3.x, in turn, uses H.323 and the Microsoft H.323 TAPI Service 
Provider, which is installed by default.

IP Telephony includes the transmission of voice and video over the network. The network 
can be a local area network (LAN), wide area network (WAN) or the Internet. This 
technology offers the capability of establishing real-time conferencing around the globe 
using existing network topology. Using this technology you can hold a real-time conference 
(complete with audio and video), telecommuting, distance learning, and video on demand, 
to name a few of the possibilities.
     293

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
IP Telephony in Async Professional
The TApdVoIP component implements IP Telephony (also known as “Voice over IP”) 
through the services of TAPI 3.x. TAPI 3.x is available for Windows 2000. Documentation 
on the Microsoft web site confirms that future Windows versions will support the TAPI 3.x 
architecture. The TApdVoIP component implements a small subset of TAPI 3.x, limited to 
the functionality required for Voice over IP.

Since the TApdVoIP component requires TAPI 3.x, and TAPI 3.x is available only on 
Windows 2000 and later, the TApdVoIP component requires Windows 2000 or later and the 
Microsoft H.323 TAPI Service Provider. An application that contains the TApdVoIP 
component can be instantiated on an unsupported Windows version, however all 
TApdVoIP methods will raise the EVoIPNotSupported exception. To prevent this exception, 
the VoIPAvailable property can be checked, this property will be True if the required TAPI 
components are available and False if TAPI does not support it.

H.323
TAPI 3.x implements IP Telephony through the H.323 protocol. This protocol is optimized 
for the transmission of voice and video over connectionless networks that do not provide 
guaranteed quality of service (such as IP-based networks and the Internet). H.323 is a 
comprehensive ITU (International Telecommunications Union) standard for multimedia 
communications. This protocol defines call control techniques, multimedia and bandwidth 
management, and mandates for standard audio and video codecs. The H.323 protocol is 
also platform independent, which means an H.323 instance on a Windows machine can 
communicate with an H.323 instance on another operating system.

Detailed discussions, and implementation specifications, are available on the ITU Web site. 
Knowledge of H.323 is not required to use the IP Telephony components in Async 
Professional. TAPI 3 and APRO will handle all of the details for you.
94     Chapter 9: IP Telephony



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Configuration for VoIP
As previously stated, the Voice over IP functionality in the TApdVoIP component is 
available in TAPI 3.x. This TAPI version is available only for Windows 2000, although future 
Windows versions will most likely include TAPI 3.x compatibility.

The TApdVoIP component also automatically selects the H.323 TAPI device. If this device is 
not installed (it is installed by default in Windows 2000), the VoIPAvailable property is set to 
False when the component is created, and the TApdVoIP methods will raise the 
EVoIPNotSupported exception when called.

The audio and video streaming in VoIP are provided through H.323 media services (also 
installed by default in Windows 2000). These media services support selection of the audio 
input, audio output, video input and video output devices. When the TApdVoIP component 
is created, the media services are queried for supported media terminals. As the terminals 
are being queried, their capabilities are also queried. All of the supported media terminals 
are stored in the AvailableTerminalDevices property. This property is a TStrings instance, 
the Strings value is the name of the terminal; the Objects value is a TApdVoIPTerminal 
object. See the TApdVoIPTerminal description later in this chapter for details.

Audio and video device selection
There are four properties available in the TApdVoIP component to select which media 
terminal to use. The AudioInDevice property determines which device to use for audio 
input (usually a microphone). The AudioOutDevice property determines which device to 
use for audio output (usually external speakers or headset speakers). The VideoInDevice 
property determines which device to use for video input (usually a digital video camera or 
web cam installed on the system). The property values for these properties contain the name 
of the selected device. The final property for terminal selection is the VideoOutDevice 
property. This property specifies a TWinControl that is used to render the video stream 
received through the call. Any TWinControl descendent can be used, although a TPanel is 
probably the most applicable.

The default values for these terminal properties are ‘’ (empty string) for the AudioInDevice, 
AudioOutDevice and VideoInDevice, and nil for the VideoOutDevice. The default values 
disable that media type on the call. For example, if VideoInDevice is an empty string, the 
call will not be configured to support video input.

The AudioInDevice, AudioOutDevice and VideoInDevice properties are strings, which 
correspond to the DeviceName property of the associated TApdVoIPTerminal object. These 
properties can be set directly by assigning the DeviceName of the terminal to the property. 
Configuration for VoIP     295

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
These properties can also be set through the property editor. This property editor is also 
available at run time through the ShowMediaSelectDialog method. The property editor for 
these properties contains a combo box for each property as shown in Figure 9.1.

Each combo box contains the terminal types associated with the given property. The “Audio 
input” control contains only those devices that support audio input; the “Audio output” 
control contains only those devices that support audio output; the “Video input” control 
contains only those devices that support video input. When OK is clicked, the 
AudioInDevice, AudioOutDevice and VideoInDevice properties are updated to reflect the 
changes. If Cancel is clicked, the changes are disregarded.

Originating a VoIP call
When originating a call, the TApdVoIP component initializes the underlying TAPI and 
H.323 layers, and then attempts to connect to a VoIP implementation elsewhere on the 
network. The Connect method of the TApdVoIP component begins the connection attempt. 
The destination address is determined by the DestAddr string parameter of the Connect 
method. VoIP addresses can be dotted quad Internet addresses or machine names. For 
example, the following snippets will connect to a specified IP address and a specified 
machine:

ApdVoIP1.Connect('192.168.12.131');

ApdVoIP1.Connect('john_work.turbopower.com');

An attempt to create the connection is made immediately. If the connection attempt 
succeeds, the OnConnect event is generated. If the connection attempt fails, the OnFail 
event is generated. 

 Figure 9.1: Media device property editor.
96     Chapter 9: IP Telephony



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Receiving a VoIP call
When receiving a call, the TApdVoIP component initializes the underlying TAPI and H.323 
layers and waits for the incoming call. The Connect method of the TApdVoIP component 
begins the answering process. When that method is called with a DestAddr of ‘’ (empty 
string), the TAPI and H.323 layers are activated and configured to provide status 
notifications. When an incoming call is detected, the OnIncomingCall event is generated. If 
the Accept parameter of that event is set to True (the default), the call is answered and the 
OnConnect event is generated. The following example shows how to receive a VoIP call:

...
ApdVoIP1.Connect('');
...

procedure TForm1.ApdVoIP1IncomingCall(VoIP : TApdCustomVoIP;
CallerAddr: string; var Accept : Boolean);
begin

Accept := MessageDlg('Accept incoming call from ' +
CallerAddr, mtConfirmation, [mbYes, mbNo], 0) = mrOK;

end;

Terminating a VoIP call
Once a call is established through the Connect method of the TApdVoIP component it can 
be terminated locally or from the remote station. To terminate the call locally, call the 
CancelCall method of the TApdVoIP component. If an active call is present (the OnConnect 
event has been generated and the Connected property is True) the OnDisconnect event will 
be generated shortly after CancelCall returns. If an active call is not present (after calling 
Connect to enter the answer mode, but before the OnConnect event has been generated), 
the CancelCall method will not return until the answer mode has 
been terminated.

At any point in the call, the remote side could terminate, or the network could become 
disconnected. Regardless of the reason, the OnDisconnect event will be generated if the 
OnConnect event has been generated previously for this call. If the OnConnect event has 
not been generated for this call, the OnFail event will be generated and the Reason 
parameter of that event will contain the reason for the failure.
Configuration for VoIP     297

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdVoIPTerminal Class
The TApdVoIPTerminal class defines a media terminal. This class is used in the TApdVoIP 
component’s AvailableTerminalDevices property. The AvailableTerminalDevices property is 
a TStrings type. Each Strings value is the name of a media terminal, each Objects value is a 
TApdVoIPTerminal class that defines the capabilities of the given terminal.

Hierarchy
TStrings (VCL)

TApdVoIPTerminal (AdVoIP)

Properties
DeviceClass

DeviceInUse

DeviceName

MediaDirection

MediaType
98     Chapter 9: IP Telephony



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

DeviceClass read-only, run-time property

property DeviceClass : TApdTerminalDeviceClass

TApdTerminalDeviceClass = (
dcHandsetTerminal, dcHeadsetTerminal, dcMediaStreamTerminal,
dcMicrophoneTerminal, dcSpeakerphoneTerminal, dcSpeakersTerminal,
dcVideoInputTerminal, dcVideoWindowTerm)

Indicates the terminal class of the media terminal.

TAPI 3.x defines several terminal classes. The following table shows which terminal classes 
are applicable to which TApdVoIP terminal properties:

See also: TApdVoIP.AudioInDevice, TApdVoIP.AudioOutDevice, TApdVoIP.VideoInDevice

DeviceInUse read-only, run-time property

property DeviceInUse : Boolean

Indicates whether the terminal is currently being used.

This property is True if the terminal is being used by another process, and False if the 
terminal is available.

TApdVoIP Property DeviceClass

AudioInDevice dcHandsetTerminal

dcHeadsetTerminal

dcMicrophoneTerminal

dcSpeakerphoneTerminal

AudioOutDevice dcHandsetTerminal

dcHeadsetTerminal

dcSpeakerphoneTerminal

dcSpeakersTerminal

VideoInDevice dcVideoInput
TApdVoIPTerminal Class     299

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

DeviceName read-only, run-time property

property DeviceName : string

Indicates the name of the media terminal.

This property reflects the name of the media terminal as defined by the media installer. This 
property is used to define the Strings value associated with this Object when added to the 
AvailableTerminalDevices property.

MediaDirection read-only, run-time property

property MediaDirection : TApdMediaDirection

TApdMediaDirection = (mdCapture, mdRender, mdBidirectional);

Indicates the directional capabilities of the media terminal.

A media terminal can either receive media data, transmit media data, or transmit and 
receive media data. The given media terminal’s directional capabilities are indicated by this 
property according to the following:

MediaType read-only, run-time property

property MediaType : TApdTerminalMediaType

TApdTerminalMediaType = (mtStatic, mtDynamic);

Indicates how the terminal is instantiated.

A media terminal can be predefined or created as needed. mtStatic terminals usually refer to 
hardware devices (speakers, microphones, etc.). mtDynamic terminals are dynamically 
created or assigned (video display).

MediaDirection Description

mdCapture Can receive (capture) media stream, corresponds
to “In” devices.

mdRender Can transmit (render) media stream, corresponds
to “Out” devices.

mdBidirectional Can receive (capture) and transmit (render)
media streams.
00     Chapter 9: IP Telephony



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdVoIP Component
The TApdVoIP component implements Voice over IP (IP Telephony) through the TAPI 3.x 
and H.323 interfaces. This component is compatible with Windows 2000, although later 
Windows versions will most likely support TAPI 3.x to some extent.

Hierarchy
TOleServer (VCL)

! TApdBaseOleServer (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomVoIP (AdVoIP)

TApdVoIP (AdVoIP)

Properties
AudioInDevice

AudioOutDevice

AvailableTerminalDevices

CallInfo

Connected

! Version

VideoInDevice

VideoOutDevice

VoIPAvailable

WaitingForCall

Methods
CancelCall Connect ShowMediaSelectDialog

Events
OnConnect

OnDisconnect

OnFail

OnIncomingCall
TApdVoIP Component     301

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference Section

AudioInDevice property

property AudioInDevice : string

Determines the media terminal device to use to for audio input.

This property is the DeviceName of the TApdVoIPTerminal object that will be used to 
provide audio input. Audio input is usually provided through a microphone connected to 
the “mic” jack of a sound card.

This property supports the “Media options” property editor, which filters media terminals 
by type. See “Audio and video device selection” on page 295 for details.

See also: AudioOutDevice, AvailableTerminalClasses, VideoInDevice, VideoOutDevice

AudioOutDevice property

property AudioOutDevice : string

Determines the media terminal device to use for audio output.

This property is the DeviceName of the TApdVoIPTerminal object that will be used to 
provide audio output. Audio output is usually provided through speakers connected to the 
“speaker” jack of a sound card, although it can also be a headset.

This property supports the “Media options” property editor, which filters media terminals 
by type. See “Audio and video device selection” on page 295 for details.

See also: AudioInDevice, AvailableTerminalClasses, VideoInDevice, VideoOutDevice

AvailableTerminalDevices read-only, run-time property

property AvailableTerminalDevices : TStrings

Contains references to the available media terminal devices.

When the TApdVoIP component is created, all supported media terminals are enumerated 
and their capabilities are retrieved. This information is placed in the 
AvailableTerminalDevices property. The Strings value contains the DeviceName of the 
terminal, the Objects value contains the TApdVoIPTerminal object.

See the TApdVoIPTerminal description for details on the TApdVoIPTerminal object. See 
“Audio and video device selection” on page 295 for details on how 
AvailableTerminalDevices can be used.

See also: AudioInDevice, AudioOutDevice, VideoInDevice, VideoOutDevice
02     Chapter 9: IP Telephony



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

CallInfo read-only, run-time property

property CallInfo : TApdVoIPCallInfo

A structure containing details about the current call.

The TApdVoIP component contains properties for basic call information. TAPI maintains 
much more information about the call. Although this information may be of limited use, 
CallInfo is provided for projects that may require the extended information.

CallInfo is allocated immediately after the Connect method is called, is updated periodically 
by TAPI, and is valid for the duration of the call.

CancelCall method

procedure CancelCall;

Terminates the current call.

CancelCall is the universal method for terminating the current call. CancelCall can be used 
while waiting for incoming calls, originating a call, negotiating a call and during an 
established call. The TApdVoIP component terminates the current TAPI process, releases 
any resources allocated for the call, then returns to an idle state.

If an active call is present (the OnConnect event has been generated and the Connected 
property is True), the OnDisconnect event will be generated shortly after CancelCall 
returns. If an active call is not present (after calling Connect(‘’) to enter the answer mode, 
but before the OnConnect event has been generated), the CancelCall method will not return 
until the answer mode has been terminated.

See also: Connect, OnConnect, OnDisconnect
TApdVoIP Component     303

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Connect method

procedure Connect(DestAddr : string);

Establishes a VoIP connection.

The Connect method is used to establish a Voice over IP call. If DestAddr is an empty string, 
Connect waits for an incoming call to be received. If DestAddr is not an empty string, 
Connect originates a call to the destination specified by DestAddr.

When originating a call, DestAddr can specify either an IP address or a machine name. See 
“Originating a VoIP call” on page 296 for details. The underlying TAPI layer requires an 
address-type flag, which indicates whether the address is an IP address or a machine name. 
The TApdVoIP component will parse DestAddr to determine the type of address.

When receiving a call, DestAddr must be an empty string. See “Receiving a VoIP call” on 
page 297 for details. When receiving a VoIP call, it is not known when that call will be 
originated on the remote system. The OnIncomingCall event will be generated when the 
incoming call is detected. This event provides the address of the originating system, which 
can be used to accept or reject the call.

When originating or receiving a call, the OnConnect event is generated when the VoIP call is 
connected.

See also: CancelCall, Connected, OnConnect, OnIncomingCall, WaitingForCall

Connected read-only, run-time property

property Connected

Indicates whether a connection is currently active or not.

This property is set to True when a connection is established (when the OnConnect event is 
generated) and False when the connection is terminated (when the OnDisconnect event is 
generated). This property can be used to determine whether a call is in progress or not.

See also: Connect, OnConnect, OnDisconnect, WaitingForCalls

OnConnect event

property OnConnect : TApdVoIPNotifyEvent

TApdVoIPNotifyEvent = procedure (VoIP : TApdCustomVoIP) of object;

Defines an event handler that is generated when a VoIP connection is established.

The Connect method begins a background process that can take some time before actually 
establishing a connection. The OnConnect event is generated when a VoIP call is actually 
connected.
04     Chapter 9: IP Telephony



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

When a VoIP call is originated, the OnConnect event is generated after the called station 
accepts the call and the H.323 negotiations are complete. When Connect is called to answer 
calls, the OnConnect event is generated after the OnIncomingCall event is generated and the 
Accept parameter is set to True.

VoIP is the TApdCustomVoIP component that generated the event.

See also: CancelCall, Connect, Connected, OnDisconnect, OnIncomingCall

OnDisconnect event

property OnDisconnect : TApdVoIPNotifyEvent

TApdVoIPNotifyEvent = procedure (VoIP : TApdCustomVoIP) of object;

Defines an event handler that is generated when a VoIP connection is terminated.

This event handler is generated after calling the CancelCall method to terminate the 
connection from the local side and when the connection is terminated from the remote side 
or by the network. This event will only be generated if the call has been connected (the 
OnConnect event has been generated).

VoIP is the TApdCustomVoIP component that generated the event.

See also: CancelCall, Connect, OnConnect

OnFail event

property OnFail : TApdVoIPFailEvent

TApdVoIPFailEvent = procedure(
VoIP : TApdCustomVoIP; ErrorCode : Integer) of object;

Defines an event handler that is generated when a VoIP call fails.

The Connect method can fail for a variety of reasons, the remote could reject the call, the 
network could be congested, the destination address could be invalid, etc. This event 
handler is generated when the Connect method fails. This event is also generated when an 
established call fails.

VoIP is the TApdCustomVoIP component that generated the event. ErrorCode is a non-zero 
value indicating the type of failure.

See also: Connect, OnDisconnect
TApdVoIP Component     305

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnIncomingCall event

property OnIncomingCall : TApdVoIPIncomingCallEvent

TApdVoIPIncomingCallEvent = procedure(
VoIP : TApdCustomVoIP; CallerAddr: string; var Accept : Boolean);

Defines an event handler that is generated when an incoming call is detected.

After calling the Connect method with an empty string parameter, the TApdVoIP 
component begins a background process that monitors for incoming calls. When an 
incoming call is detected, the OnIncomingCall event is generated. This event provides an 
opportunity to accept or reject the call, either based on the CallerAddr or other criteria.

VoIP is the TApdCustomVoIP component that received the incoming call notification and 
generated the event. CallerAddr is a form of Caller ID specific to IP Telephony, this string is 
usually an IP address or machine name that identifies the system that originated the call. 
Accept determines whether the TApdVoIP component accepts or rejects the incoming call. 
If Accept is True when this event exits, the call is accepted and the OnConnect event is 
generated when the H.323 negotiations are complete. If Accept is False when this event exits, 
the call is rejected and the TApdVoIP component will continue monitoring for new 
incoming calls. The OnFail and OnDisconnect events will not be generated if the call is not 
accepted.

See “Receiving a VoIP call” on page 297 for details and an example.

See also: Connect, OnConnect, OnDisconnect

ShowMediaSelectDialog method

function ShowMediaSelectDialog : Boolean;

Displays a dialog where the audio and video devices can be selected.

The ShowMediaSelectDialog method displays the Media options dialog discussed in the 
“Audio and video device selection” on page 295. This dialog box allows the user to select the 
media terminals for the AudioInDevice, AudioOutDevice, and VideoInDevice properties.

If OK is clicked, the AudioInDevice, AudioOutDevice and VideoInDevice properties are 
updated to reflect the new media terminals and the return value of ShowMediaSelectDialog 
is True. If Cancel is clicked, the properties are not changed and this method returns False.

The dialog displayed from the ShowMediaSelectDialog method is the same dialog used for 
the AudioInDevice, AudioOutDevice and VideoInDevice property editors.

See also: AudioInDevice, AudioOutDevice, VideoInDevice
06     Chapter 9: IP Telephony



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

VideoInDevice property

property VideoInDevice : string

Determines the media terminal device to use to for video input.

This property is the DeviceName of the TApdVoIPTerminal object that will be used to 
provide video input. Video input is usually provided through a digital camera or web 
camera installed on the system.

This property supports the Media options property editor, which filters media terminals by 
type. See “Audio and video device selection” on page 295 for details.

See also: AudioInDevice, AudioOutDevice, AvailableTerminalClasses, VideoOutDevice

VideoOutDevice property

property VideoOutDevice : TWinControl

Determines the control where video output is rendered.

This property is a TWinControl descendent where the received video stream is displayed. To 
display the received video stream, assign the name of a TWinControl descendent, such as a 
TPanel, to the VideoOutDevice property. 

See also: AudioInDevice, AudioOutDevice, AvailableTerminalClasses, VideoInDevice

VoIPAvailable read-only, run-time property

property VoIPAvailable : Boolean

Indicates whether Voice over IP is supported or not.

The TApdVoIP component implements Voice over IP (IP Telephony) using TAPI 3.x and the 
H.323 TAPI service provider. TAPI 3.x is available for Windows 2000 and later, it is not 
available for earlier versions of Windows. When the TApdVoIP component is created, the 
TAPI version and H.323 TSP are verified, if these TAPI components are not available the 
VoIPAvailable property is set to False; if these TAPI components are available the 
VoIPAvailable property is set to True.

If VoIPAvailable is False, calling the Connect method will raise the EVoIPNotSupported 
exception.

See also: Connect
TApdVoIP Component     307

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

WaitingForCall read-only, run-time property

property WaitingForCall : Boolean

Indicates whether the TApdVoIP component is waiting for incoming calls or not.

When the Connect method is called with an empty string, the TApdVoIP component will 
begin monitoring for incoming calls. WaitingForCall indicates whether the TApdVoIP 
component is waiting for incoming calls or not.

See also: Connect, Connected
08     Chapter 9: IP Telephony



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 10: SAPI Components

The SAPI (Speech API) components in Async Professional provide an easy means to 
incorporate speech synthesis and recognition into your programs. The components act as 
an interface between the Microsoft SAPI 4 and Delphi and C++ Builder.
     309

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
SAPI Overview
Async Professional provides speech synthesis, speech recognition and voice telephony 
capabilities. These aspects will be explored in further in the following sections. 

Speech synthesis
Speech synthesis will take plain ASCII text and convert it to into digital audio. There are 
three primary ways this is done as described in Table 10.1.

In Async Professional, generic speech synthesis is provided through the TApdSapiEngine 
component. The generated speech can either go directly to the sound card or be saved as a 
.WAV file for future usage.

While great strides have been made in the quality of computer-synthesized speech, it is still 
easily recognizable as computer generated. As of yet, a computer cannot duplicate the 
inflection, timing and emotion of human speech.

The speech synthesis engine will do it’s best to pronounce the text given to it. However, some 
words and names it will have problems with. The best way to handle this is to provide the 
proper phonemes to the speech synthesis engine.

Some speech synthesis engines support input using the International Phonetic Alphabet 
(IPA). This is a standardized system of representing phonemes in a Unicode character set. If 
your engine supports IPA, this can be used to precisely control the pronunciation of a word. 

Table 10.1: Speech synthesis schemes

Scheme Description

Concatenated Word This technique stitches together recordings of
individual words as provided by the developer
of the speech synthesis engine. This method
can provide high quality output, but is
limited to the words that have been provided
with the engine.

Subword Concatenation This speech synthesis engine concatenates
short prerecorded phonemes to spell out the
words. The small pieces of audio are smoothed
out to improve the quality of the spoken text.

Synthesis The speech synthesis engine will simulate the
human vocal chords when it generates the
digital audio. This technique has the
advantage of the ability to adjust the sound
of the voice via a few simple parameters.
10     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
You can verify if an engine supports IPA by checking if tfIPAUnicode is in the features set of 
the engine. This can be found in the Features subproperty of the SSVoices property of the 
TApdSapiEngine component.

Speech recognition
Speech recognition converts a spoken audio data stream into ASCII text. In Async 
Professional, generic speech recognition is provided through the TApdSapiEngine 
component. 

Speech recognition requires an object known as a grammar (a list of known words and 
possibly how they relate to each other). In Async Professional, the grammar is handled 
automatically. Either a list of expected words can be provided in the WordList property, or 
the Dictation property can be set to True. In the latter case, the speech synthesis engine will 
be provided with a dictation grammar. Most speech recognition engines will then use a 
much larger list of known words. Additional words can be specified via the WordList 
property.

Using a specific word list is generally faster and more accurate than using the full dictation 
grammar.

As words and phrases are recognized the OnPhraseHypothesis and OnPhraseFinish events 
will fire to let the application know what words were spoken.

The Microsoft SAPI SDK documentation provides a full list of supported phonemes.

Voice telephony
Voice telephony support is provided via the TApdSapiPhone component. This component 
allows for speech synthesis and recognition to take place over a voice call. The component is 
a descendent of the TApdCustomTAPIDevice and provides all the functionality of a TAPI 
based voice call with the capabilities of the TApdCustomSapiEngine.

The voice telephony component has several methods for asking the user for information and 
then returning that information in a usable format. For example, the AskForDate method 
will prompt the user for a date and then return that date as a TDateTime parameter. Other 
methods exist for asking for phone numbers, times, items from a list, extensions and yes or 
no replies.
SAPI Overview     311

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Requirements for speech synthesis and recognition
For speech synthesis and recognition, you will need to have the following:  

• A 486/33 (DX or SX) or better CPU is the bare minimum required. A Pentium is 
recommended. 

• Speech synthesis will require an additional 1Mb of RAM to that which your program 
already needs. Speech recognition will require an additional 8Mb.

• A sound card is needed for both speech synthesis and recognition. For speech 
recognition, a microphone is required. Headset microphones are less susceptible to 
background noise and are preferable to desktop microphones.

• Microsoft Windows 95 or NT 4.0 or better.

• The Microsoft SAPI controls and a speech recognition and synthesis engine is 
needed. A good place to search both for the SAPI software and speech engines is 
http://www.microsoft.com/speech/.

• For voice telephony, you will need TAPI, a voice capable modem and speech synthesis 
and recognition engines that have been optimized for telephony applications.

Considerations of speech synthesis and recognition
For speech synthesis and recognition to work properly, there are several things that should 
be taken into consideration.

For speech recognition, the most significant source of problems will be from the 
microphone. The quality of the microphone and the training that the user has done with the 
microphone directly affect the ability of the speech recognition engine to interpret what was 
said to it. Headset microphones are generally preferable to desktop models.

Half-duplex sound cards should be avoided. A sound card is “half-duplex” if it is incapable 
of playing and recording audio at the same time. While the card is playing, speech 
recognition cannot occur.

Feedback between sound card’s output and the microphone can dramatically reduce the 
quality of the spoken text.

Background noise will also affect the speech recognition. Background conversations, a 
radio, door slams or other ambient noise can be picked up by the speech recognition engine 
and interpreted in unexpected ways. The use of a higher quality microphone can reduce the 
problems, but will not completely eliminate them.

Speech recognition is not perfect. Words will be misinterpreted, or not interpreted at all., 
and background noise will be interpreted as words.
12     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Considerations for voice enabling your application
There are numerous things that should be taken into account when developing voice-
enabled applications. Here are a few items to keep in mind:

• Speech recognition does make mistakes. If you are using speech recognition to handle 
commands to your application, you will want confirmation before doing anything 
that may be harmful.

• Speech synthesis should be used for short phrases. Computer generated voices can 
quickly annoy your users.

• Speech recognition control of an application as well as speech synthesis should be 
optional. Speech recognition should not be used to replace the standard means of 
input (that is, the keyboard and mouse).

• In voice telephony, other options should be provided for when speech recognition 
fails. DTMF is usually a good backup option.

• Mixing prerecorded text with synthesized speech generally sounds bad. As a rule, 
either prerecord everything or nothing.

• Visual feedback should be provided for both speech recognition and synthesis.

Distribution of speech synthesis and speech recognition engines
There are two options for distributing voice-enabled applications. The first is to bundle the 
needed speech engines with the application. This will require negotiation with the speech 
engine vendor and for the appropriate royalties to be paid. 

The second option is to require the user to provide the speech engine. Many sound cards 
come bundled with speech engines. The quality of these engines varies dramatically.

Async Professional does not come bundled with speech engines.
SAPI Overview     313

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdAudioOutDevice Class
The TApdAudioOutDevice class is used by the TApdSapiEngine component to encapsulate 
the engines used for speech recognition. This class allows for the easy selection of a speech 
recognition engine as well as the ability to look at the details of the engines.

The properties of this class are laid out as arrays in which each speech recognition engine is 
accessed by its index in the array. The CurrentEngine property is used to set the speech 
recognition engine. Setting this property to the index of a speech recognition engine will 
activate that engine.

Hierarchy
TObject (VCL)

TApdAudioOutDevice (AdSapiEn)

Properties
Age

Count

CurrentVoice

Dialect

EngineFeatures

EngineID

Features

Gender

Interfaces

LanguageID

MfgName

ModeID

ModeName

ProductName

Speaker

Style

Methods
Find
14     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

Age read-only, run-time property

property Age[x : Integer] : TApdTTSAge

TApdTTSAge = (tsBaby, tsToddler, tsChild,
tsAdolescent, tsAdult, tsElderly, tsUnknown);

Indicates the age of the specified voice.

The Age property indicates the age of the voice currently specified . The following table 
indicates values for Age:

The index of the array indicates the voice that the property refers to. To get the Age property 
for the currently active voice, use the CurrentVoice property as the index.

See also: CurrentVoice

Count read-only, run-time property

property Count : Integer

Specifies the number of installed speech synthesis voices.

This property indicates the number of speech synthesis voices that are installed. The voices 
are numbered from 0 to Count – 1. The properties of the voices are accessed as an array 
where the index indicates the voice in question.

The active voice can be activated by setting the CurrentVoice property.

See also: CurrentVoice

Value Approximate Age

tsBaby 1

tsToddler 3

tsChild 6

tsAdolescent 14

tsAdult 20 - 60

tsElderly Over 60

tsUnknown Unknown
TApdAudioOutDevice Class     315

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

CurrentVoice run-time property

property CurrentVoice

Specifies the current speech synthesis voice.

This property is used to activate a specific voice for use in speech synthesis. This value 
should be set between 0 and Count – 1. This property should not be modified while text is 
being spoken.

See also: Count, Speak

Dialect read-only, run-time property

property Dialect[x : Integer] : string

Indicates the dialect of the specified voice.

Examples of dialects are “Texas” or “New York City.” The actual dialects vary from engine to 
engine.

If no specific dialect is used, this property may be either “Standard” or blank.

The index of the array indicates the voice that the property refers to. To get the Dialect 
property for the currently active voice, use the CurrentVoice property as the index.

See also: CurrentVoice

EngineFeatures read-only, run-time property

property EngineFeatures[x : Integer] : Integer

Indicates speech synthesis engine specific features for the specified voice.

This property specifies features specific to the speech synthesis engine. The meaning of the 
value of this property will depend on the speech synthesis engine.

The index of the array indicates the voice that the property refers to. To get the 
EngineFeatures property for the currently active voice, use the CurrentVoice property as the 
index.

See also: CurrentVoice
16     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

EngineID read-only, run-time property

property EngineID[x : Integer] : string

Identifies the GUID of the speech synthesis engine.

This property identifies the GUID for the speech synthesis engine. This GUID may be used 
for multiple voices and languages.

The index of the array indicates the voice that the property refers to. To get the EngineID 
property for the currently active voice, use the CurrentVoice property as the index.

See also: CurrentVoice

Features read-only, run-time property

property Features[x : Integer] : TApdTTSFeatures

TApdTTSFeatures = set of (tfAnyWord, tfVolume, tfSpeed, tfPitch,
tfTagged, tfIPAUnicode, tfVisual, tfWordPosition, tfPCOptimized,
tfPhoneOptimized,tfFixedAudio, tfSingleInstance, tfThreadSafe,
tfIPATextData, tfPreferred, tfTransplanted, tfSAPI4);

Identifies what features the speech synthesis engine supports. 

The most common speech synthesis engine features are listed in the following table:

Feature Description

tfAnyWord The speech synthesis engine will attempt to read any
word.

tfFixedAudio The audio device that the speech synthesis engine will
speak to is fixed and cannot be changed.

tfIPATextData The speech synthesis engine supports the IPA

tfIPAUnicode The speech synthesis engine supports the International
Phonetic Alphabet Unicode character set.

tfPCOptimized The speech synthesis engine’s voice is optimized to
output to the computer.

tfPhoneOptimized The speech synthesis engine’s voice is optimized for
the telephone. This is required for voice telephony.

tfPitch The speech synthesis engine can adjust the pitch while
it is speaking.

tfSAPI4 The engine is designed for SAPI 4.

tfSingleInstance Only one instance of the speech synthesis engine can
exist at a time.
TApdAudioOutDevice Class     317

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The index of the array indicates the voice that the property refers to. To get the Features 
property for the currently active voice, use the CurrentVoice property as the index.

See also: CurrentVoice

Find method

function Find(Criteria : string) : Integer;

Finds the speech synthesis engine and voice that is the closest match for the input criteria.

This method is used to find the best matched speech engine and voice for the requested 
features. The format of the Criteria parameter is:

<field>=<value>;<field=value>

Legal values for field and value are:

tfSpeed The speech synthesis engine can adjust the speaking
rate while it is speaking.

tfTagged The speech synthesis engine can recognize and handle
embedded control tags in the text.

tfThreadSafe The speech synthesis engine is thread safe.

tfTransplanted The speech synthesis engine supports transplanted
prosody.

tfVisual The speech synthesis engine provides mouth position
information while it is speaking.

tfVolume The speech synthesis engine can adjust the speaking
volume while it is speaking.

tfWordPosition The speech synthesis engine can send notification of
word position while it is speaking.

Field Value

Age Can be one of the following constants: ApdTTSAGE_BABY,
ApdTTSAGE_TODDLER, ApdTTSAGE_CHILD,
ApdTTSAGE_ADOLESCENT, ApdTTSAGE_ADULT,
ApdTTSAGE_ELDERLY. Note: These constants are integers
and will have to be converted to string values for
usages with the Find method.

Dialect String

EngineFeatures Integer

EngineId String

Feature Description
18     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Features Can be one of the following constants:
ApdTTSFEATURE_ANYWORD, ApdTTSFEATURE_VOLUME,
ApdTTSFEATURE_SPEED, ApdTTSFEATURE_PITCH,
ApdTTSFEATURE_TAGGED, ApdTTSFEATURE_IPAUNICODE,
ApdTTSFEATURE_VISUAL, ApdTTSFEATURE_WORDPOSITION,
ApdTTSFEATURE_PCOPTIMIZED,
ApdTTSFEATURE_PHONEOPTIMIZED, ApdTTSFEATURE_FIXEDAUDIO,
ApdTTSFEATURE_SINGLEINSTANCE, ApdTTSFEATURE_THREADSAFE,
ApdTTSFEATURE_IPATEXTDATA,
ApdTTSFEATURE_PREFERRED,ApdTTSFEATURE_TRANSPLANTED,
ApdTTSFEATURE_SAPI4. Note: These constants are integers
and will have to be converted to string values for use
with the Find method.

Gender Can be one of the following constants:
ApdGENDER_NEUTRAL, ApdGENDER_FEMALE, ApdGENDER_MALE.
Note: These constants are integers and will have to be
converted to string values for use with the Find method.

Interfaces Can be one of the following constants:
ApdTTSI_ILEXPRONOUNCE, ApdTTSI_ITTSATTRIBUTES,
ApdTTSI_ITTSCENTRAL, ApdTTSI_ITTSDIALOGS,
ApdTTSI_ATTRIBUTES, ApdTTSI_IATTRIBUTES,
ApdTTSI_ILEXPRONOUNCE2. Note: These constants are
integers and will have to be converted to string values
for use with the Find method.

LanguageID Integer

MfgName String

ModeID String

ModeName String

ProductName String

Speaker String

Style String

Field Value
TApdAudioOutDevice Class     319

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

The following code example shows how to use Find:

var
EngineIdx : Integer;

begin
EngineIdx := ApdSapiEngine1.SSVoices.Find(

'Gender=' + IntToStr (ApdGENDER_FEMALE));
EngineIdx := ApdSapiEngine1.SSVoices.Find(

'Gender=' + IntToStr(ApdGENDER_FEMALE) + ';Dialect=Texas');

See also: Count, CurrentEngine

Gender read-only, run-time property

property Gender[x : Integer] : TApdTTSGender

TApdTTSGender = (tgNeutral, tgFemale, tgMale, tgUnknown);

Indicates the gender of the specified voice.

The index of the array indicates the voice that the property refers to. To get the Features 
property for the currently active voice, use the CurrentVoice property as the index.

See also: CurrentVoice

Interfaces read-only, run-time property

property Interfaces[x : Integer] : TApdTTSInterfaces

TApdTTSInterfaces = set of (
tiLexPronounce, tiTTSAttributes, tiTTSCentral, tiTTSDialogs,
tiAttributes, tiIAttributes, tiLexPronounce2);

Indicates the COM interfaces supported by the speech synthesis engine.

The index of the array indicates the speech synthesis voice that the property refers to. To get 
the Interfaces property for the currently active speech synthesis voice, use the CurrentVoice 
property as the index.

See also: CurrentVoice
20     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

LanguageID read-only, run-time property

property LanguageID[x : Integer] : Integer

Specifies the language identifier for the specified voice.

Bits 0 through 9 indicate the primary language. Bits 10-15 indicate a sublanguage (or locale). 

More information on this can be found in the Windows SDK help under the 
MAKELANGID topic.

The index of the array indicates the speech synthesis voice that the property refers to. To get 
the LanguageID property for the currently active speech synthesis voice, use the 
CurrentVoice property as the index.

See also: CurrentVoice

MfgName read-only, run-time property

property MfgName[x : Integer] : string

Indicates the name of the manufacturer of the specified voice.

The index of the array indicates the speech synthesis voice that the property refers to. To get 
the MfgName property for the currently active speech synthesis voice, use the CurrentVoice 
property as the index.

See also: CurrentVoice

ModeID read-only, run-time property

property ModeID[x : Integer] : string

Specifies the GUID for the specified voice.

This property indicates the GUID that uniquely identifies each voice installed on the 
computer.

The index of the array indicates the speech synthesis voice that the property refers to. To get 
the ModeID property for the currently active speech synthesis voice, use the CurrentVoice 
property as the index.

See also: CurrentVoice
TApdAudioOutDevice Class     321

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

ModeName read-only, run-time property

property ModeName[x : Integer] : string

Specifies the name of the specified text to speech mode.

This is the default property of the TApdAudioOutDevice class. Specifying an array index 
without any further field specifications will return this property.

The index of the array indicates the speech synthesis mode that the property refers to. To get 
the ModeName property for the currently active speech synthesis mode, use the 
CurrentVoice property as the index.

See also: CurrentVoice

ProductName read-only, run-time property

property ProductName[x : Integer] : string

Provides the product name of the specified voice.

The index of the array indicates the speech synthesis voice that the property refers to. To get 
the ProductName property for the currently active speech synthesis voice, use the 
CurrentVoice property as the index.

See also: CurrentVoice

Speaker read-only, run-time property

property Speaker[x : Integer] : string

Indicates the name of the specified selected speech synthesis voice.

This property specifies the name of the voice of the specified speech synthesis voice. This 
property may be blank for some voices.

The index of the array indicates the speech synthesis voice that the property refers to. To get 
the Speaker property for the currently active speech synthesis voice, use the CurrentVoice 
property as the index.

See also: CurrentVoice
22     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

Style read-only, run-time property

property Style[x : Integer] : string

Indicates the speaking style of the specified voice.

Common speaking styles include “Angry”, “Business”, “Calm”, “Casual”, “Computer”, 
“Depressed”, “Excited”, “Falsetto”, “Happy”, “Loud”, “Monotone”, “Perky”, “Quiet”, 
“Sarcastic”, “Scared”, “Shout”, “Singsong”, “Tense” and “Whisper.” 

The index of the array indicates the speech synthesis voice that the property refers to. To get 
the Style property for the currently active speech synthesis voice, use the CurrentVoice 
property as the index.

See also: CurrentVoice
TApdAudioOutDevice Class     323

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdAudioInDevice Class
The TApdAudioInDevice class is used by the TApdSapiEngine component to encapsulate 
the engines, modes, and voices used by speech synthesis. This class allows for the easy 
selection of a speech synthesis engine as well as the ability to look at the details of the speech 
synthesis engine.

The properties of this are laid out as arrays in which each speech synthesis engine is accessed 
by its index in the array. The CurrentVoice property is used to set the speech synthesis 
engine. Setting this property to the index of a speech synthesis engine will activate that 
engine.

Hierarchy
TObject (VCL)

TApdAudioInDevice (AdSapiEn)

Properties
Count

CurrentEngine

Dialect

EngineFeatures

EngineID

Features

Grammars

Interfaces

LanguageID

MaxWordsState

MaxWordsVocab

MfgName

ModeID

ModeName

ProductName

Sequencing
24     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

Count read-only, run-time property

property Count : Integer

Specifies the number of installed speech recognition engines.

The engines are numbered from 0 to Count – 1. The properties of the speech recognition 
engines are accessed as an array where the index indicates the engine in question.

The active speech recognition engine can be activated by setting the CurrentEngine 
property.

See also: CurrentEngine

CurrentEngine run-time property

property CurrentEngine : Integer

Specifies the current speech recognition engine.

This property is used to activate a specific speech recognition engine for use in speech 
recognition. This value should be set between 0 and Count – 1.

See also: Count, Listen

Dialect read-only, run-time property

property Dialect[x : Integer] : string

Indicates the dialect of the specified language used by the speech recognition engine.

Examples of dialects are “Texas” or “New York City.” The allowed dialects vary from engine 
to engine.

If no specific dialect is used, this property may be either “Standard” or blank.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the Dialect property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine
TApdAudioInDevice Class     325

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

EngineFeatures read-only, run-time property

property EngineFeatures[x : Integer] : Integer

Indicates speech recognition engine specific features for the specified engine.

The meaning of the value of this property will depend on the speech recognition engine.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the EngineFeatures property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

EngineID read-only, run-time property

property EngineID[x : Integer] : string

Identifies the GUID of the speech synthesis engine.

This property identifies the GUID for the speech recognition engine. This GUID may be 
used for multiple voices and languages.

The index of the array indicates the speech recognition engine to which the property refers. 
To get the EngineID property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

Features read-only, run-time property

property Features[x : Integer] : TApdSRFeatures

TApdSRFeatures = set of (sfIndepSpeaker, sfIndepMicrophone,
sfTrainWord, sfTrainPhonetic, sfWildcard, sfAnyWord,
sfPCOptimized, sfPhoneOptimized, sfGramList, sfGramLink,
sfMultiLingual, sfGramRecursive, sfIPAUnicode, sfSingleInstance,
sfThreadSafe,sfFixedAudio, sfIPAWord, sfSAPI4);

Identifies what features the speech recognition engine supports.
26     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The following table details the meanings of the more common engine features:

Feature Description

sfAnyWord The speech recognition engine will attempt to
recognize any word.

sfFixedAudio The audio input device is fixed and cannot be
changed.

sfGramLink The speech recognition engine supports automatic
linking between grammars.

sfGramList The grammars used by the speech recognition engine
support recognition lists.

sfGramRecursive Context-free grammars support recursive rules.

sfIndepMicrophone The speech recognition engine is microphone
independent. Retraining is not required if the
microphone changes.

sfIndepSpeaker The speech recognition engine is speaker independent.
It will work well without training.

sfIPAUnicode The engine supports the Unicode International
Phonetic Alphabet.

sfMultiLingual The speech recognition engine is capable of
recognizing multiple languages at a time.

sfPCOptimized The speech recognition engine is optimizied for use
on a computer.

sfPhoneOptimized The speech recognition engine is optimized for use
over a phone. This is required for voice telephony.

sfSAPI4 The engine is designed for SAPI 4.

sfSingleInstance Only a single instance of the voice recognition
engine can be in memory at a time.

sfThreadSafe The speech recognition engine is thread safe.

sfTrainPhonetic The user can train the speech recognition engine on a
known set of words specifically to train all the
phonemes.

sfTrainWord The speaker can train the speech recognition engine
on individual words.

sfWildcard Wildcards are supported in context-free grammars.
TApdAudioInDevice Class     327

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The index of the array indicates the speech recognition engine that the property refers to. To 
get the Features property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

Grammars read-only, run-time property

property Grammars[x : Integer] : TApdSRGrammars

TApdSRGrammars = set of (sgCFG, sgDication, sgLimitedDomain);

Indicates the types of grammars supported by the speech recognition engine.

They types of grammars supported by the speech recognition engine are listed in the 
following table:

A speech recognition engine may support multiple grammar types.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the Grammars property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

Grammar Description

sgCFG Context-free grammar

sgDictation Dictation grammar

sgLimitedDomain Limited-domain grammar
28     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Interfaces read-only, run-time property

property Interfaces[x : Integer] : TApdSRInterfaces

TApdSRInterfaces = set of (siLexPronounce, siSRAttributes,
siSRCentral, siSRGramCommon, siSRDialogs, siSRGramCFG,
siSRGramDictation, siSRGramInsertionGui, siSREsBasic,
siSREsMerge, siSREsAudio, siSREsCorrection, siSREsEval,
siSREsGraph, siSREsMemory, siSREsModifyGui,
siSREsSpeaker, siSRSpeaker, siSREsScores, siSREsAudioEx,
siSRGramLexPron, siSREsGraphEx, siLexPronounce2,
siAttributes, siSRSpeaker2, siSRDialogs2);

Indicates the COM interfaces supported by the speech recognition engine.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the Interfaces property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

LanguageID read-only, run-time property

property LanguageID[x : Integer] : Integer

Specifies the language identifier for the specified speech recognition engine.

Bits 0 through 9 indicate the primary language. Bits 10-15 indicate a sublanguage (or locale). 

More information on this can be found in the Windows SDK help under the 
MAKELANGID topic.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the LanguageID property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

MaxWordsState read-only, run-time property

property MaxWordsState[x : Integer] : Integer

Indicates the maximum number of words in any grammar state for the specified engine.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the MaxWordsState property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine
TApdAudioInDevice Class     329

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

MaxWordsVocab read-only, run-time property

property MaxWordsVocab[x : Integer] : Integer

Indicates the maximum number of words in a grammar for the specified speech recognition 
engine.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the MaxWordsVocab property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

MfgName read-only, run-time property

property MfgName[x : Integer] : string

Indicates the name of the manufacturer of the specified speech recognition engine.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the MfgName property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

ModeID read-only, run-time property

property ModeID[x : Integer] : string

Specifies the GUID for the specified speech recognition engine.

This property indicates the GUID that uniquely identifies each speech recognition engine 
installed on the computer.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the ModeID property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine
30     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ModeName read-only, run-time property

property ModeName[x : Integer] : string

Specifies the name of the specified speech recognition mode.

This is the default property of the TApdAudioInDevice class. Specifying an array index 
without any further field specifications will return this property.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the ModeName property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

ProductName read-only, run-time property

property ProductName[x : Integer] : string

Provides the product name of the specified speech recognition engine.

The index of the array indicates the speech recognition engine that the property refers to. To 
get the ProductName property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

Sequencing read-only, run-time property

property Sequencing[x : Integer] : TApdSRSequences

TApdSRSequences = (ssDiscrete, ssContinuous, ssWordSpot,
ssContCFGDiscDict, ssUnknown);

Indicates the speech recognition scheme.
TApdAudioInDevice Class     331

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The supported speech recognition schemes are detailed in the following table:

The index of the array indicates the speech recognition engine that the property refers to. To 
get the Sequencing property for the currently active speech recognition engine, use the 
CurrentEngine property as the index.

See also: CurrentEngine

Scheme Meaning

ssContCFGDiscDict Performs continuous recognition for context-free
grammars. In some cases, this may behave like the
discrete speech recognition scheme.

ssContinuous Continuous recognition. This will recognize words in
a continuous stream of audio with no pauses.

ssDiscrete Each word must be separated by a pause for the speech
recognition engine to recognize it.

ssWordSpot Searches for known words in a continuous stream of
audio input.
32     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdCustomSapiEngine Component
The TAPdCustomSapiEngine component provides access to the speech synthesis and 
recognition engines. The details of the installed engines are accessible via the SREngines and 
SSVoices properties.

The speech recognition and synthesis engines are automatically initialized at the time of 
creation.
TApdCustomSapiEngine Component     333

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Speech Synthesis Tags
Some speech synthesis engines support tags that allow for the changing of characteristics of 
the spoken text while it is being spoken. 

All tags begin and end with a backslash. Tags are case insensitive, but white space is 
significant. To include a backslash in the text, use a double backslash.

An example of tagged text would be:

\Chr=”Business”\This is a \Chr=”monotone”\test.

The text “This is a” would be spoken using the Business character and the word test would 
be spoken in a monotone.

The tags for the speech synthesis engine are defined in Table 10.2.

Table 10.2: Speech synthesis tags

Tag Meaning

Chr Specifies a character for the voice. The
speech synthesis engine defines what values
are allowed for the Chr tag. Common values are
“Angry”, “Business”, “Calm”, “Depressed”,
“Excited”, “Falsetto”, “Happy”, “Loud”,
“Monotone”, “Perky”, “Quiet”, “Sarcastic”,
“Scared”, “Shout”, “Singsong”, “Tense”, and
“Whisper”. The actual values (if any)
supported by the engine will vary from engine
to engine.

Com Comment. Comments are not spoken. An example
would be \com=“comment”\.

Ctx Specifies a context for the following text.
The format of the tag is \Ctx=”value”\. Legal
contexts are “Address” for addresses or phone
numbers, “C” for C or C++ code, “Document” for
text documents, “E-Mail” for email, “Numbers”
for numbers, dates and times, “Spreadsheet”
for spreadsheet documentation, “Normal”, for
normal text, and finally “Unknown” for unknown
contexts.

Dem Demphasizes the next word.

Emp Emphasizes the next word.
34     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Enq Embeds an engine-specific command. The format
is \Eng;GUID;command\ or \Eng;command\ where
GUID is the GUID of the engine and the command
is the command you want to send.

Mrk Inserts a bookmark in the text. The format of
the tag is \Mrk=number\ where number is the
number of the bookmark.

Pau Pause for a number of milliseconds. The format
of the tag is \Pau=number\ where number is the
number of milliseconds to pause.

Pit Sets the baseline pitch in hertz. The format
of the tag is \Pit=number\ where number is the
pitch you want to use.

Pra Sets the pitch range. Format of the tag is
\Pra=value\ where value is the pitch range in
hertz.

Prn Specifies how to pronounce text by passing the
phonetic version to the engine. The format of
the tag is \Prn=text=phonemes\.

Pro Turns on and off prosodic rules. \Pro=1\
activates prosodic rules, \Pro=0\ deactivates
them.

Prt Indicates the part of speech of the next word.
The format of the tag is \Prt=”type”\ where
type can be “Abbr” for abbreviations, “Adj”
for adjectives, “Adv” for adverbs, “Card” for
cardinal numbers, “Conj” for conjunctions,
“Cont” for contractions, “Det” for
determiners, “Interj” for interjections, “N”
for nouns, “Ord” for ordinal numbers, “Prep”
for prepositions, “Pron” for pronouns, “Prop”
for proper nouns, “Punct” for punctuation,
“Quant” for quantifiers, and “V” for verbs.

RmS Turns on and off spelling mode. Use \RmS=1\ to
turn on spelling mode and \Rms=0\ to turn it
off.

RmW Turn on and off pauses between words. Use
\RmW=1\ to insert pauses between words and
\RmW=0\ to turn them off.

Table 10.2: Speech synthesis tags (continued)

Tag Meaning
Speech Synthesis Tags     335

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Note: Not all tags are supported by all engines.

Please note that for the ease of reference, the properties, methods, and events of 
TApdCustomSapiEngine are documented in the TApdSapiEngine section.

Hierarchy
TWinControl (VCL)

TApdBaseWinControl (OoMisc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomSapiEngine (AdSapiEn)

RPit Sets the relative pitch. The format
\RPit=number\ where number is the pitch. 100
is the default pitch.

RPrn Sets the relative pitch range. The format is
\RPrn=value\ where value is the pitch range.

RSpd Sets the relative speed. The format is
\RSpd=number\ where number is the relative
speed. The default speed is 100.

Rst Resets the speech engine to the default
values.

Spd Sets the average talking speed. The format is
\Spd=number\ where number is speed in words
per minute.

Vce Changes characteristics of the voice. The
format is \Vce=property=value\ where property
can be “Accent”, “Age”, “Dialect” “Gender”,
“Language” or “Style”. The value varies
depending on the property being set.

Vol Sets the baseline volume for speaking. The
format of the tag is /Vol=number/ where number
is a value between 0 (silence) and 65535
(maximum volume).

Table 10.2: Speech synthesis tags (continued)

Tag Meaning
36     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdSapiEngine Component
The TApdSapiEngine component exposes the functionality in the TApdCustomSapiEngine 
class, but does not change or add functionality to it. For ease of reference, however, the 
properties of TApdSapiEngine are documented here.

Hierarchy
TWinControl (VCL)

! TApdBaseWinControl (OoMisc)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomSapiEngine (AdSapiEn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

TApdSapiEngine (AdSapiEn)

Properties
CharSet

Dictation

SRAmplitude

SRAutoGain

SREngines

SSVoices

TTSOptions

! Version

WordList

Methods
Listen

PauseListening

PauseSpeaking

ResumeListening

ResumeSpeaking

ShowAboutDlg

ShowGeneralDlg

ShowLexiconDlg

ShowTrainGeneralDlg

ShowTrainMicDlg

Speak

SpeakFile

SpeakFileToFile

SpeakStream

SpeakToFile

StopListening

StopSpeaking

Events
OnInterference

OnPhraseFinish

OnPhraseHypothesis

OnSpeakStart

OnSpeakStop

OnSRError

OnSRWarning

OnSSAttributeChanged

OnSSError

OnSSWarning

OnTrainingRequested

OnVUMeter
TApdSapiEngine Component     337

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference Section

CharSet property

property CharSet : TApdCharacterSet

TApdCharacterSet = (csText, csIPAPhonetic, csEnginePhonetic);

Specifies the character set used in speed synthesis.

csText indicates ASCII text, csIPAPhonetic indicates the International Phonetic Alphabet 
and csEnginePhonetic indicates an engine specific phonetic alphabet.

Dictation property

property Dictation

Controls whether or not dictation mode is on.

When dictation mode is on (provided the engine supports it), a larger set of words is used as 
the base grammar. When it is off, only the words in the WordList property will be 
recognized. Dictation mode may slow down speech recognition.

See Also: WordList

Listen method

procedure Listen;

Starts the speech recognition.

Calling Listen will start the speech recognition engine recognizing spoken text. The 
OnPhraseHypothesis and OnPhraseFinish events will fire when words are recognized. The 
PauseListening, and StopListening events will turn off the speech recognition.

See also: OnPhraseFinish, OnPhraseHypothesis, PauseListening, StopListening
38     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

OnInterference event

property OnInterference : TApdSRInterferenceEvent

TApdSRInterferenceEvent = procedure(Sender : TObject;
InterferenceType : TApdSRInterferenceType) of object;

TApdSRInterferenceType = (itAudioStarted, itAudioStopped,
itDeviceOpened, itDeviceClosed, itNoise, itTooLoud,
itTooQuiet, itUnknown);

Indicates when the audio input to the speech recognition is garbled.

This event will fire when the audio input to the speech recognition less than optimal. The 
InterferenceType parameter indicates how the input stream was damaged.

The possible values for OnInterference are shown in the following table:

Value Meaning

itAudioStarted The speech recognition engine has started or resumed
receiving audio data.

itAudioStopped The speech recognition engine has stopped receiving
audio data.

itDeviceOpened The speech recognition engine has opened the input audio
device.

itDeviceClosed The speech recognition engine has closed the input audio
device.

itNoise Background noise has interfered with the speech
recognition.

itTooLoud The user is speaking too loud.

itTooQuiet The user is speaking to quietly.

itUnknown The input audio stream was garbled for an unknown
reason.
TApdSapiEngine Component     339

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

OnPhraseFinish event

property OnPhraseFinish : TApdSRPhraseFinishEvent

TApdSRPhraseFinishEvent = procedure(
Sender : TObject; const Phrase : WideString) of object;

Indicates when the user has finished speaking a phrase.

The words the user spoke are in the Phrase parameter of the event. Multiple words may be in 
this value.

See also: OnPhraseHypothesis

OnPhraseHypothesis event

property OnPhraseHypothesis : TApdSRPhraseHypothesisEvent

TApdSRPhraseHypothesisEvent = procedure(
Sender : TObject; const Phrase : WideString) of object;

Indicates when the user has finished speaking a phrase, but the speech recognition engine is 
not positive on what was spoken.

The best guesss of what the user said will be indicated in the Phrase parameter. Multiple 
words may be in this value.

See also: OnPhraseFinish

OnSpeakStart event

property OnSpeakStart : TApdSapiNotifyEvent

TApdSapiNotifyEvent = procedure(Sender : TObject) of object;

Defines an event handler for when speech synthesis starts speaking.

This event will fire when the speech synthesis engine starts speaking to the default audio 
device or creates an audio file.

OnSpeakStop event

property OnSpeakStop : TApdSapiNotifyEvent

TApdSapiNotifyEvent = procedure(Sender : TObject) of object;

Defines an event handler for when the speech synthesis stops speaking.

This event will fire when the speech synthesis engine stops speaking to the default audio 
device or finishes creating an audio file.
40     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

OnSRError event

property OnSRError : TApdOnSapiError

TApdOnSapiError = procedure(
Sender : TObject; Error : LongWord;
const Details : string; const Message : string) of object;

Defines an event handler that is called when a speech recognition error occurs.

An error message was generated at some point during speed recognition. Error indicates the 
error code generated by the speech recognition engine. Details provides additional details 
about the error and Message provides the error messages as text.

OnSRWarning event

property OnSRWarning : TApdOnSapiError

TApdOnSapiError = procedure(
Sender : TObject; Error : LongWord;
const Details : string; const Message : string) of object;

Defines an event handler that is called when a speech recognition warning occurs.

A warning message was generated at some point during speed recognition. Error indicates 
the error code generated by the speech recognition engine. Details provides additional 
details about the warning and Message provides the error messages as text.

OnSSAttributeChanged event

property OnSSAttributeChanged : TApdSSAttributeChanged

TApdSSAttributeChanged = procedure(
Sender : TObject; Attribute: Integer) of object;

Indicates when an speech synthesis engine attribute has changed.

Multiple applications may be using the same speech synthesis engine. Any one of those can 
change attributes. This event exists to let the application know that an attribute has changed.
TApdSapiEngine Component     341

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

OnSSError event

property OnSSError : TApdOnSapiError

TApdOnSapiError = procedure(
Sender : TObject; Error : LongWord; const Details : string;
const Message : string) of object;

Defines an event handler that is called when a speech synthesis error occurs.

An error message was generated at some point during the speech synthesis. Error indicates 
the error code generated by the speech synthesis. Details provides additional details about 
the error and Message provides the error messages as text.

OnSSWarning event

property OnSSWarning : TApdOnSapiError

TApdOnSapiError = procedure(
Sender : TObject; Error : LongWord; const Details : string;
const Message : string) of object;

Defines an event handler that is called when a speech synthesis warning occurs.

A warning message was generated at some point during the speech synthesis. Error indicates 
the error code generated by the speech synthesis. Details provides additional details about 
the warning and Message provides the error messages as text.

OnTrainingRequested event

property OnTrainingRequested : TApdSRTrainingRequestedEvent

TApdSRTrainingRequestedEvent = procedure(
Sender : TObject; Training : TApdSRTrainingType) of object;

TApdSRTrainingType = set of (
ttCurrentMic, ttCurrentGrammar, ttGeneral);

Indicates when the speech recognition engine needs further training.

The OnTrainingRequested event will fire when the speech recognition requests further 
training. The Training parameter indicates the type of training required. The 
ShowTrainGeneralDlg and ShowTrainMicDlg methods can be called to provide the 
necessary training.

See also: ShowTrainGeneralDlg, ShowTrainMicDlg
42     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

OnVUMeter event

property OnVUMeter : TApdSRVUMeterEvent

TApdSRVUMeterEvent = procedure(
Sender : TObject; Level : Integer) of object;

Indicates the volume of the spoken data.

This event provides a rough indicator of the volume of the spoken data heard by the speech 
recognition engine. While the speech recognition engine is listening, this event will fire 
approximately 8 times a second.

See also: Listen, StopListening, SRAmplitude

PauseListening method

procedure PauseListening;

Pauses speech recognition.

PauseListening pauses the speech recognition. ResumeListening must be called to continue 
speech recognition. Pauses are nested. For example, if the engine is paused twice, it will take 
two resumes to restart the listening. 

The speech recognition engine may lose data while it is paused.

See also: ResumeListening

PauseSpeaking method

procedure PauseSpeaking;

Pauses speaking.

This method pauses speech synthesis. To resume speaking, call ResumeSpeaking.

See also: ResumeSpeaking

ResumeListening method

procedure ResumeListening;

Resumes speech recognition.

This method resumes speech recognition after it was paused using PauseListening.  Pauses 
are nested. For example, if the engine is paused twice, it will take two resumes to restart the 
listening. 

See also: PauseListening
TApdSapiEngine Component     343

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

ResumeSpeaking method

procedure ResumeSpeaking;

Resumes speaking after speaking was paused with PauseSpeaking.

This method will resume speech synthesis after it was paused using PauseSpeaking.

See also: PauseSpeaking

ShowAboutDlg method

procedure ShowAboutDlg(const Caption : string);

Displays the speech synthesis about dialog box.

The caption parameter provides a caption to the dialog box.

ShowGeneralDlg method

procedure ShowGeneralDlg(const Caption : string);

Displays the speech synthesis general settings dialog box.

The speech synthesis general settings dialog allows the user to access various aspects of the 
speech synthesis engine. This may include speaker specific information like gender and age, 
various engine optimizations, and access to other speech synthesis dialog boxes.

The caption parameter provides a caption to the dialog box.

ShowLexiconDlg method

procedure ShowLexiconDlg(const Caption : string);

Displays a dialog box for editing mispronounced words.

This method will display a dialog box that allows the user to edit the pronunciation lexicon 
used by speech synthesis.

The caption parameter provides a caption to the dialog box.
44     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ShowTrainGeneralDlg method

procedure ShowTrainGeneralDlg(const Caption : string);

Displays the general training dialog box.

This method will display the general training dialog box. This dialog allows the user to train 
the speech recognition engine using a preselected set of words. The speech recognition 
engine may request this dialog to be displayed via the OnTrainingRequested event.

The caption parameter provides a caption to the dialog box.

See also: OnTrainingRequested

ShowTrainMicDlg method

procedure ShowTrainMicDlg(const Caption : string);

Displays the microphone training dialog box.

This method will display a dialog box in which the user can train the speech recognition 
engine for a specific microphone. The speech recognition engine can request for this 
training dialog to be displayed via the OnTrainingRequested event. 

The Caption parameter allows the application to specify a caption for the title bar of the 
dialog.

Note: Not all speech recognition events will support this dialog.

See also: OnTrainingRequested

Speak method

procedure Speak(Text : string);

Speaks the specified text to the default audio device.

Calling this method will cause the text specified by the Text parameter to be spoken to the 
default audio device. 

If toTagged is specified in the TTSOptions property, the Text parameter can contain 
embedded tags to control the behavior of the speech synthesis engine.

The format of the Text parameter is controlled by the CharSet property.

The speech synthesis engine will store the text in a series of buffers. Since each buffer is 
spoken independently, complete sentences should be passed to the speech synthesis engine.
TApdSapiEngine Component     345

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Normally, the speech synthesis engine will start speaking the text as soon as it passed into 
one of the Speak methods (Speak, SpeakFile, SpeakFileToFile, SpeakStream, or 
SpeakToFile). However, if PauseSpeaking has been called before one of the Speak methods, 
the speaking will not occur until ResumeSpeaking is called.

StopSpeaking can be called at any time to halt the flow of speech. When StopSpeaking is 
called, the text that is spoken and any text that is queued will not be spoken. Text that is 
queued by using one of the Speak methods after the call to StopSpeaking will be spoken in 
the usual fashion.

See also: CharSet, PauseSpeaking, ResumeSpeaking, SpeakFile, SpeakFileToFile, 
SpeakStream, SpeakToFile, StopSpeaking, TTSOptions

SpeakFile method

procedure SpeakFile(FileName : string);

Speaks the contents of the specified file to the default audio device.

Calling this method will cause the contents of the specified file to be read over the default 
audio device. 

Note: Reading binary files may cause unexpected behavior.

If toTagged is specified in the TTSOptions property, the Text parameter can contain 
embedded tags to control the behavior of the speech synthesis engine.

The format of the Text parameter is controlled by the CharSet property.

The speech synthesis engine will store the text in a series of buffers. Since each buffer is 
spoken independently, complete sentences should be passed to the speech synthesis engine.

Normally, the speech synthesis engine will start speaking the text as soon as it passed into 
one of the Speak methods (Speak, SpeakFile, SpeakFileToFile, SpeakStream, or 
SpeakToFile). However, if PauseSpeaking has been called before one of the Speak methods, 
the speaking will not occur until ResumeSpeaking is called.

StopSpeaking can be called at any time to halt the flow of speech. When StopSpeaking is 
called, the text that is spoken and any text that is queued will not be spoken. Text that is 
queued by using one of the Speak methods after the call to StopSpeaking will be spoken in 
the usual fashion.

See also: CharSet, PauseSpeaking, ResumeSpeaking, Speak, SpeakFileToFile, SpeakStream, 
SpeakToFile, StopSpeaking, TTSOptions
46     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

SpeakFileToFile method

procedure SpeakFileToFile(const InFile, OutFile : string);

Converts the contents of the specified file into an audio file.

This method will create an audio file named by the OutFile parameter containing the spoken 
contents of the InFile parameter. The output file is formatted as xxxxxx.

Note: Reading binary files may cause unexpected behavior.

If toTagged is specified in the TTSOptions property, the Text parameter can contain 
embedded tags to control the behavior of the speech synthesis engine.

The format of the Text parameter is controlled by the CharSet property.

The speech synthesis engine will store the text in a series of buffers. Since each buffer is 
spoken independently, complete sentences should be passed to the speech synthesis engine.

Normally, the speech synthesis engine will start speaking the text as soon as it passed into 
one of the Speak methods (Speak, SpeakFile, SpeakFileToFile, SpeakStream, or 
SpeakToFile). However, if PauseSpeaking has been called before one of the Speak methods, 
the speaking will not occur until ResumeSpeaking is called.

StopSpeaking can be called at any time to halt the flow of speech. When StopSpeaking is 
called, the text that is spoken and any text that is queued will not be spoken. Text that is 
queued by using one of the Speak methods after the call to StopSpeaking will be spoken in 
the usual fashion.

See also: CharSet, PauseSpeaking, ResumeSpeaking, Speak, SpeakFile, SpeakStream, 
SpeakToFile, StopSpeaking, TTSOptions

SpeakStream method

procedure SpeakStream(Stream : TStream; FileName : string);

Speaks the contents of the specified stream.

This method will speak the contents of the specified stream.

Note: Reading binary files may cause unexpected behavior.

If toTagged is specified in the TTSOptions property, the Text parameter can contain 
embedded tags to control the behavior of the speech synthesis engine.

The format of the Text parameter is controlled by the CharSet property.

The speech synthesis engine will store the text in a series of buffers. Since each buffer is 
spoken independently, complete sentences should be passed to the speech synthesis engine.
TApdSapiEngine Component     347

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Normally, the speech synthesis engine will start speaking the text as soon as it passed into 
one of the Speak methods (Speak, SpeakFile, SpeakFileToFile, SpeakStream, or 
SpeakToFile). However, if PauseSpeaking has been called before one of the Speak methods, 
the speaking will not occur until ResumeSpeaking is called.

StopSpeaking can be called at any time to halt the flow of speech. When StopSpeaking is 
called, the text that is spoken and any text that is queued will not be spoken. Text that is 
queued by using one of the Speak methods after the call to StopSpeaking will be spoken in 
the usual fashion.

See also: CharSet, PauseSpeaking, ResumeSpeaking, Speak, SpeakFile, SpeakFileToFile, 
SpeakToFile, StopSpeaking, TTSOptions

SpeakToFile method

procedure SpeakToFile (const Text, FileName : string);

Converts the specified text into an audio file.

Calling this method will cause the text specified by the Text parameter to be converted into 
an audio file. 

Note: Reading binary files may cause unexpected behavior.

If toTagged is specified in the TTSOptions property, the Text parameter can contain 
embedded tags to control the behavior of the speech synthesis engine.

The format of the Text parameter is controlled by the CharSet property.

The speech synthesis engine will store the text in a series of buffers. Since each buffer is 
spoken independently, complete sentences should be passed to the speech synthesis engine.

Normally, the speech synthesis engine will start speaking the text as soon as it passed into 
one of the Speak methods (Speak, SpeakFile, SpeakFileToFile, SpeakStream, or 
SpeakToFile). However, if PauseSpeaking has been called before one of the Speak methods, 
the speaking will not occur until ResumeSpeaking is called.

StopSpeaking can be called at any time to halt the flow of speech. When StopSpeaking is 
called, the text that is spoken and any text that is queued will not be spoken. Text that is 
queued by using one of the Speak methods after the call to StopSpeaking will be spoken in 
the usual fashion.

See also: CharSet, PauseSpeaking, ResumeSpeaking, Speak, SpeakFile, SpeakFileToFile, 
SpeakStream, StopSpeaking, TTSOptions
48     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

!

SREngines run-time property

property SREngines : TApdAudioInDevice

Lists the available text to speech engines and specifies the current engine.

SSVoices run-time property

property SSVoices : TApdAudioOutDevice

Lists the available speech recognition engines and specifies the current engine.

StopListening method

procedure StopListening;

Stops speech recognition.

This method will halt the speech recognition engine. If you call this method before calling 
Listen, an error will be generated.

See also: Listen, PauseListening, ResumeListening

SRAmplitude read-only, run-time property

property SRAmplitude : Word

Provides the loudness of words spoken to the speech recognition engine.

Provides the current volume of the audio data spoken to the speech recognition engine. This 
value is the same as the Level parameter passed into the OnVUMeter event.

See also: Listen, OnVUMeter

SRAutoGain property

property SRAutoGain : Integer

Controls the automatic gain settings of the speech recognition engine.

This property controls the degree to which the speech recognition engine can automatically 
adjust the gain. Legal values range from 0, in which the speech recognition engine cannot 
adjust the gain, to 100, in which the gain is entirely controlled by the speech recognition 
engine.

Values between 0 and 100 set the percentage of gain adjustment that the speech engine can 
make. For example, a SRAutoGain value of 50 would cause the speech recognition engine to 
only adjust the gain half as much as it normally would.
TApdSapiEngine Component     349

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

StopSpeaking method

procedure StopSpeaking;

Stops speaking.

StopSpeaking halts the flow of speech being generated by the speech synthesis engine. This 
will also cancel any queued speech requests.

See also: Speak, PauseSpeaking, ResumeSpeaking

TTSOptions property

property TTSOptions : TApdTTSOptions

TApdTTSOptions = set of (toTagged);

Specifies options used during speech synthesis.

This property sets the speech synthesis options that will be used when text is spoken. The 
toTagged value allows the text to be spoken to contain embedded tags.

WordList property

property WordList : TStringList

Specifies expected words to be used by the speech recognition engine.

This property specifies those words that the speech recognition will be listening for. If 
Dictation is False, only the words in this property will the speech engine listen for. 
Otherwise, the speech engine will listen for the specified words in addition to those words in 
the default dictation word list. When Dictation is True, this property is optional.

See Also: Dictation
50     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdSapiPhonePrompts
The TApdSapiPhonePrompts class stores default prompts for use by the 
TApdCustomSapiPhone component. These values are spoken to the users when 
information is requested by one of the AskFor methods in the TApdCustomSapiPhone 
component.

Hierarchy
TPersistent (VCL)

TApdSapiPhonePrompts (AsSapiPh)

Properties
AskAreaCode

AskLastFour

AskNextThree

Help

Help2

Main

Main2

TooFewDigits

TooManyDigits

Unrecognized

Where

Where2
TApdSapiPhonePrompts     351

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

AskAreaCode property

property AskAreaCode : string

Prompt for user to enter an area code.

AskAreaCode specifies the spoken prompt used to ask the user for their area code. 
AskForPhoneNumber and AskForPhoneNumberEx use this when the speech recognition 
engine is unable to understand the full phone number. If the speech recognition engine fails 
to recognize the full phone number, the user will first be prompted for their area code using 
the AskAreaCode property, followed by the middle three digits of the phone number using 
the AskNextThree property and finally the last four digits using the prompt in the 
AskLastFour property.

See also: AskLastFour, AskNextThree

AskLastFour property

property AskLastFour : string

Prompt for user to enter the last four digits of the phone number.

AskLastFour specifies the spoken prompt used to ask the user for the last four digits of their 
phone number. AskForPhoneNumber and AskForPhoneNumberEx use this when the 
speech recognition engine is unable to understand the full phone number. If the speech 
recognition engine fails to recognize the full phone number, the user will first be prompted 
for their area code using the AskAreaCode property, followed by the middle three digits of 
the phone number using the AskNextThree property and finally the last four digits using the 
prompt in the AskLastFour property.

See also: AskAreaCode, AskNextThree
52     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

AskNextThree property

property AskNextThree : string

Prompt for user to enter the middle three digits of the phone number.

AskNextThree specifies the spoken prompt used to ask the user for middle three digits of 
their phone number. AskForPhoneNumber and AskForPhoneNumberEx use this when the 
speech recognition engine is unable to understand the full phone number. If the speech 
recognition engine fails to recognize the full phone number, the user will first be prompted 
for an area code using the AskAreaCode property, followed by the middle three digits of the 
phone number using the AskNextThree property and finally the last four digits using the 
prompt in the AskLastFour property.

See also: AskAreaCode, AskLastFour

Help property

property Help : string

Specifies help text that will be spoken if the user asks for help.

If the user asks for help during a call, first the text in the Help property will be spoken. If the 
user asks for help a second time, the text in Help2 will be spoken.

See also: Help2

Help2 property

property Help2 : string

Specifies help text that will be spoken if the user asks for help a second time.

If the user asks for help during a call, first the text in the Help property will be spoken. If the 
user asks for help a second time, the text in Help2 will be spoken.

See also: Help
TApdSapiPhonePrompts     353

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Main property

property Main : string

Specifies the main prompt spoken to the user.

Main is the first prompt spoken to the user by the AskFor methods in the 
TApdCustomSapiPhone component. The contents of this property should reflect what the 
user is being asked for. If the main prompt is repeated, the value in Main2 will be spoken 
instead of Main.

See also: Main2

Main2 property

property Main2 : string

Specifies the main prompt spoken to the user if the main prompt needs to be repeated.

Main2 is alternative and generally shorter text spoken if the main prompt should need to be 
repeated. The contents of this property should reflect what the user is being asked for. If the 
main prompt is repeated, the value in Main2 will be spoken instead of Main.

See also: Main

TooFewDigits property

property TooFewDigits : string

Prompt spoken to the user if too few digits were specified for an extension.

See also: TooManyDigits

TooManyDigits property

property TooManyDigits : string

Prompt spoken to the user if too many digits were specified for an extension.

See also: TooFewDigits
54     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Unrecognized property

property Unrecognized : string

Prompt spoken to the user to indicate the speech recognition engine did not understand 
what they said.

Where property

property Where : string

Help text spoken to the user if they ask where they are.

The Where prompt is spoken in response when the user asks, “Where Am I?” If the user asks 
where they are again, the text in Where2 will be spoken.

See also: Where2

Where2 property

property Where2 : string

Help text spoken to the user if they ask where they are a second time.

If the user asks where they are again for a second time, the text in Where2 will be spoken.

See also: Where
TApdSapiPhonePrompts     355

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

"

TApdCustomSapiPhone Component
The TApdCustomSapiPhone component is a speech-aware TAPI device. This component 
will automatically link to a TApdCustomSapiEngine component. When a call is active, 
speech synthesis and recognition will take place over the voice TAPI connection.

For this to work you will need a voice capable modem and speech synthesis and recognition 
engines that have been optimized for telephone usage.

Note: Speech recognition may lag behind what is actually spoken. Setting the Dictation 
property of the TApdCustomSapiEngine component to False helps with this, but the 
operating system, modem type, amount of memory and other factors influence the speech 
recognition lag.

Caution: When dialing a voice call, the standard TAPI Service Provider will return that it is 
connected as soon as it has dialed. This is a known problem in the standard TAPI Service 
Provider provided with Windows.

Most SAPI calls consist of a series of questions for the user. These are handled by several 
methods: AskForDate, AskForTime, AskForPhoneNumber and related methods. These 
methods will prompt the user for some information and then collect the voice reply and 
interpret the reply into a usable value.

The return code for the AskFor methods lets you know what the state of the call is. The reply 
codes are detailed in Table 10.3. Several of these values are controlled by the Options 
property.

Table 10.3: AskFor methods return codes

Return code Description

prOk The method was able to get a reply from the
user.

prAbort An unrecoverable error occurred in the method.

prNoResponse The user did not respond.

prOperator The user asked to speak to an operator. This
can be disabled in the Options property.

prHangUp The user either asked to hang up or did hang
up. Asking to hang up can be disabled in the
Options property.

prBack The user asked to go back. This can be
disabled in the Options property.
56     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Full and half duplex telephony connections
Most voice modems are half duplex—that is, they cannot listen and talk at the same time. In 
addition, the TAPI Service Provider may also be half duplex. UnimodemV, even under 
Windows 2000, has half duplex wave drivers. Even if you do have a full duplex modem, the 
wave drivers will prevent you from operating in full duplex mode.

Please note that for the ease of reference, the properties methods and events of 
TApdCustomSapiPhone are documented in the TApdSapiPhone section.

prWhere The user asked where he or she is. This is not
normally returned.

prHelp The user asked for help. This is not normally
returned.

prRepeat The user asked for the current prompt to be
repeated. This is not normally returned.

prSpeakFaster The user asked for the speech synthesis engine
to speak faster. This is not normally
returned. This can be disabled in the Options
property.

prSpeakSlower The user asked for the speech synthesis engine
to speak slower. This is not normally
returned. This can be disabled in the Options
property.

prCheck A reply was returned from the user, but the
method had difficulty in interpreting it. The
returned value may be unreliable. This most
applies to asking for dates and times. For
these methods, the textual data is returned to
aid in interpreting the value.

prError The reply from user was entirely
unintelligible.

prUnknown An unexpected value was returned.

Table 10.3: AskFor methods return codes (continued)

Return code Description
TApdCustomSapiPhone Component     357

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TComponent

TApdBaseComponent (OoMisc). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomTapiDevice (AdTapi)

TApdCustomSapiPhone (AdSapiPh)
58     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdSapiPhone Component
The TApdSapiPhone component exposes the functionality in the TApdCustomSapiPhone 
class, but does not change or add functionality to it. For ease of reference, however, the 
properties of TApdSapiEngine are documented here.

Hierarchy
TComponent

! TApdBaseComponent (OoMisc)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomTapiDevice (AdTapi)

TApdCustomSapiPhone (AdSapiPh)

TApdSapiPhone (AdSapiPh)

Properties
NoAnswerMax

NoAnswerTime

NumDigits

Options

Prompts

SapiEngine

! Version

Methods
AskForDate

AskForDateEx

AskForExtension

AskForExtensionEx

AskForList

AskForListEx

AskForPhoneNumber

AskForPhoneNumberEx

AskForSpelling

AskForSpellngEx

AskForTime

AskForTimeEx

AskForYesNo

AskForYesNoEx

Speak
TApdSapiPhone Component     359

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

AskForDate method

function AskForDate(
var OutDate : TDateTime; var ParsedText : string;
NewPrompt1 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError, prUnknown);

Asks the user for a date.

The user will be prompted for the date with the value in NewPrompt1. If this value is blank, 
then the default main prompt in the Prompts property will be used. Other prompts used in 
asking for the date are obtained from the Prompts property. If you want to override the 
prompts other than the main prompt, use the AskForDateEx method. 

The date is returned in OutDate as a TDateTime. The date returned may be unreliable. If this 
is the case, the method will return prCheck and the parsed text spoken by the user will be 
returned in ParsedText.

See also: AskForDateEx, Prompts

AskForDateEx method

function AskForDateEx(var OutDate : TDateTime;
var ParsedText : string; NewPrompt1 : string;
NewPrompt2 : string; NewHelp1 : string;
NewHelp2 : string; NewWhere1 : string;
NewWhere2 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a date.
60     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The user will be prompted for the date using the prompts passed into the method. These 
prompts correspond to the values in the Prompts property. If a value is blank, then the value 
from the corresponding prompt in the Prompts property will be used. If you only need to 
override the main prompt, use the AskForDate method. 

The date is returned in OutDate as a TDateTime. The date returned may be unreliable. If this 
is the case, the method will return prCheck and the parsed text spoken by the user will be 
returned in ParsedText.

See also: AskForDate, Prompts

AskForExtension method

function AskForExtension(var Extension : string;
NewPrompt1 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a telephone extension.

The user will be prompted for the telephone extension with the value in NewPrompt1. If this 
value is blank, then the default main prompt in the Prompts property will be used. Other 
prompts used in asking for the extension are obtained from the Prompts property. If you 
want to override the prompts other than the main prompt, use the AskForExtensionEx 
method.

The extension is assumed to be a series of digits and is returned as a string in the Extension 
parameter.

See also: AskForExtensionEx, Prompts
TApdSapiPhone Component     361

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

AskForExtensionEx Method

function AskForExtensionEx(var Extension : string;
NewPrompt1 : string; NewPrompt2 : string;
NewTooManyDigits : string; NewTooFewDigits : string;
NewNumDigits : Integer; NewHelp1 : string;
NewHelp2 : string; NewWhere1 : string;
NewWhere2 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a telephone extension.

The user will be prompted for the telephone extension using the prompts passed into the 
method. These prompts correspond to the values in the Prompts property. If a value is 
blank, then the value from the corresponding prompt in the Prompts property will be used. 
If you only need to override the main prompt, use the AskForExension method. 

The extension is assumed to be a series of digits and is returned as a string in the Extension 
parameter.

See also: AskForExtension, Prompts

AskForList method

function AskForList(List : TStringList; var OutIndex : Integer;
NewPrompt1 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a value in a list.

The user will be prompted for an entry in a list with the value in NewPrompt1. If this value is 
blank, then the default main prompt in the Prompts property will be used. Other prompts 
used in asking for the value are obtained from the Prompts property. If you want to override 
the prompts other than the main prompt, use the AskForListEx method.

The list of items the user is asked to select an item from is provided in the List parameter. If 
the user replies with one of the items in the list, that value will be retuned in the OutIndex 
parameter. If no item is selected, OutIndex will be set to –1.

See also: AskForListEx, Prompts
62     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

AskForListEx method

function AskForListEx(List : TStringList;
var OutIndex : Integer; NewPrompt1 : string;
NewPrompt2 : string; NewHelp1 : string;
NewHelp2 : string; NewWhere1 : string;
NewWhere2 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a value in a list.

The user will be prompted for the value in a list using the prompts passed into the method. 
These prompts correspond to the values in the Prompts property. If a value is blank, then the 
value from the corresponding prompt in the Prompts property will be used. If you only need 
to override the main prompt, use the AskForList method. 

The list of items the user is asked to select an item from is provided in the List parameter. If 
the user replies with one of the items in the list, that value will be retuned in the OutIndex 
parameter. If no item is selected, OutIndex will be set to –1.

See also: AskForList, Prompts

AskForPhoneNumber method

function AskForPhoneNumber(var PhoneNumber : string;
NewPrompt1 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a phone number.

The user will be prompted for the phone number with the value in NewPrompt1. If this 
value is blank, then the default main prompt in the Prompts property will be used. Other 
prompts used in asking for the phone number are obtained from the Prompts property. If 
you want to override the prompts other than the main prompt, use the 
AskForPhoneNumberEx method. 
TApdSapiPhone Component     363

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

If AskForPhoneNumber is unable to obtain the phone number, it will ask for the number in 
pieces using the AskAreaCode, AskNextThree and AskLastFour prompts. 

The phone number is returned as a string in the PhoneNumber property.

See also: AskForPhoneNumberEx, Prompts

AskForPhoneNumberEx method

function AskForPhoneNumberEx(var PhoneNumber : string;
NewPrompt1 : string; NewPrompt2 : string;
NewAskAreaCode : string; NewAskNextThree : string;
NewAskLastFour : string; NewHelp1 : string;
NewHelp2 : string; NewWhere1 : string;
NewWhere2 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a phone number.

The user will be prompted for the phone number using the prompts passed into the method. 
These prompts correspond to the values in the Prompts property. If a value is blank, then the 
value from the corresponding prompt in the Prompts property will be used. If you only need 
to override the main prompt, use the AskForPhoneNumber method. 

If AskForPhoneNumber is unable to obtain the phone number, it will ask for the number in 
pieces using the NewAskAreaCode, NewAskNextThree and NewAskLastFour parameters 
or the corresponding values in Prompts.

The phone number is returned as a string in the PhoneNumber property.

See also: AskForPhoneNumber, Prompts
64     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

AskForSpelling method

function AskForSpelling(
var SpelledWord : string;
NewPrompt1 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a spelled word.

The user will be prompted using the value in NewPrompt1 to spell out a reply. If 
NewPrompt1 is blank, then the default main prompt in the Prompts property will be used. 
Other prompts used in asking for the spelled item are obtained from the Prompts property. 
If you want to override the prompts other than the main prompt, use the AskForSpellingEx 
method.

The reply from the user is returned in the SpelledWord parameter.

See also: AskForSpellingEx, Prompts

AskForSpellingEx method

function AskForSpellingEx(
var SpelledWord : string; NewPrompt1 : string;
NewPrompt2 : string; NewHelp1 : string; NewHelp2 : string;
NewWhere1 : string; NewWhere2 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a spelled word.

The user will be prompted using the prompts passed into the method to spell out a reply. 
The prompts correspond to the values in the Prompts property. If a value is blank, then the 
value from the corresponding prompt in the Prompts property will be used. If you only need 
to override the main prompt, use the AskForSpelling method. 

The reply from the user is returned in the SpelledWord parameter.

See also: AskForSpelling, Prompts
TApdSapiPhone Component     365

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

AskForTime method

function AskForTime(
var OutTime : TDateTime; var ParsedText : string;
NewPrompt1 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a time.

The user will be prompted for the time with the value in NewPrompt1. If this value is blank, 
then the default main prompt in the Prompts property will be used. Other prompts used in 
asking for the time are obtained from the Prompts property. If you want to override the 
prompts other than the main prompt, use the AskForTimeEx method. 

The date is returned in OutTime as a TDateTime. The date returned may be unreliable. If 
this is the case, the method will return prCheck and the parsed text spoken by the user will 
be returned in ParsedText.

See also: AskForTimeEx, Prompts

AskForTimeEx method

function AskForTimeEx(
var OutTime : TDateTime; var ParsedText : string;
NewPrompt1 : string; NewPrompt2 : string; NewHelp1 : string;
NewHelp2 : string; NewWhere1 : string;
NewWhere2 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a time.

The user will be prompted for the time using the prompts passed into the method. These 
prompts correspond to the values in the Prompts property. If a value is blank, then the value 
from the corresponding prompt in the Prompts property will be used. If you only need to 
override the main prompt, use the AskForTime method. 

The date is returned in OutTime as a TDateTime. The date returned may be unreliable. If 
this is the case, the method will return prCheck and the parsed text spoken by the user will 
be returned in ParsedText.

See also: AskForTime, Prompts
66     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

AskForYesNo method

function AskForYesNo(
var Reply : Boolean; NewPrompt1 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a yes or no reply.

The user will be prompted for a yes or no reply using the value in NewPrompt1. If this value 
is blank, then the default main prompt in the Prompts property will be used. Other prompts 
used in asking for the yes or no reply are obtained from the Prompts property. If you want to 
override the prompts other than the main prompt, use the AskForYesNoEx method. 

The date is returned in the Reply parameter as a Boolean. A value of True indicates yes and a 
value of False indicates no.

See also: AskForYesNoEx, Prompts

AskForYesNoEx method

function AskForYesNoEx(
var Reply : Boolean; NewPrompt1 : string;
NewPrompt2 : string; NewHelp1 : string;
NewHelp2 : string; NewWhere1 : string;
NewWhere2 : string) : TApdSapiPhoneReply;

TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
prSpeakFaster, prSpeakSlower, prCheck, prError,
prUnknown);

Asks the user for a yes or no reply.

The user will be prompted for the reply using the prompts passed into the method. These 
prompts correspond to the values in the Prompts property. If a value is blank, then the value 
from the corresponding prompt in the Prompts property will be used. If you only need to 
override the main prompt, use the AskForYesNo method. 

The date is returned in the Reply parameter as a Boolean. A value of True indicates yes and a 
value of False indicates no.

See also: AskForYesNo, Prompts
TApdSapiPhone Component     367

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

NoAnswerMax property

property NoAnswerMax : Integer

Specifies the number of times the user can not answer a prompt before returning an error. 

This is used by the AskFor methods. If there is no answer, these methods will return 
prNoResponse.

See also: NoAnswerTime

NoAnswerTime property

property NoAnswerTime : Integer

Specifies in seconds the amount of time for a user to answer a prompt.

This is used by the AskFor methods. If the user does not reply in NoAnswerTime seconds 
NoAnswerMax times, the prNoResponse error will be returned by the method.

See also: NoAnswerMax

NumDigits property

property NumDigits : Integer

Specifies the number of digits in the extension asked for by AskForExtension and 
AskForExtensionEx.

Options property

property Options : TApdSapiPhoneSettings

TApdSapiPhoneSettings = set of (psVerify, psCanGoBack,
psDisableSpeedChange, psEnableOperator,
psEnableAskHangup, psFullDuplex);

Specifies options supported by the call.
68     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Various options can be enabled for a SAPI call. These are detailed in the following table:

Prompts property

property Prompts : TApdSapiPhonePrompts

Specifies the default spoken prompts used in getting information from the user.

SapiEngine property

property SapiEngine : TApdCustomSapiEngine

Specifies the TApdCustomSapiEngine component to use for speech synthesis and 
recognition.

Speak method

procedure Speak(const Text : string);

Speaks the specified text to the user.

Option Meaning

psVerify Every AksFor method will confirm the user’s reply
automatically.

psCanGoBack The user can ask to go back. This enables the
prBack return value in the AskFor methods.

psDisableSpeedChange If selected, the user cannot ask for the speech
synthesis to speak faster or slower.

psEnableOperator The user can ask for an operator. This enables the
prOperator return value in the AskFor methods.

psEnableAskHangup The user can ask to hang up. This enables the
prHangUp return value in the AskFor methods. This
will not automatically hang up.

psFullDuplex Enables the telephony control to listen at the same
time it is speaking. In most cases, this cannot be
turned on. Full duplex depends on the modem drivers
in addition to the TAPI service provider.
TApdSapiPhone Component     369

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
70     Chapter 10: SAPI Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 11: Remote Access Service (RAS) Components

Async Professional provides two RAS components that make it easy to add RAS dialing 
capability to your application. RAS dialing is performed via the Microsoft RAS API.

The TApdRasDialer provides an easy to use interface to the Microsoft Remote Access 
Services API to establish a connection to another computer via Dialup Networking. In 
addition, the component also provides a set of standard functions for manipulating 
phonebook entries and displaying dial status information.

The TApdRasStatus component provides a dialing status dialog for use on machines whose 
RAS DLL does not provide a status display.

Overview
Remote Access Services (RAS) is the Windows service that handles dial-up networking 
connections via modem. RAS is installed by default on most Win9x machines. On NT 
machines, however, RAS is not installed until you add a modem device to the system 
configuration. On Windows 9x/ME, dialup-networking automatically starts when an 
application attempts to connect to a remote machine. Under Windows NT, however, this 
does not occur and it’s up to the user to explicitly dial with RAS.

Key to RAS operations is Window’s concept of a phonebook. An entry in the phonebook 
contains the user’s dialup networking connection settings which includes the modem to use, 
the phone number to dial, the network connection settings, and so on. In Windows NT, a 
phonebook is contained in a phonebook file (a file with a .PBK extension) and there can be 
more than one phonebook. In Windows 9x/ME only one phonebook exists and is stored in 
the registry.
     371

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdRasDialer Component
The TApdRasDialer provides an interface to Microsoft’s Remote Access Service (RAS) API. 
The component is used primarily to establish and terminate a connection to a remote 
machine using Window’s dial-up networking, however it can also be used to manipulate 
RAS phonebook entries and enumerate active connections.

The TApdRasDialer requires that RAS has been installed on the machine that the 
application is to be run. If RAS is not installed, then an exception ecRasLoadFail is raised 
whenever a TApdRasDialer function is called.

Dialing is performed by the Dial and DialDlg (WinNT) methods. Both asynchronous and 
synchronous dialing options are available with Dial. The Hangup method terminates the 
call. Phonebook entries are manipulated by the CreatePhonebookEntry, 
EditPhonebookEntry, ListEntries, and PhonebookDlg (WinNT) methods. The dialing 
parameters for a particular call can be obtained and by the GetDialParameters, and 
SetDialParameters methods. For WinNT machines, a monitor can be displayed by 
MonitorDlg to display the status of RAS connections.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomRasDialer (AdRas)

TApdRasDialer (AdRas)
72     Chapter 11: Remote Access Service (RAS) Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Properties
CallBackNumber

CompressionMode

Connection

ConnectState

DeviceName

DeviceType

DialMode

DialOptions

Domain

EntryName

HangupOnDestroy

Password

Phonebook

PhoneNumber

PlatformID

SpeakerMode

StatusDisplay

UserName

! Version

Methods
CreatePhonebookEntry

DeletePhonebookEntry

Dial

DialDlg

EditPhonebookEntry

GetDialParameters

GetErrorText

GetStatusText

Hangup

ListConnections

ListEntries

MonitorDlg

PhonebookDlg

SetDialParamters

Events
OnConnected

OnDialError

OnDialStatus

OnDisconnected
TApdRasDialer Component     373

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Reference

CallBackNumber property

property CallBackNumber : string

Specifies a callback number for the current phonebook entry.

An empty string indicates that callback should not be used. This string is ignored unless the 
user has “Set By Caller” callback permission on the RAS server. An asterisk indicates that 
the number stored in the phonebook should be used for callback.

CompressionMode property

property CompressionMode : TApdRasCompressionMode

TApdRasCompressionMode = (
cmDefault, cmCompressionOn, cmCompressionOff);

Specifies whether software compression is to be used.

If the application is not running under Windows NT, this property is ignored.

Connection run-time, read-only property

property Connection : TRasConnHandle

Contains the RAS connection handle for the current phonebook entry.

This property is available if needed, but will probably not be of use to the user.

ConnectState property

property ConnectState : Integer

Contains connection state for the current phonebook entry.

Use ConnectState to determine the connect status for the current phonebook entry. This 
value can be passed to GetStatusText to obtain the corresponding text string. Connection 
state constants are defined in ADRASCS.INC

See also: GetStatusText
74     Chapter 11: Remote Access Service (RAS) Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

CreatePhonebookEntry method

function CreatePhonebookEntry : Integer;

Creates a new entry in the current phonebook.

A dialog box is displayed in which the user enters the information for the new entry.

A return value other than ecOK indicates that an error occurred and the return value is the 
error code. This value can then be passed to GetErrorText to obtain a description of the 
error.

See also: DeletePhonebookEntry, EditPhonebookEntry, GetErrorText

DeletePhonebookEntry method

function DeletePhonebookEntry : Integer;

Deletes the current phonebook entry.

If the EntryName property specifies an existing phonebook entry, that entry will be deleted 
and the EntryName property set to an empty string. If a connection exists for the entry, it 
will be disconnected.

A return value other than ecOK indicates that an error occurred and the return value is the 
error code. This value can then be passed to GetErrorText to obtain a description of the 
error.

See also: CreatePhonebookEntry, EditPhonebookEntry, EntryName, GetErrorText

DeviceName run-time, read-only property

property DeviceName : string

Contains the device name for the current active connection.

DeviceName contains the name of the current device, if available. This could be the name of 
the modem, the name of the PAD, or the name of a switch device.

See also: ConnectState, DeviceType
TApdRasDialer Component     375

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

DeviceType run-time, read-only property

property DeviceType : string

Contains the device type name for the current active connection.

DeviceType contains a string that identifies the type of the current device, if available. 
Common device types supported by RAS remote access service are “modem”, “pad”, 
“switch”, “ison”, or “null.” 

See also: ConnectState, DeviceName

Dial method

function Dial : Integer;

Establishes a Remote Access Service (RAS) connection.

Use Dial to establish a Remote Access Service (RAS) connection between a RAS client and a 
RAS server. If a connection error occurs then the connection is automatically hung up. 

During asynchronous dialing (DialMode = dmAsync), Dial returns immediately before the 
connection is established. The connection progress is communicated via the OnDialStatus, 
OnDialError, and OnConnected events. Additionally, if a TApdRasStatus component is 
specified by StatusDisplay, then the status component displays a dialing status dialog until 
the connection has been established or cancelled.

During synchronous dialing (DialMode is set to dmSync), Dial does not return until the 
connection attempt has completed successfully or failed. No events are fired, so the Dial 
function result must be checked to determine the connection status. A return value other 
than ecOK indicates that an error occurred and the return value is the error code. This value 
can then be passed to GetErrorText to obtain a description of the error.

Connection status information is also available via the ConnectState property until the 
application calls HangUp to terminate the connection. An application must eventually call 
HangUp after a connection has been successfully established.

Dial does not display a logon dialog box. This is currently done through the Remote 
Networking application. Your application is responsible for setting the dialing properties. 

See also: ConnectState, DialMode, GetErrorText, Hangup, OnConnected, OnDialError, 
OnDialStatus, StatusDisplay 
76     Chapter 11: Remote Access Service (RAS) Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

DialDlg method

function DialDlg : Integer;

Establishes a RAS connection using synchronous Ras dial dialog (WinNT).

If the application is not running under Windows NT, DialDlg will return a 
ecFunctionNotSupported error.

DialDlg commences synchronous dialing and displays dialog boxes during the connection 
operation to provide feedback to the user about the progress of the operation. The dialog 
boxes also provide a Cancel button for the user to terminate the connection.

DialDlg returns when the connection is established, or when the user cancels the operation.

No progress events are fired so the function return value must be examined to determine the 
status of the connection. A return value other than ecOK indicates that an error occurred 
and the return value is the error code. This value can then be passed to GetErrorText to 
obtain a description of the error. If a connection error occurs, the connection is 
automatically hung-up.

Connection status information is also available via the ConnectState property until the 
application calls HangUp to terminate the connection. An application must eventually call 
HangUp after a connection has been successfully established.

See also: ConnectState, DialMode, GetErrorText, Hangup 

DialMode property

property DialMode : TApdRasDialMode

TApdRasDialMode = (dmSync, dmAsync);

Default: dmAsync

Specifies whether dialing is performed asynchronously or not.

When asynchronous dialing is specified, a call to the Dial method returns immediately and 
connection status is provided via the OnDialStatus and OnConnected events. When 
synchronous dialing is specified, a call to the Dial method does not return until either a 
connection has been established, or an error has been detected during dialing.

See also: Dial, OnConnected, OnDialStatus
TApdRasDialer Component     377

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

DialOptions property

property DialOptions : TApdRasDialOptions

TApdRasDialOption = (doPrefixSuffix, doPausedStates,
doDisableConnectedUI, doDisableReconnectUI,
doNoUser, doPauseOnScript);

TApdRasDialOptions = set of TApdRasDialOption;

Specifies dialing options for the current phonebook entry.

If the application is not running under Windows NT, this property is ignored.

Domain property

property Domain : string

Specifies a string containing the domain on which authentication is to occur.

An empty string specifies the domain in which the remote access server is a member. An 
asterisk specifies the domain stored in the phonebook for the entry.

EditPhonebookEntry method

function EditPhonebookEntry : Integer;

Edits the current phonebook entry.

A dialog box is displayed in which the user can modify the information for the entry 
specified by the EntryName property.

A return value other than ecOK indicates that an error occurred and the return value is the 
error code. This value can then be passed to GetErrorText to obtain a description of the 
error.

See also: CreatePhonebookEntry, DeletePhonebookEntry, EntryName, GetErrorText

EntryName property

property EntryName : string

Specifies a string containing the phonebook entry to use to establish a connection. 

An empty string specifies a simple modem connection on the first available modem port, in 
which case PhoneNumber must contain the number to be dialed.
78     Chapter 11: Remote Access Service (RAS) Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

GetDialParameters method

function GetDialParameters : Integer;

Retrieves stored dialing parameters.

The connection information saved by the last successful call to Dial or SetDialParameters 
for the current phonebook entry is retrieved.

A return value other than ecOK indicates that an error occurred and the return value is the 
error code. This value can then be passed to GetErrorText to obtain a description of the 
error.

See also: GetErrorText, SetDialParameters

GetErrorText method

function GetErrorText(Error : Integer) : string;

Returns the text string for the specified RAS error.

Use GetErrorText to obtain the text for a given RAS error.

Example:

with ApdRasDialer1 do
ShowMessage(GetErrorText(DialDlg));

Error code constants are defined in ADRASEC.INC

See also: OnDialError

GetStatusText method

function GetStatusText(State : TRasState) : string;

Returns the text string for the specified RAS connection state.

Use GetStatusText to obtain the text for a given RAS connection state.

Example:

with ApdRasDialer1 do
ShowMessage(GetStatusText(ConnectState));

Connection state constants are defined in ADRASCS.INC

See also: ConnectState, OnDialStatus 
TApdRasDialer Component     379

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Hangup method

procedure Hangup;

Terminates the active RAS connection. 

Hangup releases all RASAPI32.DLL resources associated with the connection. Hangup 
must be called eventually if a connection has been made by calling either the Dial or DialDlg 
methods. It is safe to call Hangup at any time during dialing.

See also: Dial, DialDlg

HangupOnDestroy property

property HangupOnDestroy : Boolean

Default: True

Specifies whether or not an active connection is terminated when the component is 
destroyed.

If an active RAS connection has been established by calling either Dial or DialDlg, a 
connection handle is maintained for the duration of the call and must be used to hangup the 
call. By default, when the dialing application terminates, it will disconnect an active 
connection since the connection handle is not saved. By setting HangupOnDestroy to True, 
you can override this behavior and allow the connection to remain open when the 
application closes.

ListConnections method

function ListConnections(List : TStrings) : Integer;

Obtains a list of all active RAS connections.

Use ListConnections to obtain a string list of all active RAS connections. The List argument 
must be created before calling the function. Upon return, the List.Strings property contains 
the entry names of the active connections. If List has not been created, an exception is 
raised.

Example:

...
ComboBox1.Clear;
ApdRasDialer1.ListConnections(ComboBox1.Items);

A return value other than ecOK indicates that an error occurred and the return value is the 
error code. This value can then be passed to GetErrorText to obtain a description of the 
error.
80     Chapter 11: Remote Access Service (RAS) Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ListEntries method

function ListEntries(List : TStrings) : Integer;

Obtains a list of all entry names in the current RAS phonebook.

Use ListEntries to obtain a string list of all entries in the current RAS phonebook. The List 
argument must be created before calling the function. Upon return, the List.Strings 
property contains the entry names contained in the phonebook. If List has not been created, 
an exception is raised.

Example:

...
ComboBox1.Clear;
ApdRasDialer1.ListEntries(ComboBox1.Items);
...

ApdRasDialer1.EntryName :=
ComboBox1.Items[ComboBox1.ItemIndex];

...

A return value other than ecOK indicates that an error occurred and the return value is the 
error code. This value can then be passed to GetErrorText to obtain a description of the 
error.

See also: GetErrorText

MonitorDlg method

function MonitorDlg : Integer;

Displays the status of a connection using the Ras status dialog (WinNT).

Use MonitorDlg to display a a dialog showing the status of a connection. This is the same 
dialog box you see if you right-click the Dial-Up Networking Monitor application in NT’s 
system tray.

A return value other than ecOK indicates that an error occurred and the return value is the 
error code. This value can then be passed to GetErrorText to obtain a description of the 
error.

See also: GetErrorText
TApdRasDialer Component     381

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnConnected event

property OnConnected : TApdRasConnectedEvent

TApdRasConnectedEvent = procedure(Sender : TObject) of object;

Defines an event handler that is called when a RAS connection has been established.

During asynchronous dialing (DialMode = dmAsync), OnConnected is called to notify that 
the connection has been successfully established. If StatusDisplay specifies a TApdRasStatus 
dialog, the dialog is closed.

During synchronous dialing (DialMode = dmSync), this event is not used and the 
ConnectState property should be read to determine if a connection has been established.

See also: ConnectState, Dial, DialDlg, DialMode

OnDialError event

property OnDialError : TApdRasErrorEvent

TApdRasErrorEvent = procedure(
Sender : TObject; Error : Integer) of object;

Defines an event handler that is called when an error occurs during dialing.

OnDialError is called whenever an error occurs while attempting to complete a RAS 
connection. If no event handler is defined, the result of the called method should be used to 
determine if an error has occurred.

The Error parameter may be passed to GetErrorText to obtain the corresponding error text.

Error code constants are defined in ADRASUTL.PAS

See also: GetErrorText
82     Chapter 11: Remote Access Service (RAS) Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

OnDialStatus event

property OnDialStatus : TApdRasStatusEvent

TApdRasStatusEvent = procedure(
Sender : TObject; State : TRasConnState) of object;

Defines an event handler that is called to provide status during dialing.

During asynchronous dialing (DialMode = dmAsync), OnDialStatus is called periodically 
to provide connection status information. During synchronous dialing (DialMode = 
dmSync), this event is not used and the ConnectState property should be read to determine 
the connection status.

The State parameter may be passed to GetStatusText to obtain the corresponding text string.

Connection state constants are defined in ADRASUTL.PAS

See also: ConnectState, Dial, DialMode, GetStatusText

OnDisconnected event

property OnDisconnected : TNotifyEvent

Defines an event handler that is called when an active connection is terminated.

If an active RAS connection has been established by calling either Dial or DialDlg, the 
OnDisconnected event is fired when the connection is closed.

See also: ConnectionStatus, OnConnected

Password property

property Password : string

Specifies a string containing the user’s password.

Password is used to authenticate the user’s access to the remote access server.

See also: UserName
TApdRasDialer Component     383

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Phonebook property

property Phonebook : string

Specifies the full path and filename of the phonebook file.

For applications running under Windows NT, Phonebook can be an empty string, and 
typically is, in which case the default phonebook file RASPHONE.PBK is used.

For applications running under Windows 95/98, Phonebook is ignored. Dial-up networking 
stores phonebook entries in the registry rather than in a phonebook file.

PhonebookDlg method

function PhonebookDlg : Integer;

Displays the main Dial-Up Networking dialog box. (WinNT).

PhonebookDlg displays the main Dial-Up Networking modal dialog box from which the 
user can edit, or delete a selected phonebook entry, create a new phonebook entry, or 
specify user preferences.

A return value other than ecOK indicates that an error occurred and the return value is the 
error code. This value can then be passed to GetErrorText to obtain a description of the 
error.

See also: GetErrorText

PhoneNumber property

property PhoneNumber : string

Specifies a string containing an overriding phone number.

An empty string indicates that the phonebook entry’s phone number should be used. If 
EntryName contains an empty string, PhoneNumber must contain a phone number to dial. 

See also: EntryName
84     Chapter 11: Remote Access Service (RAS) Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

PlatformID run-time, read-only property

property PlatformID : DWord

Identifies the platform supported by the operating system. 

PlatformID can have one of the following values: 

SetDialParameters method

function SetDialParameters : Integer;

Updates stored dialing parameters. 

This function changes the connection information saved by the last call to Dial or 
SetDialParameters for the current phonebook entry. Only the UseName, Password, Domain 
name, and Callback number can be changed.

A return value other than ecOK indicates that an error occurred and the return value is the 
error code. This value can then be passed to GetErrorText to obtain a description of the 
error.

See also: GetDialParameters, GetErrorText

SpeakerMode property

property SpeakerMode : TApdRasSpeakerMode

TApdRasSpeakerMode = (smDefault, smSpeakerOn, smSpeakerOff);

Specifies the modem speaker setting for the current phonebook entry.

For applications not running under Windows NT, this property is ignored.

Value Operating System

VER_PLATFORM_WIN32_WINDOWS Windows 95/98/ME

VER_PLATFORM_WIN32_NT Windows NT
TApdRasDialer Component     385

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

StatusDisplay property

property StatusDisplay : TApdRasStatus

Specifies an attached dialing status dialog.

The StatusDisplay provides a mechanism to display a TApdRasStatus dialog while 
establishing a connection via the Dial function. If the DialDlg function is used then this 
property is ignored.

See also: Dial, DialDlg

UserName property

property UserName : string

Specifies a string containing the user’s identification name.

UserName is used to authenticate the user’s access to the remote access server.

See also: Password
86     Chapter 11: Remote Access Service (RAS) Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdRasStatus Component
The TApdRasStatus provides a standard RAS dialing status dialog with a Cancel button to 
abort dialing at any time. To use it, just create an instance and assign it to the StatusDisplay 
property of your TApdRasDialer component.

TApdRasStatus has no methods that you must call or properties that you must adjust. You 
might want to change the settings of the Ctl3D and Position properties to modify the 
appearance and placement of the window.

Figure 11.1 shows the display that is associated with a TApdRasStatus component.

Hierarchy
TComponent (VCL)

TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomRasStatus (AdRas)

TApdRasStatus (AdRStat)

 Figure 11.1: TApdRasStatus component display.
TApdRasStatus Component     387

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
88     Chapter 11: Remote Access Service (RAS) Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 12: TAPI Components

The Telephony Application Programming Interface (TAPI) is a collection of DLLs and a 
documented programming interface for centralizing and controlling telephony 
communications services. TAPI was developed by Microsoft primarily for Computer 
Telephony Integration (CTI) applications. TAPI provides the services that telephone 
equipment and system providers need to integrate Windows programming and telephone 
hardware.

TAPI also provides a smaller, though much more visible, service in managing modems as 
system devices. This is a tremendous boon to communications programmers. No longer do 
communications applications need to search serial ports for modems, try to identify 
modems, burden the user with questions about their modem, or try any of the other 
traditional approaches to supporting modems. Under TAPI, that task is handled by the 
operating system. Programs make a few simple TAPI calls to determine what modems are 
available.

Another advantage of TAPI is that applications can share serial ports. For example, assume 
that an application opens a TAPI device to accept incoming fax or data calls. A second 
application, if it also uses TAPI, can safely open the same TAPI device for an outgoing call. 
When the outgoing call is over, TAPI resumes monitoring incoming calls without any 
further action required by either application.

The TAPI components do have some drawbacks. TAPI may not be installed, or properly 
configured, on all operating systems. TAPI relies upon several device drivers and INF files to 
properly configure the modems. If these supporting files are not present, or if they are not 
adequate, TAPI operations may fail or behave erratically. Consider making a data 
connection through TAPI; if the wrong modem driver is selected for an installed modem, 
TAPI could configure the modem to a state where it is incompatible with the remote device. 
The modem driver may also be written poorly, most notably by not requiring responses to 
modem commands. 

The second major disadvantage of TAPI is that it doesn’t provide the level of visibility or 
control that is provided by TAdModem. TAdModem provides more detailed status 
information and more control over failures such as “no dialtone” and “called number busy” 
conditions. It is also much easier to customize TAdModem to provide unique 
configurations.

The third major disadvantage of TAPI is that TAPI doesn’t provide support for direct, 
modemless connections. TAPI applications usually must still include logic for the direct 
opening of serial ports.
     389

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The fourth major disadvantage of TAPI is the difficulty of assuring proper modem 
configuration. TAPI modems are detected and installed by Windows during the installation 
process. If a new modem is added later, the instructions provided with the modem usually 
direct the user to run one of the Control Panel applets “Add New Hardware” or “Modems.” 
The “Add New Hardware” applet found in Windows scans all available serial ports for 
attached modems. When it finds a modem, it sends a variety of commands to the modem 
and compares the responses against a large database of known modems, usually resulting in 
an unambiguous choice. The “Modems” applet (or a setup program provided by the 
modem vendor), can skip this detection process if the modem type is already known.

No matter how the modem is installed, the end result is that TAPI now knows everything it 
needs to about that modem (serial port, baud rate, and the specific configuration 
commands/responses). Property sheets are available to the user for changing the 
configuration of the modem. For example, the user can turn the speaker on or off, change 
the attached serial port, enable/disable flow control, and so on.

The default property values for the modem chosen by Microsoft or the modem vendor are 
the values that provide the best results in the widest variety of situations. These properties, 
however, are available to the user via the Modem applet’s modem property sheets. If the user 
changes a critical value (say, the serial port number or perhaps flow control) it’s likely that 
your application won’t operate properly when using that modem. Unfortunately, there isn’t 
much you can do to protect against this. The responsibility for assuring the modem is 
properly configured is in the user’s hands, not the application.

The final major disadvantage of TAPI is that resources often do not get properly released 
following an abnormal termination of an application using TAPI. To counter this problem, 
TApdTapiDevice includes a TAPI crash recovery mechanism which will automatically detect 
this situation and release TAPI resources.

All of these issues are likely to improve over time, making TAPI the choice for current and 
future communications programs. The best recommendation at this point is to use TAPI for 
applications targeted for Windows.

Async Professional provides components that make use of TAPI modem management. 
These components provide an alternate to TAdModem for configuring modems and dialing 
and answering calls. Async Professional negotiates for TAPI 1.4 in Windows applications.

Async Professional also supports TAPI 1.3 functions in 16-bit applications for Windows 3.1 
and Windows for Workgroups, but those environments lack a general purpose modem 
service provider, which renders most of the TAPI functions useless for serial 
communications programs.
90     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The Async Professional TAPI components provide all the services necessary for selecting 
TAPI devices, dialing and answering calls, and receiving status information about TAPI calls 
in progress. The TAPI system itself provides even more services. For more information 
about TAPI, see the following sources:

• Sells, Windows Telephony Programming: A Developer’s Guide to TAPI, 
Addison-Wesley, ISBN 0/201/63450-3.

• TAPI Reference Manual, included with the TAPI SDK and with the Windows 95/98 
SDK.

• “Create Communications Programs for Windows 95 with the Win32 Comm API”, 
Microsoft Systems Journal, 1994 #12 (December).

• Programming Windows 95 Unleashed (SAMS Publishing). Although only one out of 
37 chapters is devoted to TAPI, it provides a nicely condensed version of much of the 
information in the TAPI Reference Manual, plus some helpful C++ example 
programs.

• The C++ sample program TAPICOMM, available on the Microsoft Developer 
Network CD.
Chapter 12: TAPI Components     391

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TAPI Device Control from an Application
Without TAPI, the TApdComPort component opens the physical serial port directly using 
the appropriate Windows API call, which returns a handle to that port. The TApdComPort 
then uses the handle to send and receive data and otherwise control the serial port. 
Configuring, dialing or answering the modem requires sending explicit ATXxx commands 
to the modem, interpreting the responses, and dealing with the myriad of differences among 
currently available modems.

With TAPI, a TApdComPort is still required, but it is not initially involved in establishing 
the modem connection—a TApdTapiDevice is used for that purpose. The application calls 
Dial to place an outgoing call or calls AutoAnswer to wait for an incoming call. TAPI sends 
the appropriate ATXxx commands, interprets the responses, and establishes the modem 
connection.

Once the connection is established, TAPI’s role is essentially over. TAPI remains in charge of 
the call until the modem connection is broken, but the TApdTapiDevice is not used again. 
From this point on you use the TApdComPort to control the port and send/receive data, just 
as if TAPI is not involved. The TApdComPort is automatically opened by the 
TApdTapiDevice when the modem connection is established. Several TApdComPort 
properties are updated with appropriate information from the TAPI device, notably Baud 
and ComNumber.

When the modem connection is broken, TApdTapiDevice automatically closes the 
associated TApdComPort. The TApdComPort cannot be used for input/output unless the 
modem connection is re-established by the TAPI device or unless the program bypasses 
TAPI and opens and uses the TApdComPort directly.

The TApdComPort property TapiMode determines whether the port is in charge of the 
physical serial port or whether TAPI is in charge of the port:

TapiMode : TTapiMode;
TTapiMode = (tmNone, tmAuto, tmOn, tmOff);

When TapiMode is tmAuto (the default), the TApdComPort is in charge unless a 
TApdTapiDevice is added to the form. The TApdTapiDevice automatically forces the 
TapiMode property to tmOn and thereafter the TApdTapiDevice is in charge. Attempts to 
open the TApdComPort directly (by setting its Open property to True) are ignored.

You can give control back to the TApdComPort by setting TapiMode to tmOff, meaning that 
the port is not to be used in TAPI mode even if a TApdTapiDevice is present. To give control 
back to the TApdTapiDevice again, set TapiMode to tmAuto or tmOn.
92     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TAPI events
TAPI dials outgoing calls and waits for incoming calls in the background. Applications are 
informed of progress through a callback procedure. TApdTapiDevice installs a hidden 
callback and translates these progress callbacks into the following VCL events:

OnTapiStatus
procedure(

CP : TObject; First, Last : Boolean; Device, Message,
Param1, Param2, Param3 : DWORD) of object;

Generated at various intervals while dialing an outgoing call or answering an incoming call. 
The parameters mirror the parameters passed directly to the TAPI callback. You will usually 
need to reference only the Message and Param1 fields. The other fields are supplied for 
applications that extend the services provided by TApdTapiDevice. See the OnTapiStatus 
event on page 425. Also see “TAPI status processing” on page 394.

OnTapiLog
procedure(CP : TObject; Log : TTapiLogCode) of object;

Generated at the start and finish of each TAPI call (either outgoing or incoming) and at 
various points during the call. See the OnTapiLog event on page 424. Also see “TAPI 
logging” on page 397.

OnTapiPortOpen
procedure(CP : TObject) of object;

Generated immediately after TAPI has established a connection and has the serial port 
handle available for handoff to the TApdComPort component. See the OnTapiPortOpen 
event on page 425.

OnTapiPortClose
procedure(CP : TObject) of object;

Generated immediately after TAPI closes the serial port due to a broken connection. See the 
OnTapiPortClose event on page 424.

OnTapiConnect
procedure(CP : TObject) of object;

Generated immediately after TAPI establishes a connection. See the OnTapiConnect event 
on page 393.
TAPI Device Control from an Application     393

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
OnTapiFail
procedure(CP : TObject) of object;

Generated immediately after TAPI tries but fails to establish a connection. See the 
OnTapiFail event on page 394.

TAPI status processing
TAPI handles the details of controlling, dialing, and answering the modem. The 
OnTapiStatus event is provided to let you know what’s happening as the connection 
progresses.

TAPI actually uses a callback procedure to inform an application program of its progress. 
TApdTapiDevice installs a hidden callback and translates all calls into OnTapiStatus events 
for easier processing. The format of the event handler is identical to the internal TAPI 
callback. The following illustrates the format and use of OnTapiStatus:

...
ApdTapiDevice1: TApdTapiDevice;
Msg: TLabel;
Num: TLabel;
...
procedure ApdTapiDevice1TapiStatus(
CP : TObject; First, Last : Boolean; Device, Message, Param1,
Param2, Param3 : LongInt);

end;

procedure TForm1.ApdTapiDevice1TapiStatus(
CP : TObject; First, Last : Boolean; Device, Message,
Param1, Param2, Param3 : LongInt);

begin
if First then

...do setup stuff
else if Last then

...do cleanup stuff
else begin

{Update status}
Msg.Caption := ApdTapiDevice1.TapiStatusMsg(Message, Param2);
Num.Caption := ApdTapiDevice1.Number;

end;
end;

ApdTapiDevice1TapiStatus handles the OnTapiStatus event by updating a form at each call. 
First is True for the first status event of the current call. Last is True for the last status event of 
the current call. These parameters can be used to setup and cleanup forms and other 
resources used when displaying status information.
94     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The remaining parameters mirror the parameters that TAPI sends to the hidden callback 
procedure. Only Message and Param1 are used by TApdTapiDevice. The other parameters 
are provided in case you extend TApdTapiDevice beyond making and answering calls.

Async Professional contains resource strings for all of the values of Message and Param1 that 
TApdTapiDevice can generate. Most applications can simply pass those parameters to 
TapiStatusMsg to return the appropriate string, as shown in the code above. If returning an 
appropriate string is sufficient for your purposes, you can skip the following discussion of 
the parameters. Only Message and Param1 are described in detail; the rest are mentioned 
only briefly.

Message is a constant that describes the class of change since the previous OnTapiStatus 
event. The possible values are shown in Table 12.1.

The first three values are a subset of the possible TAPI messages. These are the only values 
that dialing and answering generate. The final value, Line_APDSpecific isn’t really a TAPI 
status message. It’s a pseudo state change that TApdTapiDevice generates to provide more 
information about the progress of a call.

Line_CallState indicates that the progress of the call, what TAPI calls the “state” of the call, 
changed. For example, the line was idle, but now it is dialing or the line was dialing but now 
it is proceeding (the TAPI term for waiting for the connection).

Line_LineDevState indicates that the state of the device (modem, phone, or whatever) 
changed. TApdTapiDevice dial/answer actions generate this message only to indicate that 
the modem is ringing.

Line_Reply indicates that TAPI has accepted, but not necessarily completed, the requested 
background. For example, it is generated just after a request to dial a number.

Line_APDSpecific is generated during periods when TAPI does not generate events, such as 
after dialing and waiting for a connection, or when answering and waiting for a connection. 
The primary purpose of Line_APDSpecific is to give the status event an opportunity to 
update a timer.

Table 12.1: Possible TAPI messages

TAPI Message Value Explanation

Line_CallState 2 The state of the call changed.

Line_LineDevState 8 The device state changed.

Line_Reply 12 The previous request was accepted.

Line_APDSpecific 32 Async Professional-specific status.
TAPI Device Control from an Application     395

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Param1 provides additional information about Message. For example, when Message is 
Line_CallState, Param1 contains a constant describing the change in state. Table 12.2 shows 
the values of Param1 that are generated by TApdTapiDevice for each value of Message.

These are only subsets of the possible values of Param1 for each of the Message states, but 
they are the only values generated for the dial/answer actions performed by 
TApdTapiDevice.

Table 12.2: Corresponding Param1 values to Message values

Param1 Value Explanation

For Message = Line_CallState

LineCallState_Idle No call in progress.

LineCallState_Offering Call starting.

LineCallState_Accepted Incoming call accepted.

LineCallState_DialTone Dialtone detected.

LineCallState_Dialing Dialing the outgoing number.

LineCallState_Proceeding Handshaking with the remote modem.

LineCallState_RingBack Detected a remote ring.

LineCallState_Busy Detected a busy signal.

LineCallState_Connected Connected with the remote modem.

LineCallState_Disconnected Disconnected from remote modem.

For Message = Line_DevState

LineDevState_Ringing Ring detected for incoming call.

For Message = Line_Reply

(Param1 not used for Line_Reply)

For Message = Line_APDSpecific

APDSpecific_DialFail Dial failed due to busy or other
error.

APDSpecific_RetryWait Waiting for next retry.

APDSpecific_TAPIChange Unknown state change.
96     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Other TApdTapiDevice properties can also be used in OnTapiStatus. Some examples are 
Number, which contains the number just dialed, and SelectedDevice, which contains the 
name of the TAPI device.

Automatic status display
Async Professional includes a mechanism for providing automatic TAPI status display 
without programming, through the StatusDisplay property of TApdTapiDevice:

property StatusDisplay : TApdAbstractTapiStatus

The TApdAbstractTapiStatus class is described in more detail on page 440. For each 
OnTapiStatus event, TApdTapiDevice checks whether StatusDisplay is assigned. If it is, the 
UpdateDisplay method of StatusDisplay is called to update the display. TApdTapiDevice 
then calls the OnTapiStatus event, if one is implemented.

When a TApdTapiDevice component is created, either dynamically or when dropped on a 
form, it searches the form for a TApdAbstractTapiStatus instance and updates the 
StatusDisplay property with the first one it finds. StatusDisplay is also filled in if a 
TApdAbstractTapiStatus component is added to the form later. You can also change 
StatusDisplay at design time or run time to point to a different TApdAbstractStatusDisplay 
component.

TAPI logging
Dialing and answering calls is often an automated process. For example, an application 
might automatically dial a list of numbers every night to upload or download the day’s 
transaction files. Or, an application might serve a BBS-like role where customers dial in to 
get the latest updated files or information.
TAPI Device Control from an Application     397

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The TApdTapiDevice provides an event that is ideal for logging automated dial or answer 
applications. The OnTapiLog event provides an opportunity to log information about each 
call. The information that is logged includes the time the call starts, the time it ends, and 
additional information about events during the call (connected, busy/retry, and so on). This 
example that handles the OnTapiLog event:

procedure TForm1.ApdTapiDevice1TapiLog(
CP : TObject; Log : TTapiLogCode);

var
HisFile : Text;

begin
...open HisFile

{Write the log entry}
with TapiDevice do begin

case Log of
ltapiNone : ;
ltapiCallStart :

WriteLn(HisFile, DateTimeToStr(Now), ' : call started');
ltapiCallFinish :

WriteLn(HisFile, DateTimeToStr(Now), ' :
call finished'^M^J);

ltapiDial :
WriteLn(

HisFile, DateTimeToStr(Now), ' : dialing ', Number);
ltapiAnswer :

WriteLn(HisFile, DateTimeToStr(Now), ' : answering');
ltapiConnect :

WriteLn(HisFile, DateTimeToStr(Now), ' : connected');
ltapiCancel :

WriteLn(HisFile, DateTimeToStr(Now), ' : cancelled');
ltapiDrop :

WriteLn(HisFile, DateTimeToStr(Now), ' : dropped');
ltapiBusy:

WriteLn(HisFile, DateTimeToStr(Now), ' : busy');
ltapiDialFail :

WriteLn(HisFile, DateTimeToStr(Now), ' : dial failed');
end;

end;
...close HisFile

end;
98     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
This example shows every possible logging value. The meanings of the various logging 
conditions are described in Table 12.3.

A call is always started with an ltapiCallStart event and finished with an ltapiCallFinish 
event. There may be one or more other events in between. A typical dial operation might 
generate the following sequence of log events:

ltapiCallStart call started
ltapiDial number dialed
ltapiBusy called number was busy
ltapiDial number re-dialed
ltapiConnect a connection was established
ltapiDrop the connection was dropped
ltapiCallFinish the call is finished

Table 12.3: TAPI logging conditions

Logging Condition Explanation

ltapiAccept Accepting an incoming call.

ltapiAnswer An incoming ring was detected and the call is being
answered.

ltapiBusy The called number was busy.

ltapiCallFinish The call is finished, either successfully or due to
an error.

ltapiCallStart A call, either answer or dial, was started.

ltapiCancel The dial or answer operation was cancelled before a
connection was established.

ltapiConnect A successful modem connection was established after
a dial or answer.

ltapiDial An outgoing call was just dialed. The Number
property contains the number that was dialed.

ltapiDialFail A modem connection was not established due to no
dialtone, no answer, or some other error.

ltapiDrop A connection was established but was subsequently
dropped. The drop can be due to an error or due to
the normal completion of the session.

ltapiReceivedDigit A DTMF digit has been received.
TAPI Device Control from an Application     399

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Automatic TAPI logging
Async Professional includes a mechanism for providing automatic TAPI logging without 
programming, through the TapiLog property of the TApdTapiDevice:

property TapiLog : TApdTapiLog

The TApdTapiLog class is described in more detail on page 445. For each OnTapiLog event, 
TApdTapiDevice checks whether TapiLog is assigned. If it is, the UpdateLog method of 
TapiLog is called to update the log. TApdTapiDevice then calls the OnTapiLog event, if one 
is implemented.

When a TApdTapiDevice component is created, either dynamically or when dropped on a 
form, it searches the form for a TApdTapiLog instance and updates the TapiLog property 
with the first one it finds. TapiLog is also filled in if a TApdTapiLog component is added to 
the form later. You can also change TapiLog at design time or run time to point to a different 
TApdTapiLog component.

Making calls
TApdTapiDevice provides a method for placing outgoing calls. When Dial is called, TAPI 
sends the appropriate modem configuration commands to the modem, then dials the 
number passed to the Dial method.

The number passed to Dial should not contain any modem commands. It should contain 
the telephone number to dial, exactly as it would be dialed from a telephone handset.

TApdTapiDevice generates OnTapiStatus events during the dialing process. If a connection 
is not established, an OnTapiFail event is generated. If a connection is established, an 
OnTapiConnect event is generated, the associated TApdComPort is opened, and the 
OnTapiPortOpen event is generated.

Once the connection is established, the TApdTapiDevice is no longer directly used. All 
subsequent port control and input/output operations use the TApdComPort. The exception 
to this occurs when the call is terminated. The application should not simply close the 
TApdComPort because that would not disconnect the modem connection. Instead, the 
application must direct TAPI to close the connection by calling the CancelCall method of 
TApdTapiDevice. The TApdTapiDevice then breaks the connection, closes the associated 
TApdComPort, and generates the OnTapiPortClose event.

If a dial attempt fails due to a busy signal or other error, TApdTapiDevice can try the call 
again. This is controlled by the MaxAttempts property, which determines how many times 
Dial tries the call, and RetryWait, which determines how long (in seconds) Dial waits before 
retrying a failed call.
00     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Dialing example
This example demonstrates how to construct and use the TApdTapiDevice to dial a number. 
This example includes a terminal window and emulator so that you can dial and log on to a 
BBS or information service.

Create a new project, add the following components, and set the property values as 
indicated in Table 12.4.

Double-click on the Dial button’s OnClick event handler within the Object Inspector and 
modify the generated method to match this:

procedure TForm1.DialClick(Sender : TObject);
begin

ApdTapiDevice1.Dial('1-847-262-6000');
end;

The phone number passed to Dial is the number of the U.S. Robotics BBS. Modify it if you 
want to dial a different BBS or service. This method tells TAPI to initialize the modem and 
dial the number.

Next, double-click on the Hangup button’s OnClick event handler within the Object 
Inspector and modify the generated method to match this:

procedure TForm1.HangupClick(Sender : TObject);
begin

ApdTapiDevice1.CancelCall;
end;

This method cancels the dial operation, or hangs up the phone after the connection is 
established.

Table 12.4: Example components and property values

Component Property

TApdComPort

TAdEmulator

TAdTerminal

TApdTapiDevice SelectedDevice

TApdTapiStatus

TApdTapiLog

TButton Name
TAPI Device Control from an Application     401

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Finally, double-click on the OnTapiPortOpen event handler within the Object Inspector and 
modify the generated method to match this:

procedure TForm1.ApdTapiDevice1TapiPortOpen(Sender : TObject);
begin

ApdTerminal1.SetFocus;
end;

This event handler gives the focus to the terminal window as soon as TAPI establishes a 
connection with the BBS.

This example is in the EXTAPID project in the \ASYNCPRO\EXAMPLES directory.

Answering calls
The process of answering the modem is very similar to dialing. The TApdTapiDevice 
component generates the same events as it does when dialing.

The TApdTapiDevice waits for incoming calls in the background. No events are generated 
while waiting for calls. When an incoming call is detected, TApdTapiDevice begins 
generating OnTapiStatus events at regular intervals. If a connection is not established, an 
OnTapiFail event is generated. If a connection is established, an OnTapiConnect event is 
generated, the associated TApdComPort is opened, and the OnTapiPortOpen event is 
generated.

Once the connection is established, the TApdTapiDevice is no longer directly used. All 
subsequent port control and input/output operations use the TApdComPort. The exception 
to this occurs when the call is terminated. The application should not simply close the 
TApdComPort because that would not disconnect the modem connection. Instead, the 
application must direct TAPI to close the connection by calling the CancelCall method of 
TApdTapiDevice. The TApdTapiDevice then breaks the connection, closes the associated 
TApdComPort, and generates the OnTapiPortClose event.

Answering example
The following example demonstrates how to construct and use the TApdTapiDevice to 
answer an incoming call.
02     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Create a new project, add the following components, and set the property values as 
indicated in the Table 12.5.

Double-click on the Answer button’s OnClick event handler within the Object Inspector and 
modify the generated method to match this:

procedure TForm1.AnswerClick(Sender : TObject);
begin

ApdTapiDevice1.AutoAnswer;
end;

AutoAnswer instructs TAPI to listen for incoming calls. It does not immediately begin 
answering an incoming call. In fact, if an incoming call is ringing before you call 
AutoAnswer, AutoAnswer will most likely not pick up that call. This happens because TAPI 
alerts applications of an incoming call on the first ring of that call. If no applications are 
listening at that point, TAPI does not attempt to answer the call.

Next, double-click on the Hangup button’s OnClick event handler within the Object 
Inspector and modify the generated method to match this:

procedure TForm1.HangupClick(Sender : TObject);
begin

ApdTapiDevice1.CancelCall;
end;

This method tells TAPI to stop listening for incoming calls. If a call is in the process of being 
answered, it is aborted immediately. If a connection was already established, it is 
disconnected.

Table 12.5: Example components and property values

Component Property Value

TApdComPort

TAdEmulator

TAdTerminal

TApdTapiDevice SelectedDevice <set as needed for your PC>

TApdTapiStatus

TApdTapiLog

TButton Name Answer

TButton Name Hangup
TAPI Device Control from an Application     403

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
"

Finally, double-click on the OnTapiPortOpen event handler within the Object Inspector and 
modify the generated method to match this:

procedure TForm1.ApdTapiDevice1TapiPortOpen(Sender : TObject);
begin

ApdTerminal1.SetFocus;
end;

This event handler gives the focus to the terminal window as soon as TAPI establishes a 
connection.

This example is in the EXTAPIA project in the \ASYNCPRO\EXAMPLES directory.

TAPI Service Providers
TAPI itself doesn’t implement any of the features necessary for controlling serial ports and 
telephony devices. The TAPI architecture dictates that the low-level, physical services are 
provided by a TAPI Service Provider (TSP).

Even if TAPI is properly installed, it will not function unless a service provider is also 
installed. TSP modules are typically provided by telephony vendors along with their 
telephony hardware. Windows 95/98 and Windows NT 4.0 install a general-purpose service 
provider named UNIMDM.TSP, which provides basic dial and answer support for modems. 
It is this service provider that makes TAPI available to communications programs in 
Windows.

Since UNIMDM.TSP is the service provider that your application is most likely to 
encounter, it’s worth noting a few of its limitations here:

• UNIMDM does not provide support for caller identification (caller ID). The CallerID 
property of TApdTapiDevice always returns an empty string when using UNIMDM.

• UNIMDM does not support “no dialtone” detection. TAPI will attempt to dial 
whether a dialtone is detected or not.

Microsoft has released an extension for Unimodem called UNIMODEM/V. 
UNIMODEM/V provides additional TAPI services (including support for caller ID and “no 
dialtone” detection). As of this writing UNIMODEM/V is only for Windows 95/98. 
UNIMODEM/V for Windows NT 4.0 is not available yet. See the README.TXT file for 
updated news on UNIMDM supported services. You can also view the UNIMODEM/V 
README.TXT file at http://support.microsoft.com/support/kb/articles/q140/3/23.asp.

Caution: You cannot assume UNIMODEM/V is installed on your user’s machines since it 
was released after the initial release of Windows 95.
04     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Using TAPI for configuration only
Although UNIMDM.TSP provides basic dial and answer services it does not provide all of 
the modem services an application might need. UNIMDM.TSP cannot be used to place a 
faxmodem in fax answer mode or in adaptive answer mode (in which both incoming fax 
and incoming data calls are accepted).

However, TAPI (along with UNIMDM and modem information files) contains a wealth of 
configuration information and it is worthwhile to use TAPI to configure the modem and 
control the call, even if TAPI doesn’t dial or answer the modem. This is provided by a feature 
called “passthrough mode.” In passthrough mode, TAPI immediately enters the 
“connected” state and opens the associated serial port.

Although in passthrough mode, TAPI doesn’t send any modem initialization commands, 
TApdTapiDevice uses a two-step process to enter passthrough mode, which forces TAPI to 
send its modem initialization commands. When the ConfigAndOpen method is called, 
TApdTapiDevice first initializes TAPI in answer mode, which forces TAPI to send its 
initialization commands. TApdTapiDevice then immediately closes the port and reopens it 
in passthrough mode.

After calling ConfigAndOpen, TAPI is in control of the call, just as though it had dialed or 
answered the modem. No OnTapiStatus or OnTapiLog events are generated, but 
OnTapiPortOpen is generated. To close the call, use CancelCall. If TAPI ever aborts or closes 
the call itself, the TApdTapiDevice generates the OnTapiPortClose event.

You should use TAPI passthrough mode if you need to support TAPI, but require modem 
operations that UNIMDM.TSP doesn’t provide. An example of this arises in Async 
Professional when a TAPI-based program needs to send or receive faxes. See EXTAPIF for 
an example of a TAPI-based fax program.

Wave file support
The TApdTapiDevice class now includes the ability to play and record wave files through a 
TAPI device (over the phone line). This feature, along with the new DTMF feature, allows 
you to created an automated voice answering system with Async Professional. To play and 
record wave files through the TAPI device, you must have the following:

• Windows 95/98/ME or Windows 2000.

• UNIMODEM/V or UNIMODEM/5.

• A voice modem with a wave driver.

• A wave file.
TAPI Device Control from an Application     405

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
UNIMODEM/V is a set of DLLs that provides voice support for voice modems under 
Windows 95/98. Voice support includes DTMF tone detection and generation, and wave file 
playback and recording. UNIMODEM/V is currently available only for Windows 
95/98/ME. You can get UNIMODEM/V for Windows 95 from the Microsoft web site.

To use the voice extensions provided by UNIMODEM/V, you must have a voice modem. For 
wave support, it is important that you have the wave driver for the modem installed. Consult 
your modem documentation to install the wave device properly.

The TApdTapiDevice component allows you to set the wave file format used for playback 
and recording. The default wave format is PCM, 8KHz, 16 bit, mono. This format was 
chosen because it is supported by the majority of voice modems. Some voice modems 
support other wave file formats. 

Wave files used for playback with Async Professional can be created with the Microsoft 
Sound Recorder program. Wave files for use with TAPI which will be played over general 
telephone lines (POTS) must be recorded in a PCM format compatible with your voice 
modem (here again, the attributes 8,000 Hz (8Khz), 16 Bit, mono are a good bet). Sound 
Recorder also allows for the conversion of existing wave files. TAPI requires a call handle for 
recording. For this reason, you cannot use the TApdTapiDevice for recording messages 
unless you call your modem from another phone.

Recording options include the ability to detect silence on the line and take action when 
silence is detected (such as hanging up the call). This is desirable because TAPI does not 
have the ability to detect a hangup for a voice call. This option allows you to save disk space 
by saving only the portion of the call which contains data.

Dual Tone Multiple Frequency (DTMF)
Dual Tone Multiple Frequency (DTMF) tones are generated by a telephone touch pad over 
telephone lines. With compatible drivers and modems, Async Professional can detect 
(receive) and generate these tones. Async Professional notifies an application when it 
receives a tone by generating an OnTapiDTMF event. Tones are generated using the 
SendTone method. See “TAPI Voice Support” in the Developer’s Guide for information 
about supported operating systems.
06     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
 TApdTapiDevice Component
TApdTapiDevice provides modem dialing, answering and configuration services using 
Windows built-in TAPI support. 

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomTapiDevice (AdTapi)

TApdTapiDevice (AdTapi)

Properties
AnswerOnRing

ApiVersion

Attempt

AvgWaveInAmplitude

BPSRate

CallerID

CallerIDName

ComPort

Cancelled

DeviceCount

Dialing

EnableVoice

FailureCode

FilterUnsupportedDevice

FilterUnsupportedDevices

InterruptWave

MaxAttempts

MaxMessageLength

Number

RetryWait

SelectedDevice

ShowPorts

ShowTapiDevices

StatusDisplay

TapiLog

TapiState

TrimSeconds

SilenceThreshold

UseSoundCard

! Version

WaveFileName

WaveState
TApdTapiDevice Component     407

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Methods
AutoAnswer

AutomatedVoiceToComms

CancelCall

ConfigAndOpen

CopyCallInfo

Dial

FailureCodeMsg

GetDevConfig

PlayWaveFile

SaveWaveFile

SelectDevice

SendTone

SetDevConfig

SetRecordingParams

ShowConfigDialog

ShowConfigDialogEdit

StartWaveRecord

StopWaveFile

StopWaveRecord

TapiStatusMsg

TranslateAddress

Events
OnTapiCallerID

OnTapiConnect

OnTapiDTMF

OnTapiFail

OnTapiLog

OnTapiPortClose

OnTapiPortOpen

OnTapiStatus

OnTapiWaveNotify

OnTapiWaveSilence
08     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

AnswerOnRing property

property AnswerOnRing : Byte

Default: 2

The number of times the TAPI device should allow the incoming call to ring before 
answering it. 

The default for AnswerOnRing is two rings because problems can occur with caller-ID 
enabled modems if the call is answered before the first ring.

ApiVersion read-only, run-time property

property ApiVersion : LongInt

Returns the negotiated TAPI version level. 

When an application initializes TAPI, it negotiates for a supported version of TAPI. Features 
and behaviors differ among the versions. An application requests the highest level of TAPI 
for which it was designed. The built-in TAPI services, even if they support a higher release 
level, will behave as the requested version behaves.

The TApdTapiDevice always attempts to negotiate for version 1.4, but can use 1.3 if that is all 
that is available. With operating systems supporting TAPI 2.0 or greater, TApdTapiDevice 
will continue to operate at the 1.4 release level. See the README.TXT file for TAPI version 
information.

Attempt read-only, run-time property

property Attempt : Word

Indicates the number of times the current number has been dialed. 

If the dialed number is busy, TAPI waits briefly and calls the number again. It tries up to 
MaxAttempts times. The Attempt property returns the number of the current attempt. 
Attempt is incremented immediately upon encountering a busy line. Attempt is primarily 
for use in OnTapiStatus event handlers.

See also: MaxAttempts, OnTapiStatus, RetryWait
TApdTapiDevice Component     409

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

AvgWaveInAmplitude read-only, run-time property

property AvgWaveInAmplitude : Integer

Indicates the average relative amplitude of a recorded wave sample.

When a wave file is being recorded the AvgWaveInAmplitude property is updated to reflect 
the average wave input amplitude of the recording. This value can be used to determine 
spikes in the wave amplitude, which could mean the remote phone’s ringback, someone 
saying “hello”, or it could just be an indicator of the speaker’s volume. When loud noises are 
recorded AvgWaveInAmplitude will be larger than when silence is recorded. This property 
is updated approximately every second while recording.

This property can also be used to determine a usable value for the SilenceThreshold 
property. SilenceThreshold is the amplitude of recorded wave data to consider silence, and 
can vary quite a bit between phone lines and modems. To attain a usable SilenceThreshold 
value, record a few seconds of silence on the line. The AvgWaveInAmplitude property will 
contain the value for SilenceThreshold for this modem/line combination.

This property is valid while a wave file is being recorded, which is after the StartWaveRecord 
method has been called, up to the termination of the recording.

See also: OnTapiWaveSilence, SilenceThreshold, StartWaveRecord, StopWaveRecord, 
TrimSeconds

AutoAnswer method

procedure AutoAnswer;

Instructs TAPI to listen for and answer incoming calls. 

AutoAnswer returns immediately after instructing TAPI to listen for calls. TAPI listens for 
calls in the background. When an incoming call is detected, it answers the call, generating 
appropriate events as it does.

See “Answering calls” on page 402 for more information and an example.
10     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

AutomatedVoiceToComms method

procedure AutomatedVoiceToComms;

AutomatedVoiceToComms changes the TAPI media mode from voice to data 
communications.

Call AutomatedVoiceToComms when switching from an automated voice mode (DTMF 
tone detection, wave recording/playing) to a fax send/receive mode.

The OnTapiPortOpen event will be generated once TAPI successfully switches media modes 
(from AutomatedVoice to DataModem). Note that Windows 2000 does not allow switching 
media modes on an active call, so this method will fail under this operating system.

See also: OnTapiPortOpen

BPSRate read-only, run-time property

property BPSRate : DWORD

The rate of the current call in bits per second. 

BPSRate is the rate negotiated between the local and remote modems for the current call. If a 
call is not in progress, BPSRate returns zero.

The following example shows an OnTapiConnect event handler that updates a TLabel on the 
current form with the negotiated bps rate:

TForm1 = class(TForm)
...
ApdTapiDevice1 : TApdTapiDevice;
Connect : TLabel;
...

end;

procedure TForm1.ApdTapiDevice1TapiConnect(Sender : TObject);
begin

Connect.Caption :=
'Connected at ' + IntToStr(ApdTapiDevice1.BPSRate);

...
end;
TApdTapiDevice Component     411

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

CallerID read-only, run-time property

property CallerID : string

Contains the caller identification string of the current incoming call. 

Many telephony environments make a caller identification string available. This string 
usually contains the phone number of the incoming call, but can contain other information 
as well, if supplemented by an office telephony system.

If the telephony environment doesn’t supply caller identification information, CallerID is an 
empty string.

Note: Caller ID requires voice capabilities (i.e., UnimodmV, voice modem).

The following example shows an OnTapiConnect event handler that updates a TLabel on the 
current form with the caller ID information:

TForm1 = class(TForm)
...
ApdTapiDevice1 : TApdTapiDevice;
CallerID : TLabel;
...

end;

procedure TForm1.ApdTapiDevice1TapiConnect(Sender : TObject);
begin

CallerID.Caption := 'Caller: ' + ApdTapiDevice1.CallerID;
...

end;

CallerIDName read-only, run-time property

property CallerIDName : string

Contains the caller identification name information, if available.

The name information is not available everywhere that caller ID is available. Some localities 
only provide the caller ID phone number.

See also: CallerID
12     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

CancelCall method

procedure CancelCall;

Disconnects the current call. 

CancelCall is the TApdTapiDevice universal method for terminating the current call. It can 
be used while waiting for incoming call, answering an incoming call, dialing a call, or during 
an established connection. TAPI aborts the current process, assures that the modems have 
disconnected, and places the modem into an idle state (not waiting for calls).

CancelCall is usually a background operation. It instructs TAPI to cancel the call and TAPI 
performs the work of canceling and cleaning up. OnTapiPortclose will fire when TAPI closes 
the port (assuming the port was open). OnTapiFail will always be generated when 
CancelCall completes. To determine whether the OnTapiFail was generated due to 
CancelCall, use the Cancelled property.

See also: Cancelled, OnTapiFail, OnTapiPortClose

Cancelled run-time, read-only property 

property Cancelled : Boolean

Returns True if an OnTapiFail event fires due to user action.

An OnTapiFail event is generated any time a call is terminated before the final connection is 
made—even if CancelCall is used to terminate the call. If CancelCall was used to terminate 
the connection, Cancelled will be True.

See also: CancelCall, OnTapiFail

ComPort property

property ComPort : TApdCustomComPort

Determines the TApdComPort component used by the TApdTapiDevice. 

A properly initialized TApdComPort must be assigned to this property before dialing or 
answering calls.

ComPort is usually set automatically at design time to the first TApdComPort component 
the TApdTapiDevice finds on the form. If needed, use the Object Inspector to select a 
different TApdComPort component.

Setting the ComPort property at run time is necessary only when using a dynamically 
created TApdComPort or when selecting among several TApdComPort components.
TApdTapiDevice Component     413

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

ConfigAndOpen method

procedure ConfigAndOpen;

Configures the modem and leaves the port open in passthrough mode. 

ConfigAndOpen takes advantage of the TAPI modem configuration facilities, even though 
TAPI isn’t used for dialing or answering a call. ConfigAndOpen does, however, require a 
short period of background processing before the associated TApdComPort component is 
open.

You could not, for example, use the following logic:

var
ApdComPort1 : TApdComPort;
ApdTapiDevice : TApdTapiDevice;

...
ApdTapiDevice1.ConfigAndOpen;
ApdComPort1.Output := 'ready';
...more port I/O
ApdComPort1.Open := False;

This is incorrect. After the call to ConfigAndOpen you must wait for TAPI to open the 
TApdComPort, just as when TAPI is dialing or answering a call. When TAPI is ready, 
(usually just a second or two) it generates the OnTapiPortOpen event which automatically 
opens the associated TApdComPort.

The following example shows the proper way to use ConfigAndOpen:

procedure TForm1.OpenTheLine;
begin

ApdTapiDevice1.ConfigAndOpen;
end;
...
procedure TForm1.ApdTapiDevice1TapiPortOpen(Sender : TObject);
begin

ApdComPort1.Output := 'ready';
...more port I/O

end;
...
procedure TForm1.CloseTheLine;
begin

ApdTapiDevice1.CancelCall;
end;

See “Using TAPI for configuration only” on page 405 for more information.
14     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

CopyCallInfo method

procedure CopyCallInfo(var CallInfo : PCallInfo);

Returns a record containing details about the current call. 

The TApdTapiDevice contains properties for the basic call information that a typical 
“dialer” program needs about the current call. TAPI, however, maintains much more 
information about the call. Although this information is of limited use, CopyCallInfo 
provides it for applications that might need it.

CallInfo is a pointer to a PCallInfo structure, which is allocated by CopyCallInfo and filled 
in by TAPI. The calling program is responsible for deallocated CallInfo when it is no longer 
needed. The size of the allocated structure varies depending on the information TAPI has 
about the current call.

The fields in the TCallInfo record are not described here. See page 393 for a list of TAPI 
references.

DeviceCount read-only, run-time property

property DeviceCount : LongInt

The number of currently installed TAPI devices. 

DeviceCount is the number of TAPI devices installed on the machine and available for use 
by TAPI applications. Typically, this is the same as the number of modems installed on the 
machine (usually one).

See also: FilterUnsupportedDevices, SelectedDevice

Dial method

procedure Dial(ANumber : string);

Dials a phone number in the background. 

Dial instructs TAPI to prepare the modem for dialing, then to dial ANumber. All of these 
operations take place in the background. TApdTapiDevice generates the OnTapiStatus event 
to keep the program apprised of the dialing progress.

If EnableVoice is False (you are attempting a data connection), the OnTapiPortOpen event 
should be used as your notification that a data connection is established. If EnableVoice is 
True (you are attempting a voice connection), the OnTapiConnect event should be used as 
your notification. The OnTapiConnect event may be generated for data connections (TSP 
dependent), but this event does not indicate that the TApdComPort has a valid, open serial 
port.
TApdTapiDevice Component     415

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

If a busy signal is detected and MaxAttempts is greater than one, Dial redials the number 
after waiting RetryWait seconds. This continues until a connection is established or 
MaxAttempts dial attempts fail.

Due to a limitation of the Microsoft supplied TAPI Service Providers, the OnTapiConnect 
event is not completely reliable for detecting when the called party answers a voice call. 
Unimodem/V and Unimodem/5 do not implement the call progress notification techniques 
required to detect when a voice connection is actually established. As a result of this, the 
OnTapiConnect event is usually generated immediately after the modem completes dialing, 
regardless of whether the remote party answered, their phone was busy, or any other 
conditions. With some TSPs, it is also possible to get an OnTapiConnect event followed by 
an OnTapiFail event, if the call was busy or no dial tone was detected. The APROFAQ.HLP 
file contains several tips and tricks to detect when the remote party actually answers. TSPs 
supplied with dedicated voice boards usually provide much more detailed and accurate call 
progress notification.

The following example shows how to dial the U.S. Robotics BBS, waiting 5 minutes after a 
busy signal and retrying up to 10 times:

ApdTapiDevice1.RetryWait := 300;
ApdTapiDevice1.MaxAttempts := 10;
ApdTapiDevice1.Dial('1-847-262-6000');

See also: AutoAnswer, MaxAttempts, Number, RetryWait

Dialing read-only, run-time property

property Dialing : Boolean

Determines whether TAPI is placing an outgoing call or listening for an incoming call. 

Dialing is True when TAPI is placing an outgoing call, False when TAPI is listening for or 
answering incoming calls. Dialing is intended primarily for use in status routines to 
distinguish between status events for incoming calls and status events for outgoing calls.
16     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The following example shows an OnTapiStatus event handler that uses Dialing to update a 
TLabel on the current form:

TForm1 = class(TForm)
...
ApdTapiDevice1 : TApdTapiDevice;
Direction : TLabel;
...

end;

procedure TForm1.ApdTapiDevice1TapiStatus(
CP : TObject; First, Last : Boolean; Device, Message, Param1,
Param2, Param3 : LongInt);

const
DirectionStr : array[Boolean] of string = (

'Incoming', 'Outgoing');
begin

...
Direction.Caption := DirectionStr[ApdTapiDevice1.Dialing];
...

end;

See also: Number

EnableVoice property

property EnableVoice : Boolean

Default: False

Determines whether the initial mode of calls is DataModem (Fax or Data) or 
AutomatedVoice (Voice/DTMF). 

If EnableVoice is True and a TAPI device is selected, Async Professional first verifies that 
AutomatedVoice capabilities exist for the selected device. If so, voice extensions such as 
DTMF and wave files are supported. Otherwise an ETapiVoiceNotSupported exception is 
raised and EnableVoice is set to False.

See also: OnTapiDTMF, OnTapiWave, PlayWaveFile, SendTone
TApdTapiDevice Component     417

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

FailureCode read-only, run-time property 

property FailureCode : Integer

FailureCode indicates the last TAPI failure.

During a Dial or AutoAnswer attempt, TAPI could detect a failure and generate the 
OnTapiFail event. The FailureCode property indicates the most severe error reported by 
TAPI. The value of FailureCode will be one of the LineCallState_ or LineDisconnectMode_ 
constants defined in AdTUtil.pas.

The FailureCodeMsg function will convert a FailureCode into a descriptive string based on 
the string resources.

The following example determines the reason for the failure and displays a corrective action 
to the user:

uses
AdTUtil; { for the error constants }

procedure TForm1.ApdTapiDevice1TapiFail(Sender: TObject);
begin

case ApdTapiDevice1.FailureCode of
LineDisconnectMode_Busy : ShowMessage(
'The number was busy, try again later');

LineDisconnectMode_NoAnswer : ShowMessage(
'No answer, try again later');

LineDisconnectMode_NoDialtone : ShowMessage(
'No dialtone, check your phone line');

else

ShowMessage(
ApdTapiDevice1.FailureCodeMsg(ApdTapiDevice1.FailureCode));
end;

end;

See also: FailureCodeMsg, OnTapiFail

FailureCodeMsg method

function FailureCodeMsg(const FailureCode : Integer) : string;

FailureCodeMsg converts a FailureCode into a descriptive string.

FailureCodeMsg will return a text message describing the failure code. FailureCode is the 
failure code, usually provided by the FailureCode property. See FailureCode for an example 
of how to use this method.

See also: FailureCode, OnTapiFail, TapiStatusMsg
18     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

FilterUnsupportedDevices property

property FilterUnsupportedDevices : Boolean

Default: True

Determines whether unsupported devices are displayed in the TAPI device selection dialog 
box.

The TApdTapiDevice support TAPI line devices, with the DataModem and AutomatedVoice 
media modes. Some TAPI devices, notably the IP telephony devices in Windows 2000, are 
not supported by the TApdTapiDevice. If this property is True (the default) these devices 
will not be displayed in the TAPI device selection dialog. If this property is False, these 
devices will be displayed in the dialog.

See also: SelectDevice

GetDevConfig method

function GetDevConfig : TTapiConfigRec;

Returns the configuration of the currently selected device.

The Data is binary, and described in the TAPI documentation as an “opaque” structure, 
meaning that it is not guaranteed to be consistent across different TAPI devices. For this 
reason, GetDevConfig must be called for a given device at some point before calling 
SetDevConfig or ShowConfigDialogEdit.

The record used by GetDevConfig (and the following configuration methods) is defined as 
follows:

TTapiConfigRec = record
DataSize : Cardinal;
Data : array[0..1023] of Byte;

end;

See also: SetDevConfig, ShowConfigDialogEdit
TApdTapiDevice Component     419

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

InterruptWave run-time property

property InterruptWave : Boolean

Default: True

Indicates whether the current wave file should stop when a DTMF tone is detected.

If InterruptWave is True, the currently playing wave file will stop when a DTMF tone is 
detected. This allows you to have an automated phone answering system in which user is 
allowed to interrupt the currently playing wave file with a DTMF selection. If InterruptWave 
is False, DTMF tones do not stop the currently playing wave file. If you want the caller to 
hear a wave file in its entirety, set InterruptWave to False before you start playing it.

See also: OnTapiDTMF, PlayWaveFile, StopWaveFile

MaxAttempts property

property MaxAttempts : Word

Default: 3

Determines the number of times Dial automatically dials a number. 

This is the number of times a phone number is dialed, it is not the number of retries. When 
MaxAttempts is one, for example, the number is dialed only once. If the line is busy, it is not 
tried again. 

See also: Attempt, RetryWait

MaxMessageLength run-time property

property MaxMessageLength : LongInt

Default: 60

The maximum allowed message length, in seconds, for messages recorded over the TAPI 
waveform audio device. 

Use this parameter to specify the maximum length of recorded messages. A 60-second 
message will require about 950K of disk space given the default recording parameters. When 
the specified length of time passes, the OnTapiWaveNotify event will be generated with a 
Msg parameter of waDataReady. You could then save the wave file and terminate the call.

If the TrimSeconds property is set to a non-zero value then wave recording may terminate 
before MaxMessageLength is reached.
20     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

Number read-only, run-time property

property Number : string

The last phone number dialed. 

Number is intended primarily for use in status routines, to display the last number dialed. 
Number is updated each time Dial is called.

The following example shows an OnTapiStatus event handler that displays the last number 
dialed.

TForm1 = class(TForm)
...
ApdTapiDevice1 : TApdTapiDevice;
NumberDialed : TLabel;
...

end;

procedure TForm1.ApdTapiDevice1TapiStatus(
CP : TObject; First, Last : Boolean; Device, Message, Param1,
Param2, Param3 : LongInt);

begin
...
if Dialing then

NumberDialed.Caption := ApdTapiDevice1.Number
else

NumberDialed.Caption := '';
...

end;
...
ApdTapiDevice1.Dial('1-847-262-6000');

See also: Dial, Dialing
TApdTapiDevice Component     421

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnTapiCallerID event

property OnTapiCallerID : TTapiCallerIDEvent

TTapiCallerIDEvent = procedure(
CP : TObject; ID, IDName : String) of object;

Defines an event handler that is called after a connection is made and both a Caller ID string 
and a Caller ID name string are returned. 

The OnTapiCallerID event makes it easy to access Caller ID information without having to 
know when it might be available on a call. Caller ID information is available only if it is 
supported on the selected device and by the telephone service.

The following example shows how to use the OnTapiCallerID event to get the Caller ID 
information and store it to edit controls.

procedure TForm1.ApdTapiDevice1TapiCallerID(
CP : TObject; ID, IDName : string);

begin
CallerId.Text := ID;
CallerIdName.Text := IDName;

end;

See also: CallerID, CallerIDName

OnTapiConnect event

property OnTapiConnect : TNotifyEvent

Defines an event handler that is called when a connection is established. 

Dial and AutoAnswer operations take place in the background. If a connection is established 
after a call to Dial or AutoAnswer, the TApdTapiDevice generates the OnTapiConnect event.

No parameters are passed to the OnTapiConnect event. The OnTapiConnect event is most 
useful and reliable when used to indicate when a voice connection has been established. For 
data connections (EnableVoice = False), the TApdComPort may not have received the serial 
port handle from TAPI when this event is generated. When you are establishing data 
connections, use the OnTapiPortOpen event instead.
22     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnTapiDTMF event

property OnTapiDTMF : TTapiDTMFEvent

TTapiDTMFEvent = procedure(
CP : TObject; Digit : Char; ErrorCode : Longint;) of object;

Defines an event handler that is called when a DTMF tone is detected. 

Digit is a character that represents the phone button that was pressed on the remote phone 
device. The possible values are ‘0’ through ‘9’, ‘*’, and ‘#’. ErrorCode is non-zero if an error 
occurs when a TAPI connection is made (in this case the OnTapiDTMF is generated just 
before the OnTapiConnect event).

The following example builds a string of up to ten DTMF tones (characters) in the global 
variable S.

procedure TForm1.ApdTapiDevice1TapiDTMF(
CP : TObject; Digits : Char; ErrorCode : LongInt);

begin
if Length(S) < 11 then

S := S + Digit;
end;

See also: EnableVoice

OnTapiFail event

property OnTapiFail : TNotifyEvent

Defines an event handler that is called when a connection attempt fails. 

Dial and AutoAnswer operations take place in the background. If an attempt to establish a 
connection fails, the TApdTapiDevice generates the OnTapiFail event.

No parameters are passed to OnTapiFail. It is a notification to the application that a 
connection attempt failed.

The FailureCode property will contain the most severe error reported by TAPI. See the 
description of FailureCode for an example of how to use that property and the OnTapiFail 
event handler.

See also: FailureCode, FailureCodeMsg
TApdTapiDevice Component     423

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnTapiLog event

property OnTapiLog : TTapiLogEvent

TTapiLogEvent = procedure(
CP : TObject; Log : TTapiLogCode) of object;

Defines an event handler that is called at designated points during a dial or answer attempt. 

The primary purpose of this event is to give the application a chance to log auditing 
information about telephone calls and whether they succeed or fail. You can also use this 
event for start-up and cleanup activities, although OnTapiPortOpen and OnTapiPortClose 
might be better.

CP is the TAPI component that generated the event. Log is a code that indicates the state of 
the TAPI connection. The possible states are listed in “TAPI logging” on page 397. No other 
information is passed with this event, but you can use the TApdTapiDevice properties such 
as Number and Dialing to get additional information about the TAPI connection.

See “TAPI logging” on page 397 for more information.

See also: Dialing, Number, TapiLog

OnTapiPortClose event

property OnTapiPortClose : TNotifyEvent

Defines an event handler that is called immediately after TApdTapiDevice closes its 
associated TApdComPort. 

The TApdTapiDevice component is responsible for opening and closing the associated 
TApdComPort at the appropriate times (when a connection is established or broken).

The serial port handle is invalid once the OnTapiPortClose event is generated, attempts to 
access the port will raise the EPortNotOpen exception.

Applications can use this event to perform additional port cleanup activities.

See also: OnTapiPortOpen
24     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnTapiPortOpen event

property OnTapiPortOpen : TNotifyEvent

Defines an event handler that is called immediately after TApdTapiDevice opens its 
associated TApdComPort. 

The TApdTapiDevice component is responsible for opening and closing the associated 
TApdComPort at the appropriate times (when a connection is established or broken).

The serial port associated with the selected TAPI device is valid, and available when this 
event is generated, it is safe to access the port properties and transmit characters. 

Note that this event is not generated during a voice connection. When a voice connection is 
made TAPI retains exclusive access to the serial port. This event will be generated after a call 
to AutomatedVoiceToComms, once TAPI hands the TApdTapiDevice a valid serial port 
handle.

Applications can use this event to perform additional port setup activities.

See also: OnTapiPortClose

OnTapiStatus event

property OnTapiStatus : TTapiStatusEvent

TTapiStatusEvent = procedure(CP : TObject; First, Last : Boolean;
Device, Message, Param1,Param2, Param3 : Cardinal) of object;

Defines an event handler that is called regularly during a TAPI dial or answer attempt. 

TAPI performs dial and answer activities in the background, calling a callback routine 
whenever the state of the line or call changes. TApdTapiDevice installs a hidden callback 
routine and translates all callback calls into OnTapiStatus events.

CP is the TApdTapiDevice component that generated the event.

First is True on the first OnTapiStatus event to signal the status routine to perform its start-
up activities (e.g., make the status display visible). Last is True on the last OnTapiStatus 
event to signal the status routine to perform its cleanup activities (e.g., remove the status 
display). First and Last are False on all other OnTapiStatus events.

The other parameters are the ones passed by TAPI to the callback routine. The only 
parameters that are of interest to most Async Professional programs are Message and 
Param1, which indicate the state of the current call. See “TAPI status processing” on page 
394 for more information about the values of Message and Param1.
TApdTapiDevice Component     425

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The remaining parameters (Device, Param2, and Param3) are intended for use in 
applications that extend the features provided by TApdTapiDevice and might need those 
status parameters.

TAPI generates callbacks only when it perceives a change in the state of the line or call. TAPI, 
therefore, does not generate callbacks when the modem stays in a single state for an 
extended period of time. For example, after dialing a number TAPI reports that the call is in 
the “proceeding” phase. It generates no further status callbacks until the call succeeds or 
fails. Since this can take many seconds, as much as 20 or even 30 seconds, the user might 
become concerned about the lack of positive feedback (is it still working?).

To solve this problem, TApdTapiDevice generates additional OnTapiStatus events, based on 
an internal timer (once per second). These status calls give the status routine an opportunity 
to update a timer, as the built-in TApdTapiStatus does.

OnTapiWaveNotify event

property OnTapiWaveNotify : TTapiWaveNotify

TTapiWaveEvent = procedure(
CP : TObject; Msg : TWaveMessage) of object;

TWaveMessage = (waPlayOpen, waPlayDone, waPlayClose,
waRecordOpen, waDataReady, waRecordClose);

Defines an event handler that is called when a wave file status changes. 

The possible values for Msg are:

Value Meaning

waPlayDone The wave file is finished playing (it either completed
normally or was stopped by a call to StopWaveFile).

waPlayOpen The wave file is open.

waPlayClose The wave file is closed.

waRecordOpen The wave device is open for recording.

waRecordClose The wave device is closed.

waDataReady The wave device has recorded data and is ready to be
saved.
26     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

The following example sets the Caption of a label after a wave file has finished playing:

procedure TForm1.ApdTapiDevice1TapiWaveEvent(
CP : TObject; Msg : TWaveMessage);

begin
if Msg = waPlayDone then

Label4.Caption := 'Wave Device Idle...';
end;

See also: PlayWaveFile, StartWaveRecord, StopWaveFile, StopWaveRecord

OnTapiWaveSilence event

FOnTapiWaveSilence : TTapiWaveSilence

TTapiWaveSilence = procedure(CP : TObject;
var StopRecording : Boolean; var Hangup : Boolean) of object;

Defines an event handler that is called when silence is detected while recording a wave file. 

StopRecording is a var Boolean parameter that determines whether wave recording should 
stop. This parameter is True by default. Hangup is a var Boolean parameter that determines 
whether the call should be terminated. The parameter is also True by default. 

This event works in conjunction with the TrimSeconds property. If TrimSeconds is 0 then 
OnTapiWaveSilence will not be generated. If you do not respond to this event then recording 
will stop and the call will be terminated when silence is detected. This is probably the 
desired behavior in most applications, so you may not use this event very often.

See also: StartWaveRecord, StopWaveRecord, TrimSeconds

PlayWaveFile method

procedure PlayWaveFile(FileName : String);

Plays a wave file. 

FileName is the name of the wave file. The wave file starts playing immediately if there is not 
a wave file currently playing. If another wave file is currently playing and InterruptWave is 
True, the current wave file is stopped and the new wave file is played. If another wave file is 
playing and InterruptWave is False, PlayWaveFile returns without playing the new wave file. 
The wave file is played through the TAPI device if the UseSoundCard property is False (the 
default), or through the sound card if UseSoundCard is True.

The following example plays a wave file through the TAPI device:

ApdTapiDevice1.PlayWaveFile('greeting.wav');

See also: InterruptWave, OnTapiWaveNotify, StopWaveFile, UseSoundCard
TApdTapiDevice Component     427

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

RetryWait property

property RetryWait : Word

Default: 60

The number of seconds to wait after a busy signal before trying the number again. 

After encountering a busy signal, TApdTapiDevice checks to see if it should try this number 
again by comparing Attempts to MaxAttempts. If more attempts are required, it first waits 
RetryWait seconds before dialing again to give the dialed machine time to complete the 
current session.

See also: Attempts, MaxAttempts

SaveWaveFile method

procedure SaveWaveFile(FileName : String; Overwrite : Boolean);

Saves recorded wave data to disk. 

FileName is the file to save. Overwrite indicates whether an existing file should be 
overwritten. If Overwrite is False and a file with the same name exists, then an exception is 
thrown. By default, data is recorded at 8,000 kHz, 16 bits, mono (the maximum sound 
quality allowed for most TAPI wave devices). You can save the wave data after the 
OnTapiWaveNotify event is received with a Msg parameter of waDataReady.

The following example starts recording wave data on a button click and saves the recorded 
data when notified that the recording is done:

procedure TForm1.Button1Click(Sender : TObject);
begin

ApdTapiDevice1.StartWaveRecord;
end;

procedure TForm1.ApdTapiDevice1TapiWaveNotify(
CP : TObject; Msg : TWaveMessage);

begin
if Msg = waDataReady then

ApdTapiDevice1.SaveWaveFile('Call01.wav', True);
end;

See also: OnTapiWaveNotify, StartWaveRecord, StopWaveRecord
28     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

SelectDevice method

procedure SelectDevice;

Displays a dialog box to select a TAPI device.

SelectDevice uses the same dialog box as the property editor for SelectedDevice. You can 
call SelectDevice to prompt the user for a TAPI device to use for subsequent dial or answer 
operations.

See SelectedDevice for the displayed dialog box.

See also: FilterUnsupportedDevices, ShowTapiDevices

SelectedDevice property

property SelectedDevice : string

Determines the TAPI device to be used for dialing and answering. 

TAPI assigns names to each installed modem. TApdTapiDevice components select among 
those devices by setting SelectedDevice to the name of the desired TAPI device. Since these 
names sometimes be rather lengthy and cumbersome to type, a property editor is provided 
for easier selection of devices.

Because the name specified in SelectedDevice must exactly match a TAPI device name, you 
should use this component in your application if you need to allow users to select a TAPI 
device.

SelectedDevice must be set before calling Dial, AutoAnswer, or ShowConfigDialog or they 
will raise an ETapiNoSelect exception.

SendTone method

procedure SendTone(Digits : string);

Sends a DTMF tone to a remote telephone. 

SendTone replicates the press of a telephone touch pad button from within an application. 
Digits should consist of valid telephone touch pad buttons (i.e., ‘1’ through ‘9’, ‘*’, and ‘#’). 

You can also use a comma (,) between characters for a short delay between the tones. 
Multiple comma characters can be used to create a longer delay.

The following example demonstrates how to use SendTone to send multiple tones with a 
delay.

SendTone('123456789,,0');

See also: EnableVoice, OnTapiDTMF
TApdTapiDevice Component     429

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

SetDevConfig method

procedure SetDevConfig(const Config : TTapiConfigRec);

Sets the selected device to the configuration defined in Config. 

The selected device does not have to be “open” at the time of configuration. Config must 
originate from a previous call to GetDevConfig or ShowConfigDialogEdit.

See also: GetDevConfig, ShowConfigDialogEdit

SetRecordingParams method

procedure SetRecordingParams(NumChannels : Byte;
NumSamplesPerSecond : Integer; NumBitsPerSample : Byte);

Sets the parameters used to record a wave file. 

NumChannels is the number of channels to use for recording. A value of 1 indicates mono, 
and a value of 2 indicates stereo. Due to the nature of telephony, it is unlikely any TAPI 
devices support stereo recording. NumSamplesPerSecond is the number of samples per 
second to use for recording. NumBitsPerSample is the number of bits of data to record per 
sample.

By default recording parameters are set to 1 channel (mono), 8000 samples per second, 16 
bits per sample. If your TAPI device supports other recording formats you can use this 
method to change the recording format. If you set the recording parameters to values not 
supported by your TAPI device you will get an ETapiWaveError when you attempt to begin 
recording. It is unlikely that you will need to change the recording parameters.

See also: StartWaveRecord

ShowConfigDialog method

procedure ShowConfigDialog;

Displays the TAPI property sheets for the selected TAPI device. 

TAPI maintains a set of port properties for each TAPI device. These property sheets are 
accessible from the Windows Modem applet in the Control Panel. You can also make them 
available in your application by calling ShowConfigDialog.
30     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ShowConfigDialogEdit method

function ShowConfigDialogEdit(
const Init : TTapiConfigRec) : TTapiConfigRec;

Shows a TAPI configuration dialog for the selected device.

Init must be initialized with a TTapiConfigRec obtained from a call to GetDevConfig with 
the same selected device. The returned TTapiConfigRec reflects any changes the user made 
to the configuration. The device itself is not updated at this point—the record is merely 
returned for use in a subsequent call to SetDevConfig.

See also: GetDevConfig, SetDevConfig

ShowPorts property

property ShowPorts : Boolean

Default: True

Controls whether serial ports are displayed by the SelectDevice method. 

ShowPorts is used in conjunction with ShowTapiDevices to determine what is displayed in 
the Device Selection dialog. The dialog is used as a property editor for the SelectedDevice 
property at design time, when you call the SelectDevice method at run time, and when a 
TAPI command is executed before a TAPI device is selected. See SelectedDevice to see a 
sample Device Selection dialog box.

If ShowPorts is True, the available serial ports are displayed in the drop-down box in the 
Device Selection dialog box. If ShowTapiDevices is True, the TAPI devices are displayed. If 
both ShowPorts and ShowTapiDevices are False, nothing is shown in the drop-down box in 
the dialog.

When ShowPorts is True, the available serial ports will be displayed in the dialog box. If one 
of these devices is selected, the TApdComPort.TapiMode will be set to tmOff. Use TapiMode 
to determine whether to open the port with ConfigAndOpen or whether to open the 
TApdComPort directly.

See also: SelectedDevice, ShowTapiDevices
TApdTapiDevice Component     431

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

ShowTapiDevices property

property ShowTapiDevices : Boolean

Default: True

Controls whether TAPI devices are displayed by the SelectDevice method.

If ShowTapiDevices is True, SelectDevice shows both TAPI devices and available serial 
ports. If ShowTapiDevices is False, SelectDevice shows only serial ports.

See also: SelectDevice, ShowPorts

SilenceThreshold run-time property

property SilenceThreshold : Integer

Default: 50

Specifies a value that is used as a measure of silence.

When the TrimSeconds property is set to a non-zero value, the wave data is examined as it is 
recorded. Silence is determined by comparing the average of the wave data for one second to 
a silence threshold as defined by SilenceThreshold. PCM data recorded by the TAPI wave 
driver generally has an amplitude of 400 to 800 for normal speech. A silence threshold of 50 
(the default) is conservative. True silence on the phone line is probably less than 20, 
although anything under 200 could probably be considered silence. Modify the 
SilenceThreshold property if your phone lines contain more or less noise.

See also: OnTapiWaveSilence, StartWaveRecord, StopWaveRecord, TrimSeconds

StartWaveRecord method

procedure StartWaveRecord;

Starts the wave device recording.

Use StartWaveRecord to begin recording a wave file using the TAPI waveform audio device. 
Recording stops when the StopWaveRecord method is called, when the wave input buffer is 
full, or when silence is detected on the line. The size (in seconds) of the wave input buffer is 
determined by MaxMessageLength. Silence detection is controlled through the 
TrimSeconds property.

When recording stops, the OnTapiWaveNotify event is generated with Msg set to 
waDataReady. After receiving notification that wave data is ready, you must save the 
recorded data using SaveWaveFile.
32     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The following example sets the maximum message length to 45 seconds, starts recording 
wave data on a button click, and then saves the recorded data when notified that the 
recording is done:

procedure TForm1.Button1Click(Sender : TObject);
begin

ApdTapiDevice1.MaxMessageLength := 45;
ApdTapiDevice1.StartWaveRecord;

end;

procedure TForm1.ApdTapiDevice1TapiWaveNotify(
CP : TObject; Msg : TWaveMessage);

begin
if Msg = waDataReady then

ApdTapiDevice1.SaveWaveFile('Call01.wav');
end;

See also: MaxMessageLength, PlayWaveFile, SaveWaveFile, StopWaveRecord, TrimSeconds

StatusDisplay property

property StatusDisplay : TApdAbstractTapiStatus

An instance of a TAPI status window. 

If StatusDisplay is nil (the default), TApdTapiDevice does not provide an automatic status 
window. You can install an OnTapiStatus event handler to display status in this case.

If you create an instance of a class derived from TApdAbstractTapiStatus or use the supplied 
TApdTapiStatus component (see page 443) and assign it to StatusDisplay, the status window 
is displayed and updated automatically.

StatusDisplay is usually set automatically at design time to the first TApdAbstractStatus or 
derived component the TApdTapiDevice finds on the form. If necessary, use the Object 
Inspector to select a different status component.

Setting the StatusDisplay property at run time is necessary only when using a dynamically 
created status display or when selecting among several status components.
TApdTapiDevice Component     433

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

StopWaveFile method

procedure StopWaveFile;

Stops the wave file that is currently playing. 

The wave file is halted regardless of the value of the InterruptWave property. StopWaveFile 
generates two OnTapiWave events. The first has a Code of WOM_DONE and the second has 
a Code of WOM_CLOSE. If no wave file is currently playing then StopWaveFile returns 
silently. The following example stops a wave file, if one is currently playing:

if ApdTapiDevice1.WaveState = wsPlaying then
ApdTapiDevice1.StopWaveFile;

See also: InterruptWave, OnTapiWaveNotify, PlayWaveFile, WaveStatus

StopWaveRecord method

procedure StopWaveRecord;

Stops the wave file that is recording. 

It is not always necessary to call this function since wave recording may be halted as the 
result of the wave buffer filling up, or as a result of silence on the line. The wave record buffer 
is set to an initial size based on MaxMessageLength. If you do not call StopWaveRecord, the 
recording automatically stops after MaxMessageLength seconds. The TrimSeconds property 
is set to 2 seconds by default. Wave recording will stop after 2 seconds of silence are detected 
on the line (unless you respond to the OnTapiWaveSilence event and override the default).

See also: MaxMessageLength, OnTapiWaveNotify, SaveWaveFile, StartWaveRecording, 
TrimSeconds

TapiLog property

property TapiLog : TApdTapiLog

An instance of a TAPI logging component. 

If TapiLog is nil (the default), TApdTapiDevice does not provide automatic logging. You can 
install an OnTapiLog event handler to provide logging services in this case.

TapiLog is usually set automatically at design time to the first TApdTapiLog or derived 
component the TApdTapiDevice finds on the form. If necessary, use the Object Inspector to 
select a different a logging component.

Setting the TapiLog property at run time is necessary only when using a dynamically created 
logging component or when selecting among several logging components.
34     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

TapiState read-only, run-time property

property TapiState : TTapiState

TTapiState = (tsIdle, tsOffering, tsAccepted, tsDialTone,
tsDialing, tsRingback, tsBusy, tsSpecialInfo, tsConnected,
tsProceeding, tsOnHold, tsConferenced, tsOnHoldPendConf,
tsOnHoldPendTransfer, tsDisconnected, tsUnknown);

Default: tsNone

The state of the TAPI operation. 

When TapiState is referenced, APRO retrieves state information from TAPI and returns 
the result as TapiState. For completeness, the TTapiState enumeration contains all 
possible returns from TAPI -- which is a superset of values that you will likely see in an 
APRO application.

Note: Since APRO retrieves this value from TAPI every time you check it, you should avoid 
calling it too often. In other words, sitting in a loop continuously polling TapiState would 
not be a good idea.

Value Meaning

tsIdle No TAPI operations in progress.

tsOffering TAPI is offering an incoming call.

tsAccepted APRO has accepted an incoming call.

tsDialTone Dial tone detected.

tsDialing Waiting for dial to complete or fail.

tsRingback Ringback detected.

tsBusy Line is busy.

tsSpecialInfo TAPI service provider specific.

tsConnected Call is connected.

tsProceeding Call is proceeding.

tsOnHold Call has been placed on hold.

tsConferenced Call is conferenced.
TApdTapiDevice Component     435

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

TapiStatusMsg method

function TApdCustomTapiDevice.TapiStatusMsg(
const Message, State, Reason : DWORD) : string;

Returns a text message for the progress of the current TAPI call. 

TapiStatusMsg is intended primarily for use in OnTapiStatus event handlers. Message is the 
Message parameter passed into OnTapiStatus. State is the Param1 parameter passed into 
OnTapiStatus. TapiStatusMsg combines the values of Message and State to arrive at a unique 
resource string ID, stored in APW.RC. Reason is the Param2 parameter passed into 
OnTapiStatus. Reason adds additional information for LineCallState_Disconnected 
messages. This parameter is ignored for all other messages.

The following example shows an OnTapiStatus event handler that calls TapiStatusMsg and 
displays the returned string:

TForm1 = class(TForm)
...
ApdTapiDevice1 : TApdTapiDevice;
StatusStr : TLabel;
...

end;

procedure TForm1.ApdTapiDevice1TapiStatus(
CP : TObject; First, Last: Boolean; Device, Message, Param1,
Param2, Param3 : LongInt);

begin
...
StatusStr.Caption :=

ApdTapiDevice1.TapiStatusMsg(Message, Param1, Param2);
...

end;

See also: OnTapiStatus

tsOnHoldPendConf Call is being conferenced.

tsOnHoldPendTransfer Call is being transferred.

tsDisconnected Call has been disconnected.

tsUnknown TAPI state unknown to APRO.

Value Meaning
36     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

TranslateAddress method

function TranslateAddress(CanonicalAddr : String) : String;

Translates a canonical address into a dialable address. 

A canonical address is an address that contains the country code as well as the phone 
number. TAPI also takes into account any settings you have made to your modem properties 
in the Control Panel. For example, if you have call waiting enabled and the code to disable 
call waiting is *70, TAPI prepends *70 to the dialable address string when you call 
TranslateAddress.

See also: Dial

TrimSeconds run-time property

property TrimSeconds : Integer

Default: 2

Sets the number of seconds of silence to detect when recording wave files.

Wave recording can be terminated in one of three ways. First, you can manually terminate 
recording by calling StopWaveRecord. Second, recording will automatically terminate when 
the amount of time specified by MaxMessageLength has passed. Finally, wave recording can 
terminate as a result of silence detected on the line. 

When TrimSeconds is set to a non-zero value, the wave data is examined as it is recorded. 
Silence is determined by comparing the average of the wave data for one second to a silence 
threshold as defined by the SilenceThreshold property. If TrimSeconds seconds of silence is 
detected, the OnTapiWaveSilence event is generated. If no OnTapiWaveSilence event is 
defined then the recording is stopped and the call is terminated. Even after a hangup, a 
telephone line contains a good deal of random noise so it is not guaranteed that silence will 
be detected immediately after a hangup.

See also: OnTapiWaveSilence, SilenceThreshold, StartWaveRecord, StopWaveRecord
TApdTapiDevice Component     437

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

UseSoundCard run-time property

property UseSoundCard : Boolean

Default: False

Determines where the output from PlayWaveFile is sent. 

UseSoundCard determines whether the output from PlayWaveFile goes to the TAPI device 
or to the sound card. By default the output is sent to the TAPI waveform audio device 
(through the phone). Set UseSoundCard to True to play the wave file through the sound 
card.

The following example plays a wave file through the sound card rather than over the phone 
line and then resets the device so that subsequent sounds are played through the TAPI 
device:

ApdTapiDevice1.UseSoundCard := True;
ApdTapiDevice1.PlayWaveFile('Call01.wav');
ApdTapiDevice1.UseSoundCard := False;

See also: PlayWaveFile

WaveFileName read-only, run-time property

property WaveFileName : TFileName

The name of the current wave file. 

If a wave file is currently playing, WaveFileName is the name of the file. If no wave file is 
currently playing, WaveFileName is the name of the last wave file that was played. 
WaveFileName is automatically set when you use PlayWaveFile to play a file.

The following example sets a label’s Caption to the name of the current wave file:

Label1.Caption := ApdTapiDevice1.WaveFileName;

See also: PlayWaveFile
38     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

WaveState read-only, run-time property

property WaveState : TWaveState

TWaveState = (wsIdle, wsPlaying, wsRecording, wsData);

The current state of the TAPI waveform device. 

The possible values for wsData are:

The following example stops a wave file if one is currently playing:

if ApdTapiDevice1.WaveState = wsPlaying then
ApdTapiDevice1.StopWaveFile;

See also: PlayWaveFile, StartWaveRecord, StopWaveFile, StopWaveRecord

Value Meaning

wsIdle The wave device is not in use.

wsPlaying The wave device is playing a wave file.

wsRecording The wave device is recording a wave file.

wsData Data is available in the wave buffer.
TApdTapiDevice Component     439

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdAbstractTapiStatus Class
TApdAbstractTapiStatus is an abstract class that defines the methods and properties needed 
by a component that automatically displays status while TApdTapiDevice is dialing or 
answering a call. You generally won’t need to create a descendent class of your own, since 
Async Professional supplies one, the TApdTapiStatus component (see page 443).

However, TApdTapiStatus shows a particular set of information about a call in a predefined 
format. If this format is not suitable for your needs, you can create your own descendant of 
TApdAbstractTapiStatus. The best way to start is to study the source code of TApdTapiStatus 
(in the AdTStat unit) and its form, TStandardTapiDisplay.

The TApdAbstractTapiStatus class contains an instance of a TForm that holds controls used 
to display the dial or answer status. You design the form, create an instance, and assign the 
instance to the Display property of TApdAbstractTapiStatus.

TApdAbstractTapiStatus overrides the standard VCL properties Ctl3D, Position, and Visible 
and the standard VCL method Show. When these routines are used in the status component, 
the overridden versions perform the same actions on the associated Display form. Thus you 
can display the status form by calling Show, erase it by setting Visible to False, adjust its 
position by assigning to Position, and use 3D effects by setting Ctl3D to True.

Once you create an instance of your TApdAbstractTapiStatus descendant, you must assign it 
to the StatusDisplay property of your TApdTapiDevice component. When TApdTapiDevice 
needs to update the status display, it calls the UpdateDisplay method of 
TApdAbstractTapiStatus, which you must override to update your status window.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdAbstractTapiStatus (AdTapi)

Properties
Display TapiDevice ! Version

Methods
CreateDisplay DestroyDisplay UpdateDisplay
40     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

Reference Section

CreateDisplay dynamic abstract method

procedure CreateDisplay; dynamic; abstract;

An abstract method that creates a form to display dialing and answering status. 

A descendant of TApdAbstractTapiStatus must override this method with a routine that 
creates a TForm component that contains various controls (typically of type TLabel) for 
displaying the call progress. The TForm should also contain a TButton control and 
associated OnClick event handler that allow the user to cancel the dial or answer operation.

CreateDisplay must then assign the instance of this form to the Display property.

See also: DestroyDisplay, Display

DestroyDisplay dynamic abstract method

procedure DestroyDisplay; dynamic; abstract;

An abstract method that destroys the display form. 

A descendant of TApdAbstractTapiStatus must override this method to destroy the TForm 
instance created by CreateDisplay.

See also: CreateDisplay, Display

Display run-time property

property Display : TForm

A reference to the form created by CreateDisplay. 

CreateDisplay must assign a properly initialized instance of a TForm to this property. 
UpdateDisplay can refer to this property to update the status window.

See also: CreateDisplay, UpdateDisplay

TapiDevice property

property TapiDevice : TApdCustomTapiDevice

The TApdTapiDevice component that is using the status component. 

When you derive components from TApdAbstractTapiStatus, you will probably reference 
TApdTapiDevice properties to display information about the progress of the dial or answer 
operation. Use this property to do so. It is automatically initialized when you assign the 
status component to the StatusDisplay property of TApdTapiDevice.
TApdAbstractTapiStatus Class     441

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

UpdateDisplay virtual abtract method

procedure UpdateDisplay(First, Last : Boolean;
Device, Message, Param1, Param2, Param3 : DWORD);
virtual; abstract;

An abstract method that writes the contents of the status window. 

A descendant of TApdAbstractTapiStatus must override this method to update the display 
form. The TApdTapiDevice component calls this method regularly from its OnTapiStatus 
event handler.

On the first call to UpdateDisplay, First equals True and UpdateDisplay should call the Show 
method of Display to draw the outline and background of the status form. On the last call to 
UpdateDisplay, Last equals True and UpdateDisplay should set the Visible property of 
Display to False to erase the status window.

For all other calls to UpdateDisplay, First and Last are both False. During these calls 
UpdateDisplay should update the various labels in the Display form. To get information 
about the dial or answer operation, use the TapiDevice field of TApdAbstractTapiStatus to 
read the values of various properties such as Number and Dialing.

The CancelClick event handler, if one is provided, should call the CancelCall method of 
TApdTapiDevice to abort the dial or answer operation.
42     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
 TApdTapiStatus Component
TApdTapiStatus is a descendant of TApdAbstractTapiStatus that implements a standard 
TAPI status display. To use it, just create an instance and assign it to the StatusDisplay 
property of your TApdTapiDevice component. TApdTapiStatus includes all of the most 
frequently used information about a call and it provides a Cancel button so that the user can 
abort the call at any time.

TApdTapiStatus overrides all the abstract methods of TApdAbstractTapiStatus. 
TApdTapiStatus has no methods that you must call or properties that you must adjust. You 
might want to change the settings of the Ctl3D and Position properties to modify the 
appearance and placement of the window.

Figure 12.1 shows the TStandardTapiDisplay form that is associated with a TApdTapiStatus 
component.

For an example of using a TApdTapiStatus component, see either the dial or answer 
examples in “Making calls” on page 400 and “Answering calls” on page 402.

 Figure 12.1: TStandardTapiDisplay form.
TApdTapiStatus Component     443

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TComponent (VCL)

TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdAbstractTapiStatus (AdTapi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

TApdTapiStatus (AdTStat)
44     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
 TApdTapiLog Class
TApdTapiLog is a small class that can be associated with a TApdTapiDevice to provide 
automatic TAPI logging services. Simply create an instance of TApdTapiLog and assign it to 
the TapiLog property of the TApdTapiDevice.

TApdTapiLog creates or appends to a text file whose name is given by the TapiHistoryName 
property. Each time the OnTapiLog event is generated, the associated TApdTapiLog instance 
opens the file, writes a new line to it, and closes the file.

Following is a sample of the text file created by TApdTapiLog:

5/7/96 10:11:34 PM : call started
5/7/96 10:11:34 PM : dialing 262-6000
5/7/96 10:11:53 PM : cancelled
5/7/96 10:11:53 PM : call finished

5/7/96 10:50:50 PM : call started
5/7/96 10:50:50 PM : dialing 262-6000
5/7/96 10:51:02 PM : busy
5/7/96 10:51:02 PM : dial failed
5/7/96 10:51:07 PM : dialing 262-6000
5/7/96 10:51:11 PM : cancelled
5/7/96 10:51:11 PM : call finished

5/7/96 11:11:34 PM : call started
5/7/96 11:11:34 PM : dialing 262-6000
5/7/96 11:11:53 PM : connected
5/7/96 11:30:07 PM : call finished

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdTapiLog (AdTapi)

Properties
TapiHistoryName  TapiDevice ! Version

Methods
UpdateLog
TApdTapiLog Class     445

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference Section

TapiDevice property

property TapiDevice : TApdCustomTapiDevice

The TAPI component that is using the log component.

TapiDevice is automatically initialized when the TapiLog property of the owning TAPI 
component is set. TapiDevice can be changed to assign the log component to a different 
TAPI component.

TapiHistoryName property

property TapiHistoryName : string

Default: “APROTAPI.HIS”

Determines the name of the TAPI log file. 

The value of TapiHistoryName should be set before calling Dial or AutoAnswer. However, 
because the log file is opened and closed for each update, TapiHistoryName can be changed 
at any time. If TapiHistoryName is set to an empty string, automatic logging is disabled until 
a non-empty string is assigned.

See also: TApdTapiDevice.AutoAnswer, TApdTapiDevice.Dial

UpdateLog virtual method

procedure UpdateLog(const Log : TTapiLogCode); virtual;

TTapiLogCode = (ltapiNone, ltapiCallStart,
ltapiCallFinish, ltapiDial, ltapiAnswer, ltapiConnect,
ltapiCancel, ltapiDrop, ltapiBusy, ltapiDialFail);

Called for each TAPI logging event. 

The Log parameter has the same values passed to the OnTapiLog event handler of 
TApdTapiDevice. UpdateLog creates or appends to the log file, builds and writes a text 
string for each event, and closes the log file.

TApdTapiLog contains a field named TapiDevice that UpdateLog uses to obtain additional 
information (e.g., Number and Dialing) about the dial or answer operation.

See also: TApdTapiDevice.OnTapiLog
46     Chapter 12: TAPI Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 13: Modem Components

Async Professional provides a modem database and several components for configuring, 
dialing, and answering modems and managing phone books. These components are ideal 
for controlling modems since they include a modem database and all of the features a 
modem-based program might need. Your users simply select their modem (or the closest 
match) from the database and your application loads the associated configuration strings 
for that modem from the database.

The modem components provide routines for retrieving modem information from the 
libmodem database, manipulating a modem by sending commands through TApdComPort 
components, and processing response data, a dialing engine for making repeated dial 
attempts, and a few user-interface components for maintaining phonebooks and dialing the 
modem. The following units and components are described in this chapter.

For projects ported from previous versions of Async Professional, the TAdModem, 
TApdSModem and supporting components are still available as deprecated components.

AdMdm
Contains a component (TAdModem) that provides a simple interface for accessing the most 
commonly used modem operations. It combines the features of most of the other modem 
components into one component.

AdLibMdm
Contains TApdLibModem, a VCL component that provides an interface to the libmodem 
modem database.

AdMdmDlg
Contains a modem status dialog for use with the TAdModem component.
     447

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
modemcap and libmodem
The TAdModem component uses a Windows version of libmodem to obtain modem 
configuration information from the modemcap database. Modemcap is a set of XML 
documents that defines configuration, response and identification information for a wide 
range of modems. The following section describes the TApdLibModem class that retrieves 
information from the modemcap database. Refer to the libmodem help pages for a more 
detailed description of modemcap and libmodem.
modemcap and libmodem     448

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdLibModem Component
The TApdLibModem component is a Windows implementation of libmodem. This class 
provides several routines for access and maintaining lists of known modems and details on 
individual modems.

Detailed configuration, response and feature information for a wide variety of modems is 
stored in numerous XML documents. By default, these documents are stored in the 
/etc/modemcap directory. The modemcap.xml document contains an index of all available 
modem definitions.

Several data structures are used to describe the modem cap index and the modem detail 
files. These types are defined in the AxLibMdm.pas unit. The structures and methods that 
are most applicable to the TAdModem are listed here with a brief description of the 
structure. Refer to the libmodem source code (AdLibMdm.pas) and help pages for a more 
detailed discussion of these structures.

The TApdLibModem class uses the following structures. Several fields are TLists, each item 
points to an item in a sequence, the type of item is provided following the field name.

{ an entry from modemcap.xml describing the location and
identification of a single modem }
PLmModemName = ^TLmModemName;
TLmModemName = record

ModemName : string;
Manufacturer : string;
Model : string;
ModemFile : string;

end;

{ a modem response }
PLmResponseData = ^TLmResponseData;
TLmResponseData = record

Response : string;
ResponseType : string;

end;
TApdLibModem Component     449

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
{ lots of modem responses }
PLmResponses = ^TLmResponses;
TLmResponses = record

OK : TList; // LmResponseData
NegotiationProgress : TList; // LmResponseData
Connect : TList; // LmResponseData
Error : TList; // LmResponseData
NoCarrier : TList; // LmResponseData
NoDialTone : TList; // LmResponseData
Busy : TList; // LmResponseData
NoAnswer : TList; // LmResponseData
Ring : TList; // LmResponseData
VoiceView1 : TList; // LmResponseData
VoiceView2 : TList; // LmResponseData
VoiceView3 : TList; // LmResponseData
VoiceView4 : TList; // LmResponseData
VoiceView5 : TList; // LmResponseData
VoiceView6 : TList; // LmResponseData
VoiceView7 : TList; // LmResponseData
VoiceView8 : TList; // LmResponseData
RingDuration : TList; // LmResponseData
RingBreak : TList; // LmResponseData
Date : TList; // LmResponseData
Time : TList; // LmResponseData
Number : TList; // LmResponseData
Name : TList; // LmResponseData
Msg : TList; // LmResponseData
SingleRing : TList; // LmResponseData
DoubleRing : TList; // LmResponseData
TripleRing : TList; // LmResponseData
Voice : TList; // LmResponseData
Fax : TList; // LmResponseData
Data : TList; // LmResponseData
Other : TList; // LmResponseData

end;

{ a modem command }
PLmModemCommand = ^TLmModemCommand;
TLmModemCommand = record

Command : string;
Sequence : Integer;

end;

{ fax commands and responses }
TLmFaxClassDetails = record

ModemResponseFaxDetect : string;
ModemResponseDataDetect : string;
TApdLibModem Component     450

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
SerialSpeedFaxDetect : string;
SerialSpeedDataDetect : string;
HostCommandFaxDetect : string;
HostCommandDataDetect : string;
ModemResponseFaxConnect : string;
ModemResponseDataConnect : string;
AnswerCommand : TList;

end;

{ more fax commands and responses }
TLmFaxDetails = record

ExitCommand : string;
PreAnswerCommand : string;
PreDialCommand : string;
ResetCommand : string;
SetupCommand : string;
EnableV17Recv : string;
EnableV17Send : string;
FixModemClass : string;
FixSerialSpeed : string;
HighestSendSpeed : string;
LowestSendSpeed : string;
HardwareFlowControl : string;
SerialSpeedInit : string;
Cl1FCS : string;
Cl2DC2 : string;
Cl2lsEx : string;
Cl2RecvBOR : string;
Cl2SendBOR : string;
Cl2SkipCtrlQ : string;
Cl2SWBOR : string;
Class2FlowOff : string;
Class2FlowHW : string;
Class2FlowSW : string;
FaxClass1 : TLmFaxClassDetails;
FaxClass2 : TLmFaxClassDetails;
FaxClass2_0 : TLmFaxClassDetails;

end;

{ supported wave formats }
PLmWaveFormat = ^TLMWaveFormat;
TLmWaveFormat = record

ChipSet : string;
Speed : string;
SampleSize : string;

end;
TApdLibModem Component     451

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
{ wave details }
TLmWaveDriver = record

BaudRate : string;
WaveHardwareID : string;
WaveDevices : string;
LowerMid : string;
LowerWaveInPid : string;
LowerWaveOutPid : string;
WaveOutMixerDest : string;
WaveOutMixerSource : string;
WaveInMixerDest : string;
WaveInMixerSource : string;
WaveFormat : TList; // LmWaveFormat

end;

{ voice modem properties }
TLmVoiceSettings = record

VoiceProfile : string;
HandsetCloseDelay : Integer;
SpeakerPhoneSpecs : string;
AbortPlay : string;
CallerIDOutSide : string;
CallerIDPrivate : string;
TerminatePlay : string;
TerminateRecord : string;
VoiceManufacturerID : string;
VoiceProductIDWaveIn : string;
VoiceProductIDWaveOut : string;
VoiceSwitchFeatures : string;
VoiceBaudRate : Integer;
VoiceMixerMid : string;
VoiceMixerPid : string;
VoiceMixerLineID : string;

CloseHandset : TList; // LmModemCommand;
EnableCallerID : TList; // LmModemCommand;
EnableDistinctiveRing : TList; // LmModemCommand;
GenerateDigit : TList; // LmModemCommand;
HandsetPlayFormat : TList; // LmModemCommand;
HandsetRecordFormat : TList; // LmModemCommand;
LineSetPlayFormat : TList; // LmModemCommand;
LineSetRecordFormat : TList; // LmModemCommand;
OpenHandset : TList; // LmModemCommand;
SpeakerPhoneDisable : TList; // LmModemCommand;
SpeakerPhoneEnable : TList; // LmModemCommand;
SpeakerPhoneMute : TList; // LmModemCommand;
SpeakerPhoneSetVolumeGain : TList; // LmModemCommand;
TApdLibModem Component     452

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
SpeakerPhoneUnMute : TList; // LmModemCommand;
StartPlay : TList; // LmModemCommand;
StartRecord : TList; // LmModemCommand;
StopPlay : TList; // LmModemCommand;
StopRecord : TList; // LmModemCommand;
VoiceAnswer : TList; // LmModemCommand;
VoiceDialNumberSetup : TList; // LmModemCommand;
VoiceToDataAnswer : TList; // LmModemCommand;
WaveDriver : TLmWaveDriver;

end;

{ lots of specialized modem commands }
TLmModemSettings = record

Prefix : string;
Terminator : string;
DialPrefix : string;
DialSuffix : string;
SpeakerVolume_High : string;
SpeakerVolume_Low : string;
SpeakerVolume_Med : string;
SpeakerMode_Dial : string;
SpeakerMode_Off : string;
SpeakerMode_On : string;
SpeakerMode_Setup : string;
FlowControl_Hard : string;
FlowControl_Off : string;
FlowControl_Soft : string;
ErrorControl_Forced : string;
ErrorControl_Off : string;
ErrorControl_On : string;
ErrorControl_Cellular : string;
ErrorControl_Cellular_Forced: string;
Compression_Off : string;
Compression_On : string;
Modulation_Bell : string;
Modulation_CCITT : string;
Modulation_CCITT_V23 : string;
SpeedNegotiation_On : string;
SpeedNegotiation_Off : string;
Pulse : string;
Tone : string;
Blind_Off : string;
Blind_On : string;
CallSetupFailTimer : string;
InactivityTimeout : string;
CompatibilityFlags : string;
TApdLibModem Component     453

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
ConfigDelay : Integer;
end;

{ modem hardware settings }
TLmModemHardware = record

AutoConfigOverride : string;
ComPort : string;
InvalidRDP : string;
IoBaseAddress : Integer;
InterruptNumber : Integer;
PermitShare : Boolean;
RxFIFO : string;
RxTxBufferSize : Integer;
TxFIFO : string;
Pcmcia : string;
BusType : string;
PCCARDAttributeMemoryAddress: Integer;
PCCARDAttributeMemorySize : Integer;
PCCARDAttributeMemoryOffset : Integer;

end;

{ the whole shebang }
PLmModem = ^TLmModem;
TLmModem = record

Inheritance : string;
AttachedTo : string;
FriendlyName : string;
Manufacturer : string;
Model : string;
ModemID : string;
InactivityFormat : string;
Reset : string;
DCB : string;
Properties : string;
ForwardDelay : Integer;
VariableTerminator : string;
InfPath : string;
InfSection : string;
ProviderName : string;
DriverDesc : string;
ResponsesKeyName : string;
Default : string;
CallSetupFailTimeout : Integer;
InactivityTimeout : Integer;
SupportsWaitForBongTone : Boolean;
SupportsWaitForQuiet : Boolean;
SupportsWaitForDialTone : Boolean;
TApdLibModem Component     454

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
SupportsSpeakerVolumeLow : Boolean;
SupportsSpeakerVolumeMed : Boolean;
SupportsSpeakerVolumeHigh : Boolean;
SupportsSpeakerModeOff : Boolean;
SupportsSpeakerModeDial : Boolean;
SupportsSpeakerModeOn : Boolean;
SupportsSpeakerModeSetup : Boolean;
SupportsSetDataCompressionNegot : Boolean;
SupportsSetErrorControlProtNegot : Boolean;
SupportsSetForcedErrorControl : Boolean;
SupportsSetCellular : Boolean;
SupportsSetHardwareFlowControl : Boolean;
SupportsSetSoftwareFlowControl : Boolean;
SupportsCCITTBellToggle : Boolean;
SupportsSetSpeedNegotiation : Boolean;
SupportsSetTonePulse : Boolean;
SupportsBlindDial : Boolean;
SupportsSetV21V23 : Boolean;
SupportsModemDiagnostics : Boolean;
MaxDTERate : Integer;
MaxDCERate : Integer;
CurrentCountry : string;
MaximumPortSpeed : Integer;
PowerDelay : Integer;
ConfigDelay : Integer;
BaudRate : Integer;
Responses : TLmResponses;
Answer : TList;
Fax : TList;
FaxDetails : TLmFaxDetails;
Voice : TLmVoiceSettings;
Hangup : TList;
Init : TList;
Monitor : TList;
Settings : TLmModemSettings;
Hardware : TLmModemHardware;
BaudRates : TStringList;
Options : TStringList;

end;

Not all of the proceeding structures and fields are used in Async Professional, they are 
included for future enhancements.
TApdLibModem Component     455

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

TApdLibModem(AdLibMdm)

Properties
ModemCapFolder

Methods
AddModem

AddModemRecord

CreateNewDetailFile

DeleteModem

DeleteModemRecord

GetModem

GetModems

SelectModem
TApdLibModem Component     456

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

AddModem method

function AddModem(
const ModemDetailFile : string; Modem : TLmModem) : Integer;

Adds a modem definition to modemcap.

AddModem adds the modem specified by Modem to the modem detail file specified by 
ModemDetailFile. This function will fail if the modem detail file already contains a modem 
with the same FriendlyName as Modem. The return value will be an ELmXxx error constant 
describing the result of the call to modemcap.

See also: AddModemRecord

AddModemRecord method

function AddModemRecord(
ModemRecord : TLmModemRecord) : Integer;

Adds a modem record to the list of available modems.

AddModemRecord adds the modem record specified by ModemRecord to the list of 
available modems to the modemcap index. This function will fail if the modem cap index 
already contains a modem with the same name, manufacturer, and modem as 
ModemRecord. The return value will be an ELmXxx error constant describing the result of 
the call to modemcap.

See also: AddModem

CreateNewDetailFile method

function CreateNewDetailFile(
const ModemDetailFile : string) : Integer;

Creates a new modem detail file.

The CreateNewDetailFile method creates a new modem detail file with the appropriate XML 
headers.

ModemDetailFile is the name of the new modem detail file. If ModemDetailFile already 
exists, it will be overwritten. The result of this method is ecOK if the file was created 
successfully.
TApdLibModem Component     457

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

DeleteModem method

function DeleteModem(
const ModemDetailFile : string; Modem : TLmModem) : Integer;

Deletes a modem detail record from a modem list.

DeleteModem will search the modem detail file specified by ModemDetailFile for the 
modem pointed to by Modem. If the modem is found, it will be removed from the list. The 
return value will be an ELmXxx error constant describing the result of the call to 
modemcap.

See also: DeleteModemRecord

DeleteModemRecord method

function DeleteModemRecord(
ModemRecord : TLmModemRecord) : Integer;

Deletes a modem record from a modemcap index.

DeleteModemRecord will search the modemcap index for the modem record pointed to by 
ModemRecord. If the modem is found it will be removed from the list. The return value will 
be an ELmXxx error constant describing the result of the call to modemcap.

See also: DeleteModem

GetModem method

function GetModem(const ModemDetailFile,
ModemName : string; var Modem : TLmModem) : Integer;

Retrieves a specific modem from the modem detail file.

GetModem retrieves a modem definition from modemcap. ModemDetailFile is the name of 
the modem detail file where the definition resides; ModemName is the name of the modem 
to retrieve. Modem is the TLmModem structure that contains the details of the modem.

If this method is successful, the return value is ecOK. If the ModemDetailFile is not found, 
the return value is ecFileNotFound. If a modem matching ModemName is not found in the 
ModemDetailFile, the return value is ecModemNotFound.

See also: SelectModem
TApdLibModem Component     458

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

GetModems method

function GetModems(
const ModemDetailFile : string) : TStringList;

Retrieves all modems from a modem detail file.

GetModems retrieves all modem definitions contained in a specific modem detail file. 
ModemDetailFile is the name of the modem detail file. If successful, the return value is a 
TStringList containing the details of all modems contained in ModemDetailFile. If 
GetModems fails, the return value will be nil.

The return value is a TStringList containing an item for each modem contained in the 
modem detail file. The Strings portion of the item is the “friendly name” of the modem. The 
Objects portion is a TLmModem structure defining the modem.

ModemCapFolder property

property ModemCapFolder : string

Defines the location of the modemcap modem database.

ModemCapFolder determines where the TApdLibModem component will find the 
modemcap modem database. Set ModemCapFolder to the name of the folder where 
modemcap was installed (default installation is in the C:\APRO\MODEMCAP folder).

SelectModem method

function SelectModem(
var ModemFile, ModemManufacturer, ModemName: string;
var LmModem : TLmModem) : Boolean;

Displays modem selection dialog box.

Call the SelectModem method to display the modem selection dialog and select a modem 
definition. This method is used by the TAdModem.SelectModem method, and is 
documented here to allow customization of the selection process.

The ModemFile and ModemName parameters are used to filter the displayed modems, as 
well as to retrieve the specifications of the selected modem. If ModemFile is not empty, only 
modems contained in that modem detail file will be displayed. If ModemName is not empty, 
only modems with that name will be displayed. ModemName is case-sensitive.
TApdLibModem Component     459

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
If the OK button is selected to close the dialog, ModemFile will contain the name of the 
modem detail file where the selected modem resides; ModemManufacturer is the 
manufacturer, and ModemName is the name of the modem; LmModem is the TLmModem 
structure that defines the modem capabilities and configuration information.

See also: GetModem
TApdLibModem Component     460

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TAdModem Component
The TAdModem component combines the features of libmodem-based device selection and 
configuration and modem control methods. TAdModem integrates the selection of the 
modem from the modem database and the dialog to show the current status of the modem. 
The TAdModem component is used to select and configure a modem and to dial or answer 
the line.

There are many similarities between the TAdModem and TApdTapiDevice components. 
The TApdTapiDevice uses the Microsoft TAPI library, and most of TAPI operates under the 
“black box” principle. The TAdModem can be more flexible, especially when custom 
modem or port configurations must be used.

The TAdModem component requires libmodem and the modemcap database. See 
“TApdLibModem Component” on page 449, and the appropriate help pages, for details 
concerning these libraries.

Modem selection
When using the TAdModem component, the appropriate modem definition must be loaded 
from modemcap. To do this, call the TAdModem.SelectModem method, which will display 
the dialog box shown in Figure 13.1.

The “Manufacturer” combo box will be filled with a list of known modem manufacturers 
(those that are included in modemcap). Select a manufacturer from the list and the “Modem 
name” combo box will be filled with a list of known modems from the appropriate modem 
detail file. Select the modem name from the list and click OK. 

To select a modem programatically, assign a TAdModemNameProp object to the 
SelectedDevice property 

 Figure 13.1: TAdModem.SelectModem dialog box.
TAdModem Component     461

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Connectionless connections
The TAdModem can establish a connection direct to the port through the ConfigAndOpen 
method. This does not establish a connection, except to the local modem. When the device 
has been configured, the OnModemConnect event will be generated and you can 
communicate with the modem.

Dialing
The TAdModem can also establish connections by dialing. To dial a number through the 
modem, and have the modem negotiate a connection, call the TAdModem.Dial method. 
The phone number to dial is passed in the ANumber parameter to the Dial method. This 
number is dialed without modification. If you need to enter a prefix to gain an outside line, 
to use a calling card, or other non-dialable use, those digits must be added to ANumber. For 
example, if you want to dial “555-1212” but you need to dial ‘9’ to access an outside line, 
ANumber would be “9 555-1212”.

Answering an incoming call
The TAdModem can also establish a connection by answering an incoming call. The 
TAdModem will answer incoming calls by monitoring the port for the modem’s ring 
indicator, which is usually a “RING” response. The AnswerOnRing property of the 
TAdModem component determines how many of these responses to receive before issuing 
the answer command to the modem. The RingWaitTimeout property determines the 
number of milliseconds to wait after receiving the last ring before assuming that the caller 
terminated the connection attempt. In the USA, the ring indicators are sent approximately 
every six seconds, the default RingWaitTimeout (1200 ms) will wait for about two ring 
cycles. If another ring indicator is not received, the internal RingCount property is reset, and 
the TAdModem will wait for the next AnswerOnRing ring indicators. Note that the port 
associated with the TAdModem must be open when waiting for an incoming call, which will 
prevent other processes from accessing the serial port. To share the port while passively 
waiting for calls, use the TApdTapiDevice.

When the modem dials the number, or answers an incoming call, the modem will attempt to 
establish a data connection with the remote modem. If the modem can establish a mutually 
supported set of connection parameters (baud, data compression, error correction, etc.) the 
OnModemConnect event will be generated. If the modem could not establish a connection, 
the OnModemFail event will be generated. The FailureCode property will contain a code 
indicating the reason for the failure.
TAdModem Component     462

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent(OOMisc)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TAdCustomModem(AdMdm)

TAdModem(AdMdm)

Properties
AnswerOnRing

BPSRate

CancelCall

ComPort

Dialing

DialTimeout

FailureCode

LastResponse

MaxAttempts 

ModemCapFolder

ModemState

NegotiationResponses

PassthroughMode

RetryWait

RingWaitTimeout

SelectedDevice

StatusDisplay

! Version

Methods
AutoAnswer

CancelCall

ConfigAndOpen

Dial

FailureCodeMsg

GetDevConfig

SendCommand

SelectDevice

SetDevConfig

ModemLogToString

ModemStatusMsg 

TranslateAddress

Events
OnModemCallerID

OnModemConnect

OnModemDisconnect

OnModemFail

OnModemLog

OnModemStatusMethods
TAdModem Component     463

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

AnswerOnRing property

property AnswerOnRing : Byte

Default: 2

The number of times the component should allow the incoming call to ring before 
answering it.

The AnswerOnRing property determines the number of “RING” responses that the 
TAdModem detects before answering the incoming call. Once the AutoAnswer method is 
called, internal TApdDataPackets are initialized to detect the “RING” response from the 
modem when an incoming call is signaled. When AnswerOfRing “RING” responses are 
detected, the call is answered. 

Caller ID information is transmitted between the first and second rings in most countries. 
The AnswerOnRing property defaults to 2 to avoid problems with Caller ID information 
corrupting the connection negotiations.

See also: AutoAnswer, RingWaitTimeout

AutoAnswer method

procedure AutoAnswer;

Prepares the modem to answer a call after a specified number of rings.

After AutoAnswer sets the appropriate variables and triggers, control returns to the program 
and the modem component watches for incoming calls in the background. If 
AnswerOnRing “RING” responses are received from the modem, the call is answered. If 
StatusDisplay is assigned to a TApdAbstractModemStatus component, that status dialog is 
displayed during an answer attempt.

Once the “RING” response is received, the ModemState changes from 
msAutoAnswerBackground to msAutoAnswerWait. ModemState remains in 
msAutoAnswerWait until AnswerOnRing “RING” responses are received, when 
ModemState enters the msAnswerWait state and the call is answered. When a connection is 
established, ModemState changes to msConnected and the OnModemConnect event is 
generated.
TAdModem Component     464

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Auto answer mode can be cancelled by calling CancelCall. The auto answer mode is 
cancelled regardless of whether the TAdModem is waiting in the background for the 
incoming call or the modem is currently answering the call.

Calling AutoAnswer does not turn on the auto answer (AA) light on an external modem. 
The AutoAnswer method does not use the auto answer feature of the modem.

See also: CancelCall, ModemState, OnModemCallerID, OnModemConnect, 
OnModemFail, StatusDisplay

BPSRate read-only, run-time property

property BPSRate : DWORD

The rate of the current call in bits per second. 

BPSRate is the rate negotiated between the local and remote modems for the current call. If a 
call is not in progress, BPSRate returns zero. BPSRate is determined by the extended 
connection responses provided by the modem, and may take the connection’s negotiated 
data compression into account. This property is available once the OnModemConnect event 
is generated.

See also: OnModemConnect

CancelCall method

procedure CancelCall;

Terminates a connection attempt or disconnects the current call.

If a dial or an answer attempt is in progress, calling this method aborts the attempt and 
returns the modem to its normal state.

If you call CancelCall while the TAdModem component is in auto answer mode, the modem 
component is taken out of auto answer mode.

CancelCall is the TAdModem universal method for terminating the current call. It can be 
used while waiting for an incoming call, answering an incoming call, dialing a call, or during 
an established connection. TAdModem terminates the current process, assures that the 
modems have disconnected, and places the modem into an idle state (not waiting for calls).

CancelCall returns when the connection, or connection attempt, has terminated. The 
OnModemDisconnect event is generated if a connection was present when CancelCall was 
called; if a connection was not present, no event is generated.

See also: AutoAnswer, Dial, OnModemDisconnect
TAdModem Component     465

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ComPort property

property ComPort : TApdCustomComPort

Determines the serial port to which the modem is connected.

ComPort is usually set automatically at design time to the first TApdComPort component 
the TAdModem finds on the form. If you need to, you can use the Object Inspector to select 
a different TApdComPort component.

Setting the ComPort property at run time is necessary only when using a dynamically 
created TApdComPort or when selecting among several TApdComPort components.

Note that some properties of the TApdComPort may be overridden with properties 
retrieved from modemcap when the TAdModem initializes the modem.

See also: TApdCustomComPort

ConfigAndOpen method

procedure ConfigAndOpen;

Configures the modem and provides access to the modem without a connection.

The ConfigAndOpen method configures the modem according to the configuration 
settings retrieved from modemcap. Once the modem has been configured, the 
OnModemConnect event is generated.

ConfigAndOpen is used primarily to configure the modem to a known state where it can be 
used without a connection. For example, you can use ConfigAndOpen to provide terminal 
access to a modem for diagnostics or for faxing.

While the modem is being configured, several TApdDataPackets will be initialized to 
capture the responses from the modem. Once the modem has been configured, the 
TApdDataPackets will be removed, providing no further notification of the state of the 
modem.

Note that ConfigAndOpen establishes a connection to the port, not through the modem to 
another device.

See also: AutoAnswer, CancelCall, Dial, OnModemConnect
TAdModem Component     466

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Dial method

procedure Dial(ANumber : string);

Dials the specified telephone number.

Dial initializes the modem and then dials the number specified by the ANumber parameter. 
When the connection is established, the OnModemConnected event is generated.

Several TApdDataPackets are initialized to detect modem responses during initialization 
and to monitor connection progress.

Dial returns immediately. The OnModemConnect event is generated when the appropriate 
connection responses have been received from the modem. The OnModemFail event is 
generated if the modem could not be initialized, could not detect dial tone (if that was 
required by the configuration), if the modems could not negotiate a mutually acceptable set 
of connection parameters, or if the remote party did not answer the call within DialTimeout 
seconds. The FailureCode property can be queried to determine the actual reason for the 
failure.

A dial operation can be cancelled at any time by calling CancelCall.

The ANumber parameter to this event should contain all parameters required for your 
modem to dial the number. This includes any prefixes required by your phone system to 
obtain an outside line. For example, if your phone system requires you to dial ‘9’ to get an 
outside line, the call to Dial would include that digit:

ApxModem1.Dial('9 555-1212');

See also: AutoAnswer, CancelCall, ConfigAndOpen, DialTimeout, OnModemConnect, 
OnModemFail, StatusDisplay

DialTimeout property

property DialTimeout : Integer

Default: 60

The number of seconds to wait for a connection after dialing the number. 

When a dial attempt begins, the TAdModem component allows DialTimeout seconds for a 
connection result to be received from the modem. The timeout countdown starts when the 
Dial method is called. If the connection responses are not received within this time, a 
timeout occurs, the operation is cancelled and the OnModemFail event is generated.

See also: Dial, FailureCode, OnModemFail
TAdModem Component     467

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

FailureCode read-only, run-time property

property FailureCode : Integer

The numerical code indicating the last failure.

FailureCode is the result of the last AutoAnswer, ConfigAndOpen, or Dial method that was 
called. FailureCode indicates the nature of the failure.

This property is used primarily in the OnModemFail event handler to determine the reason 
for the failure.

See also: AutoAnswer, ConfigAndOpen, Dial, FailureCodeMsg, OnModemFail

FailureCodeMsg method

function FailureCodeMsg(const FailureCode : Integer) : string;

Converts a numerical FailureCode into a string describing the error.

The FailureCodeMsg method converts a FailureCode into a human-readable string 
describing the error.

See also: FailureCode, OnModemFail

GetDevConfig method

function GetDevConfig : TLmModem;

Returns the modem configuration structure.

The modemcap database file contains a list of modems and their configuration. The 
GetDevConfig method returns the currently active configuration structure for the selected 
modem. 

This method can be used to confirm the modem configuration prior to use, or to make 
changes to the current configuration.

See also: SetDevConfig
TAdModem Component     468

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ModemCapFolder property

property ModemCapFolder : string

Default: Empty string

The name of the directory where the modemcap modem database has been installed.

The modemcap database file contains a list of modems and their configuration strings. This 
folder is used when SelectDevice is called to display a list of modems from which the user 
can choose. ModemCapFolder is also used at design time to display the list of modems 
when the SelectedDevice property is modified.

See also: SelectDevice, SelectedDevice

ModemLogToString method

function ModemLogToString(
const LogCode : TAdModemLogCode) : string;

Returns an English string describing an error code. 

The ModemLogToString method references the string resource for the log code and returns 
a text description of the code. This method is used primarily in the OnModemLog event to 
display a text description of the log event.

See also: OnModemLog

ModemState read-only, run-time property

property ModemState : TAdModemState

TApdModemState = (msUnknown, msIdle, msInitializing,
msAutoAnswerBackground, msAutoAnswerWait, msAnswerWait,
msDialWait, msDialCycle, msConnectWait, msConnected,
msHangup, msCancel);

 The current state of the TAdModem component.

Default: msUnknown

ModemState is used internally to track modem responses and controlling the state of the 
TAdModem component for configuration, dialing, and answering. This property is made 
public for possible use of status routines.
TAdModem Component     469

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

 ModemState values are:

See also: ModemStateMsg, OnModemStatus

NegotiationResponses read-only, run-time property

property NegotiationResponses : TStringList

Contains the modem’s reported negotiated connection parameters.

During a connection attempt, either answering or dialing, the modem may return several 
lines of text describing the negotiated connection parameters. These responses may indicate 
the error correction, data compression, or other features that the modem negotiated. These 
features are informative in nature and are provided in the NegotiationResponses property.

During an AutoAnswer operation, NegotiationResponses will contain all modem responses 
from the TAdModem sending the answer command to the final connection response. 
During a Dial operation, NegotiationResponses will contain all modem responses from the 
TAdModem sending the dial command to the final connection response.

See also: AutoAnswer, Dial

Value Description

msUnknown Hasn’t been or couldn’t be initialized.

msIdle Idle and ready.

msInitializing Starting initialize process.

msAutoAnswerBackground Autoanswer mode -- no rings received.

msAutoAnswerWait Autoanswer mode -- waiting for Nth ring.

msAnswerWait Answering call -- waiting for connect.

msDialWait Dialing call -- waiting for connect.

msConnectWait Connect in progress -- waiting for optional
data.

msConnected Done with connect process.

msHangup Starting hangup process.

msCancel Starting cancel process.
TAdModem Component     470

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

OnModemCallerID method

property OnModemCallerID : TModemCallerIDEvent

TModemCallerIDEvent = procedure(
Modem : TAdCustomModem; ID, IDName : string) of object;

Defines an event handler that is generated when Caller ID information is detected.

If the modemcap structure supports Caller ID configurations, the modem will be 
appropriately initialized to respond to the Caller ID signals provided for incoming calls. 
Internal TApdDataPackets will be initialized to detect the Caller ID responses from the 
modem. When Caller ID responses are detected, the OnModemCallerID event will be 
generated.

Modem is the TAdCustomModem component that generated the event. ID is the 
identification reported by the Caller ID signal for the number field (usually the caller’s 
phone number). IDName is the identification reported by the Caller ID signal for the name 
field (usually the caller’s subscribed name).

In most countries, the telephone company supplies the Caller ID information between the 
first and second rings. A typical format is shown in the following:

DATE: MM/DD/YY<CR><LF>

TIME: HH:MM:SS<CR><LF> {24-hour format}

NUMBER: {variable content}<CR><LF>

NAME: {variable content}<CR><LF>

Some telephone companies provide information in a different order, different format, or 
even different information entirely. The TAdModem will detect the NUMBER and NAME 
responses. Additional responses can be gathered using your own TApdDataPackets.
TAdModem Component     471

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnModemConnect method

property OnModemConnect : TModemNotifyEvent

TModemNotifyEvent = procedure(
Modem : TAdCustomModem) of object;

Defines an event handler that is generated when a connection is established.

The OnModemConnect event is generated when dialing or answering after the modem 
returns the connection response. This event is also generated after a call to ConfigAndOpen 
once the modem has been configured.

Modem is the TAdCustomModem component that generated the event. No other 
parameters are provided.

The TAdModem will watch for the connection responses as defined by the modemcap entry 
for the selected modem and by monitoring the DCD signal.

See also: AutoAnswer, ConfigAndOpen, Dial, OnModemDisconnect

OnModemDisconnect method

property OnModemDisconnect : TModemNotifyEvent

TModemNotifyEvent = procedure(
Modem : TAdCustomModem) of object;

Defines an event handler that is generated when a connection is terminated.

The OnModemDisconnect event is generated when the TAdModem detects the connection 
has been terminated. When the TAdModem detects that the connection has been 
established, a status trigger monitoring for changes in DCD is installed. When DCD is 
lowered, the connection is considered terminated, and the OnModemDisconnect event is 
generated. This event is also generated when the CancelCall method successfully terminates 
the connection.

Modem is the TAdCustomModem that generated the event. No other parameters are 
provided.

Note that some devices and protocols routinely toggle DCD. For these situations, consult the 
device and protocol documentation for details on detecting connection termination.

See also: AutoAnswer, ConfigAndOpen, Dial, OnModemConnect
TAdModem Component     472

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnModemFail method

property OnModemFail : TModemNotifyEvent

TModemNotifyEvent = procedure (
Modem : TAdCustomModem) of object;

Defines an event handler that is generated when a modem or connection failure is detected.

The OnModemFail event is generated if the modem could not be initialized, or if a 
connection could not be established. When dialing, this event is generated if the modem 
could not detect dial tone (if the configuration required dial tone), if the modems could not 
negotiate a mutually acceptable set of connection parameters, or if the remote party did not 
answer the call within DialTimeout seconds. When answering, this event is generated if the 
modems could not negotiate a mutually acceptable set of connection parameters, of if the 
connection attempt timed out.

Modem is the TAdCustomModem that generated the event. No other parameters are 
provided. The reason for the failure can be obtained from the FailureCode property.

See also: AutoAnswer, ConfigAndOpen, Dial, FailureCode, FailureCodeMsg

OnModemLog method

property OnModemLog : TModemLogEvent

TModemLogEvent = procedure(
Modem : TAdCustomModem; LogCode : TApdModemLogCode) of object; 

Defines an event handler that is generated at designated points during a dial or answer 
attempt.

The primary purpose of this event is to give the application a chance to log auditing 
information about telephone calls and whether they succeed or fail. This event is intended 
primarily for high-level logging, not to determine program flow.

Modem is the TAdCustomModem that generated the event. LogCode is the 
TAdModemLogCode that described the event being logged.
TAdModem Component     473

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

TAdModemLogCode can have one of the following values:

See also: ModemLogToString

OnModemStatus method

property OnModemStatus : TModemStatusEvent

TModemStatusEvent = procedure(
Modem : TAdCustomModem; ModemState : TAdModemState) of object; 

Defines an event handler that is generated when the state of the component changes.

The OnModemStatus event is generated periodically when the ModemState property is 
changed. This event indicates when the state of the modem or connection is changed.

Modem is the TAdCustomModem that generated the event. ModemState is the new state of 
the component. See the ModemState definition for a list of possible ModemState values and 
their meanings.

See also: ModemState, ModemStatusMsg

RingCount run-time, read-only property

property RingCount : Byte

Default: 0

The number of ring signals detected for the current call.

When the TAdModem is in AutoAnswer mode, the RingCount property indicates the 
number of ring signals that have been detected. When a ring signal has not been detected, 
RingCount will be 0. When RingCount equals AnswerOnRing, the call will be answered.

See also: AutoAnswer, RingWaitTimeout

Value Description

mlNone None

mlDial Dialing

mlAutoAnswer Initiated AutoAnswer

mlAnswer Answering an incoming call

mlConnect Connected

mlCancel Call cancelled

mlBusy Called number was busy

mlConnectFail Connection attempt failed
TAdModem Component     474

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

RingWaitTimeout property

property RingWaitTimeout : DWORD

Default: 1200

Determines the number of milliseconds to wait before resetting an AutoAnswer attempt.

Most phone companies generate the ring indicator signal every six seconds. When the 
TAdModem is in AutoAnswer mode, consecutive ring signals within RingWaitTimeout 
milliseconds are considered to be from the same call, and will increment the internal ring 
counter. If RingWaitTimeout milliseconds elapse after the ring signal, the caller is assumed 
to have aborted the call, and the internal ring counter is reset.

See also: AutoAnswer, RingCount

SelectDevice method

function SelectDevice : Boolean;

Displays the modem selection dialog.

SelectDevice displays the modem selection dialog, which lists the modems defined in the 
modemcap database. This method will return True if a device is selected, and False if the 
modem selection dialog box is cancelled. 

To select a modem from modemcap, the manufacturer and modem name must be selected. 
The “Manufacturer” combo box will contain a list of all manufacturers that are included in 
modemcap. When a manufacturer is selected, the “Modem name” combo box will contain a 
list of all modems from that manufacturer in modemcap. The OK button will be disabled 
until this requirement is satisfied. When the “OK” button is clicked, this method returns 
True and the SelectedDevice property will be updated to reflect the selected device. If the 
Cancel button is clicked, this method returns False and SelectedDevice is not updated.

If the AutoAnswer, ConfigAndOpen, or Dial methods are called without a valid modem 
specified in SelectedDevice, the modem selection dialog will be displayed. If a modem is not 
selected, the ecNoSelectedDevice exception will be raised.

Selecting a new modem configuration through the SelectedDevice property of the 
SelectDevice method while a connection is established will raise the ecModemBusy 
exception.

See also: GetDevConfig, SelectedDevice, SetDevConfig
TAdModem Component     475

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

SelectedDevice property

property SelectedDevice : TAdModemNameProp

TAdModemNameProp = class(TPersistent)
published

property Manufacturer : string;
property Name : string;

end;

The currently selected modem.

SelectedDevice displays the modem manufacturer, model, and name of the modem that has 
been selected through the SelectDevice method. The properties of the 
TAdModemNameProp are read-only at design time and are available to determine which 
modemcap structure will be used.

To change modems configurations at run time, you may either call the SelectDevice method 
to display the device selection dialog or assign a TAdModemNameProp class to this 
property.

Selecting a new modem configuration through the SelectedDevice property or SelectDevice 
method while a connection is established will raise the ecModemBusy exception.

See also: GetDevConfig, SelectDevice, SetDevConfig

SendCommand method

function SendCommand(const Command : string) : Boolean;

Provides a convenient method to send a custom command to the modem.

The SendCommand method can be used to send a modem command to the modem. 
SendCommand returns when the modem either responds to the command, or times out. If 
the modem returns a successful response, the return value will be True. If the modem 
returns a failure response, the return value will be False and the FailureCode property will 
indicate the type of failure based on the response.

See also: FailureCode, FailureCodeMsg
TAdModem Component     476

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

SetDevConfig method

procedure SetDevConfig(const Config : TLmModem);

Forces a modem configuration structure.

The modemcap database file contains a list of modems and their configuration. The 
SetDevConfig method forces a new configuration structure, which will be used in 
subsequent calls to the AutoAnswer, ConfigAndOpen, and Dial methods.

This method is intended to be used after the GetDevConfig method provides the default 
configuration structure for the modem. Additional configuration settings, or port options, 
can be defined for the session. Changes made through SetDevConfig will remain in effect 
until the SelectedDevice is changed or the application is terminated. This method will not 
change the modem definition in the modemcap database.

See also: GetDevConfig

StatusDisplay property

property StatusDisplay : TApdAbstractModemStatus

The status dialog used to provide visual status indications.

During AutoAnswer or Dial operations, the status dialog specified by the StatusDisplay 
property can provide visual feedback to indicate what the modem is doing.

The provided TAdModemStatus component encompasses several status indicators to 
illustrate the state of the connection. A custom status display can be used instead of the 
TAdModemStatus component. See the description of the TAdModemStatus component for 
details.

See also: OnModemStatus 
TAdModem Component     477

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TAdModemStatus Component
The TAdModemStatus component is a descendant of the TApdAbstractModemStatus class 
that implements a standard modem status dialog. To use it, create an instance of the 
component and assign it to the StatusDisplay property of a TAdModem component. The 
TAdModemStatus component displays common status indicators as well as a detailed 
history of what the TAdModem is doing. The TAdModemStatus component provides a 
Cancel button, which will cancel an AutoAnswer or Dial attempt in progress.

Figure 13.2 shows the dialog box that the TAdModemStatus component displays.

The Status label displays a string describing the current TAdModem.ModemState property 
value, and indicates what the TAdModem is doing. The Using label displays the 
TAdModem.SelectedDevice.Name property value and the serial port that is being used. The 
Elapsed time label displays the number of seconds that have elapsed since the current 
operation began.

The Cancel button will cancel the operation by calling the CancelCall method of the 
TAdModem component.

 Figure 13.2: TAdModemStatus dialog box.
TAdModemStatus Component     478

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The down arrow button will display a more detailed status dialog, as shown in Figure 13.3.

To return to the compact display, click the up arrow button.

To create a custom status dialog box, the OnModemStatus event of the TAdModem 
component can be used to update a separate form in your application, or to update a status 
bar. You can also create a new component descending from the TApdAbstractModemStatus 
class. The UpdateStatus method of the TApdAbstractModemStatus class is automatically 
called by the TAdModem component whenever the OnModemStatus event of the 
TAdModem component is generated. This method must be implemented to update your 
custom dialog. See the AxMdmDlg.pas unit for details on creating a custom dialog box.

Hierarchy
TComponent (VCL)

! TApdBaseComponent(OOMisc)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdAbstractModemStatus(AdMdmDlg)

TAdModemStatus(AdMdmDlg)

Properties
Caption

Started

StatusDialog

! Version

Methods
UpdateDisplay

 Figure 13.3: TAdModemStatus expanded dialog box.
TAdModemStatus Component     479

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

Caption property

property Caption : string

Default: “Modem status”

Determines the caption for the status dialog box.

The Caption property sets the StatusDialog.Caption property. If your window manager 
supports title bars on dialogs, changing this property will change the caption displayed in 
the title bar. If your window manager does not support title bars on dialog boxes, this 
property has no visible effect.

See also: StatusDialog

Started run-time, read-only property

property Started : Booleanproperty Started : Boolean

Default: False

Indicates whether the status dialog box has been created and initialized.

The TForm descendant specified by the StatusDialog component is created and initialized 
when the UpdateDisplay method is called for the first time. Started indicates whether 
StatusDialog has been created. When the StatusDialog is no longer needed, the form is 
destroyed and Started is set to False.

Started is used by the TAdModemStatus dialog, it is available, but not required, for custom 
status dialogs.

See also: StatusDialog, UpdateDisplay
TAdModemStatus Component     480

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

StatusDialog property

property StatusDialog : TForm

Determines the status form to display.

The TAdModemStatus component defines the TAdModemStatusDialog for displaying 
modem status. The dialog box that the TAdModemStatus component provides is illustrated 
and described in the overview section on page 461.

The UpdateDisplay method updates StatusDialog to provide status indications. The dialog 
properties can be changed at run time by referencing the StatusDialog property. For 
example, changing the TAdModemStatus.StatusDialog.BorderStyle property will change 
the dialog’s BorderStyle.

To provide a different dialog, create a new component, descend from the 
TApdAbstractModemStatus class, and define a new TForm descendant for your display.

See also: UpdateDisplay

UpdateDisplay method

procedure UpdateDisplay(
Modem : TAdCustomModem; const Str0, Str1, Str2, Str3 : string);

Updates the StatusDialog.

The UpdateDisplay method updates the dialog specified by StatusDialog. When creating a 
custom display, this method must be overridden to update the controls available on the 
custom form.

Modem is the TAdCustomModem whose status has changed. Str0, Str1, Str2 and Str3 are 
strings that can be used to provide additional status indicators for the display.

See also: StatusDialog
TAdModemStatus Component     481

1

1



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TAdModemStatus Component     482

1

1



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 14: File Transfer Protocols

Many communications applications need to transfer files or other large amounts of data 
from one machine to another. This could be accomplished by having the sender call 
PutBlock repeatedly and the receiver call GetBlock correspondingly. However, the 
application would have a tremendous amount of detail work still to do. It would need logic 
to transfer file name and size information, to check for and recover from transmission 
errors, to handle file I/O, etc., etc.

That’s why Async Professional provides standard, tested, reliable, high performance file 
transfer protocols. The term “protocol” means that both sides of the communication link 
behave in a clear, well-defined manner following agreed-upon rules. The rules vary among 
the different protocols and some protocols offer more control and features than others. At a 
minimum, each protocol handles file I/O and serial port I/O and checks for errors. Some 
protocols also include error correcting logic, multi-file transfers, and automatic recovery 
after partial file transfers.

Async Professional offers the most widely used industry standard file transfer protocols, as 
shown in Table 14.1.

Table 14.1: Available Async Professional file transfer protocols

Protocol Component Description

Xmodem TApdProtocol 128 byte blocks with checksum block checking.
See “Xmodem” on page 501 for more information.

XmodemCRC TApdProtocol 128 byte blocks with CRC block checking. See
“Xmodem” on page 501 for more information.

Xmodem1K TApdProtocol 1024 byte blocks with CRC block checking. See
“Xmodem” on page 501 for more information.

Xmodem1KG TApdProtocol Streaming Xmodem1K. See “Xmodem” on page 501
for more information.

Ymodem TApdProtocol 1024 byte blocks, batch. See “Ymodem” on
page 504 for more information.

YmodemG TApdProtocol Streaming Ymodem. See “Ymodem” on page 504 for
more information.

Zmodem TApdProtocol 1024 byte blocks, batch, streaming,
restartable. See “Zmodem” on page 507 for more
information.
     483

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Three related classes are also described in this chapter. TApdAbstractStatus defines a 
mechanism by which the protocol can report its status (percent completion, transfer rate, 
etc.) to the user. TApdProtocolStatus derives from TApdAbstractStatus to present protocol 
status in a particular style. TApdProtocolLog is a small component that writes to a log file 
the status of each file transferred by an associated TApdProtocol component.

Kermit TApdProtocol 80 byte blocks, batch, with long blocks and
windowing. See “Kermit” on page 513 for more
information.

ASCII TApdProtocol ASCII stream with inter-character and inter-
line delays. See “ASCII” on page 519 for more
information.

FTP TApdFTPClient An internet file transfer protocol. See “FTP”
on page 521 for more information.

Table 14.1: Available Async Professional file transfer protocols (continued)

Protocol Component Description
84     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
General Issues
The Async Professional protocol engine is implemented in a group of units with names like 
AwAbsPcl (abstract protocol services), AwXmodem (Xmodem protocol), AwKermit 
(Kermit protocol), etc. These units are linked directly into your application. The 
TApdProtocol component, implemented in the AdProtcl unit, is a shell around the protocol 
engine.

The protocol engine works in the background by using Async Professional timer, data 
available, and data match triggers. Windows can continue with other tasks while a file 
transfer is in progress as long as the other tasks yield properly for other events.

The following subsections document issues that arise for all types of file transfers that use 
the Async Professional protocol engine. Note that the following general issues do not relate 
to the TApdFTPClient component.

Buffer sizes
When a TApdComPort component is created, you specify the input and output buffer sizes 
that the Windows communications driver is to use. An interactive communications process 
such as a terminal window can safely use small buffer sizes, say 4K bytes for input and 
output. A protocol file transfer requires larger buffers. Why? Consider how a file transfer 
program is likely to be used under Windows.

Once a file transfer starts, it is likely that the user will work in another window until the file 
transfer finishes. Because the transfer is running as a background application, it is at the 
mercy of other Windows tasks. Many Windows applications and built-in Windows 
operations can hog the CPU to an extent that prevents the background transfer from 
succeeding.

To different degrees, all file transfer protocols are time-critical. They must respond to 
incoming events in a timely fashion, usually within a few seconds. If they fail to respond in 
the required time, the remote protocol software times out and repeats the failed operation. 
Such timeouts and repetitions at best reduce the protocol transfer rate and at worst can 
cause the protocol to fail.

In practice, it takes a very ill-behaved program or unusual user (e.g., someone who spends 
30 seconds to move a window) to cause most protocols to fail. But this can happen and your 
application should do whatever it can to minimize the chances.

One of the things your program can do is use a large input buffer. The Windows 
communications driver continues to receive data and store it in the input buffer even if the 
associated application program isn’t getting any time to run. With a 30K byte input buffer 
and a data rate of 1600 characters per second, the buffer can hold 19 seconds worth of 
General Issues     485

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
incoming data before overflowing. When the application eventually regains control it 
processes all received data before relinquishing control. The input buffer is then ready to 
hold another 19 seconds worth of data.

A large output buffer is also valuable when transmitting files. Streaming protocols such as 
YmodemG and Zmodem, and even Kermit to a lesser degree, typically transmit until they 
fill the output buffer, then relinquish control. They don’t regain control until the buffer 
drains enough to hold another data block and Windows can process the associated status 
trigger message.

If the status trigger message is delayed because another Windows application didn’t yield, 
the Windows communications driver continues to transmit the data remaining in the output 
buffer. Using the same numbers as the input buffer example, the driver can transmit 
independently for up to 19 seconds before running out of data.

When transmitting files under protocol control, the output buffer size must be at least 2078 
bytes (i.e., 2K plus 30 bytes). This size is required because the protocols send protocol data 
to the port by copying the entire block into the output buffer. If the block size is 1024 bytes 
and every character is escaped (preceded by a special character that prevents the link from 
misinterpreting the data as a control sequence), the output buffer must hold 2048 bytes. The 
extra 30 bytes is a safety margin provided so that the protocol doesn’t need to check for 
output buffer space for block check characters and a subsequent header, if there is one. The 
protocols use the direct copy approach because it’s much faster than calling PutChar for 
each character in the block.

In summary, your application should use input and output buffers that are as small as 
possible. However, the smallest possible buffer might actually be quite large, even as large as 
32K, for applications that are designed to run in the background.

Protocol events
The protocol component generates several kinds of events. General descriptions of these 
events follow:

OnProtocolAccept
procedure(CP : TObject; var Accept : Boolean;

var FName : string) of object;

Generated as soon as the protocol window knows the name of an incoming file. This 
provides an opportunity to accept or reject the file, or to change its name. See the 
OnProtocolAccept event on page 544 for details about how to handle this event. Also see 
“AcceptFile processing” on page 495.
86     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
OnProtocolError
procedure(CP : TObject; ErrorCode : SmallInt) of object;

Generated when an unrecoverable error occurs. Recoverable errors do not generate this 
message because such errors are a routine part of transferring files and the failed operation 
is retried automatically. See OnProtocolError (page 545) for details. Also see ““Error 
handling” on page 488.

OnProtocolFinish
procedure(CP : TObject; ErrorCode : SmallInt) of object;

Generated after all files have been transferred or after the protocol terminates due to an 
unrecoverable error. This event also sends the final result code of the protocol.

OnProtocolLog
procedure(CP : TObject; Log : Word) of object;

Generated at the start and end of transferring each file. This provides an opportunity to log 
the status of each file transfer. See OnProtocolLog (page 546) for details. Also see “Protocol 
logging” on page 493.

OnProtocolNextFile
procedure(CP :TObject; var FName : string) of object;

Generated whenever it is time to transmit another file. By default this message is handled by 
the protocol component, which returns the name of the next file that matches the FileMask 
property. Programs can intercept this event to provide other ways to choose the next file. See 
OnProtocolNextFile (page 547) for details. Also see “NextFile processing” on page 494.

OnProtocolStatus
procedure(CP : TObject; Options : Word) of object;

Generated at regular intervals so that programs can display the progress of the protocol. See 
OnProtocolStatus (page 548) for details. Also see ““Protocol status” on page 489.

Aborting a protocol
There will certainly be times when a protocol in progress must be canceled (e.g., when 
something goes wrong at the remote computer or the user simply decides not to continue 
the transfer). Async Professional protocols provide for this situation with the 
CancelProtocol method.

To cancel any protocol simply call the CancelProtocol method of the TApdProtocol 
component. This method sends an appropriate cancel sequence to the remote computer and 
terminates. The protocol component remains intact, ready to handle additional protocol 
transfers.
General Issues     487

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
When protocol transfers take place over a modem link it is a good idea to monitor the DCD 
(data carrier detect) line and abort the protocol if carrier is lost. The DCD line goes high 
when modems first connect and remains high until one of the modems hangs up. 
Occasionally, line noise or other disturbances in the telephone network break the 
connection between the modems, causing DCD to go low.

Some protocols quickly detect that the remote isn’t acknowledging after the connection is 
broken. These protocols soon abort with an error code of ecTimeout or ecTooManyErrors. 
By contrast, streaming protocols can take a very long time to notice that the connection is 
broken because they don’t require acknowledgments.

The protocol component provides an option to handle dropped carrier automatically. Set 
the AbortNoCarrier property to True before calling StartTransmit or StartReceive and the 
protocol engine automatically aborts if the DCD line is not high at any point during the 
protocol. The protocol cancels itself immediately and generates an OnProtocolFinish event 
with an error code of ecAbortNoCarrier.

Using the AbortNoCarrier property is better than checking DCD and calling 
CancelProtocol in your own code. When you do this, the protocol engine sends a cancel 
sequence to the remote computer. If hardware flow control is enabled and the modem has 
lowered the DSR or CTS signals as well as DCD, the protocol waits several seconds before 
deciding it can’t send the cancel command, leading to an unnecessary delay for the 
application. The AbortNoCarrier option prevents the protocol engine from sending the 
cancel sequence, so the protocol stops immediately.

Error handling
All protocol transfers are subject to errors, including parity errors, files not found, and other 
file I/O errors. Whenever possible the protocol window handles errors internally by retrying 
an operation or requesting the remote computer to retry. At some point, however, it 
determines that the situation is unrecoverable and generates an OnProtocolError event. An 
application should include a handler for this event. Following is a simple example:

procedure Form1.ApdProtocol1ProtocolError(
CP : TObject; ErrorCode : SmallInt);

begin
ShowMessage('Fatal protocol error: ' + ErrorMsg(ErrorCode));

end;

This event handler’s sole task is to display a message about the error. ErrorMsg is a function 
from the AdExcept unit that returns an English string for any Async Professional error code.

See “Error Handling and Exception Classes” on page 900 for additional information about 
errors.
88     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Protocol status
A protocol transfer can last a few seconds or several hours depending on the size and speed 
of the transfer. Because the protocol component handles the details of the transfer from start 
to finish, your application’s code is not executing during this entire time. You and your users 
certainly want to know what’s happening as the transfer progresses, so Async Professional 
provides a hook for your application to regularly regain control during this time.

During a protocol transfer the protocol window frequently generates an OnProtocolStatus 
event. This gives your code the opportunity to monitor and display the progress of the 
protocol. Following are code fragments that illustrate how:

TForm1 = class(TForm)
...
FN: TLabel;
BT: TLabel;
BR: TLabel;
...

end;

procedure TForm1.ApdProtocol1ProtocolStatus(
CP : TObject; Options : Word);

begin
case Options of

apFirstCall :
...do setup stuff

apLastCall :
...do cleanup stuff

else
{show status}
FN.Caption := ApdProtocol.FileName;
BT.Caption := IntToStr(ApdProtocol.BytesTransferred);
BR.Caption := IntToStr(ApdProtocol.BytesRemaining);

end;
end;

The method named ApdProtocol1ProtocolStatus handles the OnProtocolStatus event by 
updating a form at each call. The Options parameter passed to this routine can take on two 
special values:

apFirstCall = 1;
apLastCall = 2;

Options is set to apFirstCall the first time the protocol generates the event after being started 
by StartTransmit or StartReceive. Options is set to apLastCall the last time it generates the 
event, when the protocol is finished. Options equals zero for all other times.
General Issues     489

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The rest of the information about protocol progress is obtained by reading the values of 
various TApdProtocol properties, including:

BlockCheckMethod - the type of block check calculation used by the protocol. See the 
reference section entry for this property (page 530) for a complete description of all block 
check types.

BlockErrors - the number of errors for the current block. This is the number of times the 
protocol has unsuccessfully tried to transmit or receive the current block. It is reset to zero 
when the block is finally accepted.

BlockLength - the current transfer block length. Although this value is usually static, some 
protocols modify the length of the block on the fly. Zmodem in particular reduces the block 
length after several block errors in a row and raises it again after several good blocks.

BlockNumber - the number of blocks transmitted so far. This is obtained by dividing the 
number of bytes transferred by the current block length, so it will change if the block length 
changes.

BytesRemaining - the size of the file minus BytesTransferred. When the file size isn’t known, 
BytesRemaining returns zero.

BytesTransferred - the number of bytes transmitted or received so far. When transmitting, 
this number is sometimes only an estimate. The uncertainty comes from the fact that the 
protocol window doesn’t know when a particular byte has actually been transferred. 
BytesTransferred is the number of bytes the protocol window has transferred to the output 
buffer of the communications driver, minus the number of bytes that the driver reports are 
currently in the buffer. Unfortunately, this calculation is still imperfect because it’s 
impossible to know how much of the output buffer holds actual file data and how much 
holds overhead characters needed by the protocol. Each protocol has a few simple rules it 
uses to estimate this proportion, which in practice yield good estimates.

ElapsedTicks - the number of ticks elapsed since the protocol started. In order to provide 
accurate CPS values, the protocol engine doesn’t start the timer until it receives the first 
block from the remote computer.

FileDate - the date and time of the file being transmitted or received. If the protocol does not 
support this feature, FileDate returns zero.

FileLength - the size of the file being transmitted or received. For transmitted files the file 
size is always known. For received files the file size is known only if the protocol supports 
this feature and the receiver has received this information. If the file size is not known, 
FileLength returns zero.

FileName - the fully qualified name of the file that is being received or transmitted. When 
receiving with a protocol that does not transfer the file name, FileName simply returns the 
name previously assigned to it.
90     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
InitialPosition - used only for resumed file transfers using the Zmodem protocol. To display 
an accurate transfer rate (CPS, or character per second, rate), status routines for these 
protocols must subtract InitialPosition from BytesTransferred to obtain the actual number 
of bytes transferred during this session. If this is not a resumed file transfer, InitialPosition 
returns zero.

ProtocolError - the code of the last error encountered by the protocol. This equals zero 
except for the first status call after an error is encountered. See “Error Handling and 
Exception Classes” on page 900 for additional information.

ProtocolStatus - a code that indicates the current state of the protocol. Table 14.2 shows all of 
the possible values. The usual status value is psOK, which means that the protocol is 
operating normally. Other status values indicate recoverable error conditions, protocol 
resume conditions, protocol start-up states, and internal protocol states. Fatal protocol 
errors are not represented by protocol states; they are first reported via the OnProtocolError 
event. However, it is possible that a final status message might be sent after a fatal error 
occurs.

Table 14.2: Possible values for the ProtocolStatus property of TApdProtocol 

Status Code Value Explanation

psOK 0 Protocol is OK.

psProtocolHandshake 1 Protocol handshaking in progress.

psInvalidDate 2 Bad date/time stamp received and ignored.

psFileRejected 3 Incoming file was rejected.

psFileRenamed 4 Incoming file was renamed.

psSkipFile 5 Incoming file was skipped.

psFileDoesntExist 6 Incoming file doesn’t exist locally and is
skipped.

psCantWriteFile 7 Incoming file skipped due to Zmodem
options.

psTimeout 8 Timed out waiting for something.

psBlockCheckError 9 Bad checksum or CRC.

psLongPacket 10 Block too long.

psDuplicateBlock 11 Duplicate block received and ignored.

psProtocolError 12 Error in protocol.

psCancelRequested 13 Cancel requested.

psEndFile 14 At end of file.
General Issues     491

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
ProtocolType - the protocol type, which is one of ptXmodem, ptXmodemCRC, 
ptXmodem1K, ptXmodem1KG, ptYmodem, ptYmodemG, ptZmodem, ptKermit, or 
ptAscii.

TotalErrors - the number of errors encountered since the current file was started. It is reset 
only when a new file is started.

Various properties that describe the option settings for the protocol may also be used within 
the status routine. These include HonorDirectory, IncludeDirectory, RTSLowForWrite, 
AbortNoCarrier, and other options that are specific to particular protocols.

The StatusInterval property, which defaults to 18, is the maximum number of ticks between 
OnProtocolStatus events. The protocol generates an OnProtocolStatus event after every 
significant event (received a file name, received a complete block, etc.) or after at most 
StatusInterval ticks.

Async Professional includes a mechanism for providing an automatic protocol status display 
without programming, through the TApdProtocol’s StatusDisplay property:

property StatusDisplay : TApdAbstractStatus

The TApdAbstractStatus class is described in more detail beginning on page 
TApdAbstractStatus Class. For each OnProtocolStatus event the protocol checks whether 
StatusDisplay is assigned. If it is, the protocol calls the UpdateDisplay method of 
StatusDisplay to update the display. It then calls the OnProtocolStatus event if one was 
implemented.

When a protocol component is created, either dynamically or when dropped on a form, it 
searches the form for a TApdAbstractStatus instance and updates the StatusDisplay 
property with the first one it finds. It also fills in StatusDisplay when a TApdAbstractStatus 
component is added to the form. StatusDisplay can also be modified at design time or run 
time to point to a TApdAbstractDisplay component other than the one assigned 
automatically.

psSequenceError 15 Block was out of sequence.

psAbortNoCarrier 16 Aborting on carrier loss.

psGotCrcE 17 Got Zmodem CrcE packet.

psGotCrcG 18 Got Zmodem CrcG packet.

psGotCrcW 19 Got Zmodem CrcW packet.

psGotCrcQ 20 Got Zmodem CrcQ packet.

Table 14.2: Possible values for the ProtocolStatus property of TApdProtocol  (continued)

Status Code Value Explanation
92     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Async Professional also provides a non-abstract implementation of a TApdAbstractStatus 
class called the TApdProtocolStatus component. If you drop one of these on your form it 
will automatically display full status information during all file transfers. See page 582 for 
more information.

Protocol logging
File transfer is often an automated process. For example, an application might send all of the 
day’s transaction files to a remote computer during the night. In this case the application 
would also keep a record of the files that were successfully transmitted and those that 
weren’t.

The Async Professional protocol logging feature is ideal for this kind of application. It 
provides the opportunity to log information about each received or transmitted file and 
whether the transfer succeeded.

To support logging, the protocol component generates on OnProtocolLog event at the start 
and end of each file transfer. The event passes a parameter that identifies the current logging 
action. Here is an example that handles this event:

procedure TForm1.ApdProtocol1ProtocolLog(
CP : TObject; Log : Word);

begin
case Log of

lfReceiveStart,
lfTransmitStart :
CurrentFile.Caption := ApdProtocol1.FileName;

lfReceiveOk,
lfTransmitOk :
GoodList.Items.Add(ApdProtocol1.FileName);

lfReceiveFail,
lfTransmitFail :
BadList.Items.Add(ApdProtocol1.FileName);

lfReceiveSkip
lfTransmitSkip :
SkipList.Items.Add(ApdProtocol1.FileName);

end;
end;

The example shows every possible logging value. The meaning of the various logging 
conditions should be clear except for perhaps lfReceiveSkip and lfTransmitSkip. 
lfReceiveSkip is generated by any of the protocols when an incoming file is rejected by the 
General Issues     493

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
handler for the OnProtocolAccept event. lfTransmitSkip is generated only in a Zmodem 
transfer when the remote receiver indicates that it does not want to receive the file being 
transmitted by the logging application.

This example uses a TLabel control named CurrentFile to display the name of the file 
currently being transmitted. As files are transmitted or received it updates three TListBox 
components: GoodList for all successful transfers, BadList for all failed transfers, and 
SkipList for all skipped files.

The logging routine isn’t limited to just writing status information. It also can take care of 
file-related start-up and cleanup activities. One example of this is to delete partially received 
files. You would probably want to do this for all protocols except Zmodem, which can 
resume failed transfers from the point of the error without having to retransmit the entire 
file.

Async Professional includes a mechanism for providing automatic protocol logging without 
programming, through the ProtocolLog property of TApdProtocol:

property ProtocolLog : TApdProtocolLog

The TApdProtocolLog component is described in more detail beginning on page 583. 
TApdProtocolLog Component. For each OnProtocolLog event the protocol checks whether 
ProtocolLog is assigned. If it is, the protocol calls UpdateLog to write information to the log 
file. It then calls the OnProtocolLog event if one was implemented.

When a protocol component is created, either dynamically or when dropped on a form, it 
searches the form for a TApdProtocolLog instance and updates the ProtocolLog property 
with the first one it finds. It also fills in ProtocolLog when a TApdProtocolLog component is 
added to the form. ProtocolLog can also be modified at design time or run time to point to a 
TApdProtocolLog component other than the one assigned automatically.

NextFile processing
Several of the protocols provided by Async Professional can transmit and receive batches of 
files. When the protocol is ready to transmit a new file it generates an OnProtocolNextFile 
event. The event handler responds by returning the name of the next file to transmit, or an 
empty string to terminate the batch.

In most cases, you don’t need to worry about handling this event because the protocol 
component does so itself. The protocol component determines the next file to send with 
DOS filemask processing, using the mask assigned to the FileMask property.

For non-batch protocols like Xmodem the file mask should not contain wildcards. Such 
protocols are capable of transmitting only a single file at a time, and if the mask matches 
more than one file only the first matching file is transmitted.
94     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
When the filemask technique is not adequate, you can write an event handler that 
implements whatever behavior you need.

Here is an OnProtocolNextFile event handler that provides custom NextFile processing.

const
FileIndex : Word = 0;
File1 = 'C:\AUTOEXEC.BAT';
File2 = 'C:\CONFIG.SYS';
File3 = 'C:\ASYNCPRO\ADPORT.PAS';

...
procedure TForm.ApdProtocol1ProtocolNextFile(

CP : TObject; var FName : string);
begin

Inc(FileIndex);
case FileIndex of

1 : FName := File1;
2 : FName := File2;
3 : FName := File3;
else FName := '';

end;
end;

This example sends only the three files named by the constants File1, File2, and File3. The 
event handler returns each string in sequence. After the three files are transmitted, the 
handler returns an empty string to tell the protocol that no more files are available to 
transmit.

Async Professional does not provide built-in support for transmitting an arbitrary list of 
files. That’s because VCL provides the TStringList class, which can easily be combined with 
an OnProtocolNextFile event handler to send any list of files. The EXFLIST example 
program shows how.

AcceptFile processing
When receiving files, there may be times when you don’t want the incoming file. Consider, 
for example, an open BBS where a first time caller is attempting to upload a 10M byte file at 
2400 baud. Since this would tie up the BBS for more than 11 hours you probably would want 
to refuse it immediately. If the caller is using a protocol that transmits the file size in advance, 
you can detect that it’s bigger than you want and refuse the upload.

As another example, suppose that a BBS has a well-publicized rule that it accepts only LZH 
uploads and it detects that an incoming file has a ZIP extension. If a caller is using a protocol 
that transmits the file name in advance, you can refuse an upload immediately.

The OnProtocolAccept event can be used to build such behavior into your application.
General Issues     495

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Note that Zmodem, alone among the Async Professional protocols, has built-in 
functionality for certain kinds of accept file functions. For example, it can reject an upload 
that would overwrite an existing file, or accept it only if the upload’s time stamp is newer 
than the existing file. These options are described fully in “Zmodem” on page 507. The 
AcceptFile function is more general than this, and applies to all of the Async Professional 
protocols.

Once the protocol knows the name of an incoming file, but before it starts receiving data, it 
generates an OnProtocolAccept event. A form can respond to the event by setting the Accept 
parameter to True to accept the file, or False to refuse it. By default, all files are accepted.

For all protocols except Zmodem, the first rejected file terminates the entire batch transfer. 
Zmodem has provisions for skipping files, and the transmitter picks up again with the next 
file after the rejected one.

The OnProtocolAccept event also provides an opportunity to rename an incoming file if its 
current name isn’t acceptable. For example, if a file name conflicts with an existing file, you 
can accept the file but change its name.

Note that all protocols have built-in options for handling incoming file name collisions. See 
the WriteFailAction property on page WriteFailAction property for a complete description. 
You don’t need to write an OnProtocolAccept event handler if these constants provide the 
needed behavior.

Here is an event handler that rejects all files with the ARC extension:

procedure TForm1.ApdProtocol1ProtocolAccept(
CP : TObject; var Accept : Boolean; var FName : string);

begin
Accept := AnsiCompareText(ExtractFileExt(FName), '.ARC') <> 0;

end;

This example examines the extension of the incoming file and sets Accept to False if it 
matches “.ARC”. Note that the function can check various properties to obtain additional 
information about the file. In particular, the file size is available by reading the FileLength 
property for protocols that transmit the size.

Internal logic
The protocol component has so far been described as a black box—you initialize it and call 
StartTransmit or StartReceive to perform the protocol “magic.” Now it is time to look inside 
the box, at how the protocol engine works. With this additional information, you will be 
able to use the protocols more effectively and take better advantage of the events generated 
by the protocol window.
96     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Receiving files
When receiving files, the protocol window employs the following logic shown in Figure 
14.1. This diagram generally applies to all protocols.

 Figure 14.1: Protocol window logic when receiving files.

handshake

get file name header

generate OnProtocolLog

generate OnProtocolAccept

apply WriteFail options
or

apply Zmodem rules

open file

receive data block
write data block

generate OnProtocolStatus
flush to disk every 8K

close file

generate OnProtocolLog

end protocol

No connect

No file

Fail

Fail

Fail

Fail

(batch only)

1

2

3

4

5

6

7

8

9

10
General Issues     497

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The protocol first attempts to “handshake” with the remote machine. A handshake consists 
of a valid response to an initial character sequence sent by the transmitter. If the handshake 
is unsuccessful after a specified number of retries, the protocol ends.

If the handshake is successful, the transmitter is asked for the name of the next file to 
transmit. It responds by sending a block containing the name.

The protocol generates the OnProtocolLog event to give the application an opportunity to 
record the file name or take any other special action needed at the start of the transfer. Note 
that the logging routine receives the file name before the OnProtocolAccept event handler 
has had a chance to modify it.

Next the protocol generates the OnProtocolAccept event. If the message handler sets Accept 
to False, the file is skipped and control is transferred to step 9. Otherwise, the built-in 
WriteFail options or Zmodem’s built-in file management rules are applied. If the protocol 
fails at this point, control is transferred to step 9.

The received file is created using the name from the file name header, perhaps as modified 
by the OnProtocolAccept event handler. Step 6 also allocates work buffers and initializes 
several internal variables used to manage an 8K byte receive buffer. If the open fails, control 
is transferred to step 8, which disposes of buffers and closes the file.

The actual transfer of data comes next in step 7. The internal operations of this step vary 
tremendously among the protocols, so it is condensed in this diagram. The 
OnProtocolStatus event is generated at least once for each block received. If unrecoverable 
errors occur for any reason (user abort, broken connection, disk full, etc.), control is 
transferred to step 8.

After the file transfer is complete, the file is closed in step 8. Then the OnProtocolLog event 
is generated with information regarding whether the file was received OK, rejected, or failed.

In a batch protocol, control returns to the top of the loop to get another file header. If one is 
received, the whole process is repeated. Otherwise, the protocol is ended by coordinating 
with the transmitter and cleaning up.
98     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Transmitting files
When transmitting files, the protocol window employs the following logic as shown in 
Figure 14.2. This diagram generally applies to all protocols.

The protocol first attempts to handshake with the remote machine. A handshake consists of 
sending an initial character sequence and waiting for a valid response. If the handshake is 
unsuccessful after a specified number of retries, the protocol ends.

If the handshake is successful, the protocol generates an OnProtocolNextFile event. The 
default handler of the component returns the next file based on a file mask, or a custom 
event handler can return the next file using its own logic.

 Figure 14.2: Protocol window logic when transmitting files.

handshake

“Return the next file based on
SendFileName”

generate OnProtocolLog

open file

read data block
send data block

generate OnProtocolStatus
reload buffer every 8K

close file

generate OnProtocolLog

end protocol

No connect

No file

(batch only)

Fail

Fail

1

2

3

4

5

6

7

8

General Issues     499

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The protocol generates the OnProtocolLog event to give the application an opportunity to 
record the outgoing file name or take any other special action needed at the start of the 
transfer.

The outgoing file is opened in step 4. This step also allocates work buffers and initializes 
variables used to manage an 8K byte send buffer. If any of these steps fail, control is 
transferred to step 6 to clean up.

The actual transfer of data comes next in step 5. The file is read in 8K byte blocks and sent 
using the block size native to the protocol. The OnProtocolStatus event is generated at least 
once for every block sent. If unrecoverable errors occur, control is immediately transferred 
to step 6.

After the file transfer is complete, the file is closed and buffers are disposed in step 6. Then 
the OnProtocolLog event is generated with information regarding whether the file was 
transferred OK, rejected, or failed.

In a batch protocol, control returns to the top of the loop to get another file to send. If one is 
available, the whole process is repeated. Otherwise, the protocol is ended by coordinating 
with the receiver and cleaning up.
00     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Xmodem
Xmodem is the oldest protocol supported by Async Professional. It was developed and first 
implemented by Ward Christensen in 1977 and placed in the public domain. Since then, it 
has become an extremely popular protocol and continues in use today (although at a 
diminished frequency).

Xmodem is also the simplest, and perhaps the slowest, protocol supported by Async 
Professional. Xmodem uses blocks of only 128 bytes and requires an acknowledgment of 
each block. It uses only a simple checksum for data integrity.

What follows is a simplified description of the Xmodem protocol, although it describes far 
more than is required to actually use the protocol in Async Professional. For additional 
details on the internals of the Xmodem protocol, see the YMODEM.DOC file in the 
PROTDOC.LZH archive. Figure 14.3 shows the format for XModem blocks.

The <SOH> character marks the start of the block. Next comes a one byte block number 
followed by a ones complement of the block number. The block number starts at one and 
goes up to 255 where it rolls over to zero and starts the cycle again. Following the block 
numbers are 128 bytes of data and a one-byte checksum. The checksum is calculated by 
adding together all the data bytes and ignoring any carries that result. Table 14.3 describes a 
typical Xmodem protocol transfer.

 Figure 14.3: The format for XModem blocks.

Table 14.3: Description of a typical XModem protocol transfer

Transmitter Receiver

<--- <NAK>

<SOH><1><254><128 data bytes><chk> --->

<--- <ACK>

<SOH><2><253><128 data bytes><chk> --->

<--- <ACK>

<EOT> --->

<--- <ACK>

<SOH> <block#> not
<block#> <128 bytes of data> <checksum>
Xmodem     501

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The receiver always starts the protocol by issuing a <NAK>, also called the handshake 
character. It waits 10 seconds for the transmitter to send a block of data. If it doesn’t get a 
block within 10 seconds, it sends another <NAK>. This continues for 10 retries, after which 
the receiver gives up.

If the receiver does get a block, it compares the checksum it calculates to the received 
checksum. If the checksums differ, the receiver sends a <NAK> and the transmitter resends 
the block. If the checksums match, the receiver accepts the block by sending an <ACK>. 
This continues until the complete file is transmitted. The transmitter signifies this by 
sending an <EOT>, which the receiver acknowledges with an <ACK>.

Either side can cancel the protocol at any time by sending three <CAN> characters (^X). 
However, during an Xmodem receive the receiver cannot tell whether the <CAN> 
characters are real data or a cancel request. The sequence is recognized as a cancel request 
only when it comes between blocks. Hence, more than three <CAN> characters are 
sometimes required to cancel the receiver. Sufficient characters are required to complete the 
current block, then three more <CAN> characters to cancel the protocol.

From this description several things become clear. First, this protocol does not transfer any 
information about the file being transmitted. Hence, the receiver must assign a name to the 
incoming file.

The receiver also doesn’t know the exact size of the file, even after it is completely received. 
The received file size is always a multiple of the block size. This Xmodem implementation 
fills the last partial block of a transfer with characters of value BlockFillChar, whose default 
is ^Z. .BlockFillChar is a typed constant defined in AwTPcl.pas. To change the default 
BlockFillChar, simply assign the new character to that typed constant.

Xmodem often exhibits a start-up delay. The transmitter always waits for a <NAK> from 
the receiver as its start signal. If the receiving program was started first, the transmitter 
probably missed the first <NAK> and must wait for the receiver to time out and send 
another <NAK>.

Xmodem offers no escaping of binary control characters. Escaping means that characters 
can be transformed before being transmitted to prevent certain binary data characters, such 
as <XON>, from being interpreted as data link control characters. As a result, you can’t use 
software flow control in an Xmodem transfer (since the flow control software would 
misinterpret <XON> or <XOFF> characters in the data stream as flow control requests) and 
Xmodem itself can’t tell the difference between <CAN> characters used for protocol 
cancellation and for data.

The only merit of the basic Xmodem protocol is that it is so widespread that it’s probably 
supported by any microcomputer communications program you can find, thus providing a 
lowest common denominator between systems.
02     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Xmodem extensions
Xmodem has been tweaked and improved through the years. Some of these variations have 
become standards of their own and are supported by Async Professional. These Xmodem 
extensions are treated as separate protocols enabled by assigning a different value to the 
ProtocolType property.

The first of these improvements is called Xmodem CRC, which substitutes a 16 bit CRC 
(cyclic redundancy check) for the original checksum. This offers a much higher level of 
data integrity. When given the opportunity, you should always choose Xmodem CRC over 
plain Xmodem.

The receiver indicates that it wants to use Xmodem CRC by sending the character ‘C’ instead 
of <NAK> to start the protocol. If the transmitter doesn’t respond to the ‘C’ within three 
attempts, the receiver assumes the transmitter isn’t capable of using Xmodem CRC. The 
receiver automatically drops back to using checksums by sending a <NAK>.

Another popular extension is called Xmodem 1K. This derivative builds on Xmodem CRC 
by using 1024 byte blocks instead of 128 byte blocks. When Xmodem 1K is active, each 
block starts with an <STX> character instead of an <SOH>. Xmodem 1K also uses a 16 bit 
CRC as the block check.

A larger block size can greatly speed up the protocol because it reduces the number of times 
the transmitter must wait for an acknowledgment. However, it can actually reduce 
throughput over noisy lines because more data must be retransmitted when errors are 
encountered. The implementation of Xmodem 1K in Async Professional drops back to 128 
byte blocks whenever it receives more than 5 <NAK> characters in a row. Once it drops 
back to 128 byte blocks, it never tries to step back up to 1024 byte blocks.

The final Xmodem extension supported by Async Professional is Xmodem 1KG. This 
streaming protocol is requested when the receiver sends ‘G’ as the initial handshake 
character instead of <NAK>. Streaming in this context means that the transmitter 
continuously transmits blocks without waiting for acknowledgements. In fact, all blocks are 
assumed to be correct and the receiver never sends acknowledgements. If the receiver does 
encounter a bad block, it aborts the entire transfer by sending a <NAK>.

You shouldn’t even consider using this streaming protocol unless you are using error 
correcting modems with their error control features turned on. In fact, you might want to 
have your application refuse to use Xmodem 1KG if error correcting modems aren’t 
detected. The OnGotErrCorrection event of the TApdModem component (see page 461) 
can be used to detect an error correcting connection. The advantage of a streaming protocol 
like Xmodem 1KG is its very high throughput. There is no acknowledgement delay, so the 
protocol is extremely efficient. Zmodem has this same property, but can also retry and 
recover from errors.
Xmodem     503

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Ymodem
Ymodem is a derivative of Xmodem that is different enough to be called a unique protocol. 
The details and history of Ymodem are fully explained in the file YMODEM.DOC in the 
PROTDOC.LZH archive. What follows is a simplified explanation of Ymodem that provides 
more than enough information to use it with Async Professional.

Ymodem is essentially Xmodem 1K with batch facilities added, which means that a single 
protocol session can transfer as many files as you care to transmit. Another important 
enhancement is that the transmitter can provide the receiver with the incoming file name, 
size, and timestamp.

Ymodem achieves this by adding block zero to the Xmodem 1K protocol. Block zero is 
transferred first and contains file information in the format shown in Figure 14.4.

The <name> field is the only required field. It supplies the name of the file in lower case 
letters. Path information can be included but the protocol requires that all ‘\’ characters be 
converted to ‘/’.

The <len> field specifies the file length as an ASCII string. This field allows the receiver to 
truncate the received file to discard the filler characters at the end of the last block.

The <date> field is the date and time stamp of the file. It is transmitted as the number of 
seconds since January 1, 1970 GMT, expressed in ASCII octal digits (a Unix convention).

Async Professional takes care of properly formatting this block. You don’t need to do 
anything but specify the name of the file to transmit. When receiving Ymodem files, Async 
Professional uses the information in this block, if present, to adjust the size of the received 
file and its modification date.

 Figure 14.4: File information and format for a YModem block zero transfer.

<SOH> <0> <name> <0> <len> <0> <date> <0>...<0> <CRChi> <CRClo><255>
04     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Table 14.4 describes a typical YModem protocol transfer.

As with the Xmodem protocols, the Ymodem protocol starts when the receiver sends a 
handshake character (‘C’) to the transmitter. The transmitter responds with a properly 
formatted block zero. The receiver acknowledges this with an <ACK> and then starts a 
normal Xmodem CRC protocol by issuing another ‘C’ handshake character.

Table 14.4: Description of a typical YModem protocol transfer

Transmitter Receiver

<--- ‘C’

<SOH><0><255><file info><crc> --->

<--- <ACK>

<--- ‘C’

<STX><1><254><1024 data bytes><crc> --->

<--- <ACK>

<STX><2><253><1024 data bytes><crc> --->

<--- <ACK>

<EOT> --->

<--- ‘C’

<SOH><0><255><file info><crc> --->

<--- <ACK>

<--- ‘C’

<STX><1><254><1024 data bytes><crc> --->

<--- <ACK>

<EOT> --->

<SOH><0><255><128 zeros><crc> --->

<--- <ACK>
Ymodem     505

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Ymodem extensions
The Ymodem specification permits Ymodem to use a combination of 128 and 1024 byte 
blocks. Most Ymodem protocols start with 1024 byte blocks and drop back to 128 byte 
blocks only if repeated errors are detected. Once the block size is reduced to 128 bytes, it is 
never stepped back up to 1024.

Like Xmodem, Ymodem also offers a streaming extension called Ymodem G. This is similar 
in performance (and drawbacks) to Xmodem 1KG, but like Ymodem itself offers the 
advantages of batch transfers and file information.
06     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Zmodem
Of all the protocols supported by Async Professional, Zmodem offers the best overall mix of 
speed, features, and tolerance for errors. The Zmodem protocol has many options and 
clearly was meant to have lots of room for growth. The Async Professional implementation 
of Zmodem does not cover the entire protocol specification but it does implement the 
features most likely to be required by your application. It should generally be your protocol 
of choice.

Zmodem was developed for the public domain by Chuck Forsberg under contract to 
Telenet. The original purpose was to provide a durable protocol with strong error recovery 
features and good performance over a variety of network types (switched, satellite, etc.). It 
has generally achieved these design goals.

What follows is a simplified explanation of Zmodem that provides more than enough 
information to use it with Async Professional. Refer to the ZMODEM.DOC file of 
PROTDOC.LZH for further details.

Zmodem borrows some concepts from Xmodem, Ymodem, and Kermit but is really a 
completely new protocol. Instead of adopting the simple block structure of Xmodem and 
Ymodem, Zmodem employs headers, data subpackets, and frames. A header contains a 
header identifier, a type byte, four information bytes, and some block check bytes. A data 
subpacket contains up to 1024 data bytes, a data subpacket type identifier, and some block 
check bytes. A frame consists of one header and zero or more data subpackets.

Due to the complexity and variety of the Zmodem header and data subpacket formats, they 
are not all detailed here. Instead, Table 14.5 provides a high level look at a sample Zmodem 
file transfer.

Table 14.5: Description of a typical ZModem protocol transfer 

Sender Receiver Explanation

‘rz’<cr> ---> Start marker for automated transfers.

ZrQinit ---> Request for receiver’s information.

<--- ZrInit Receiver answers with its options.

ZFile ---> Transmitter sends file information.

<--- ZrPos Receiver sets the starting filepos.

ZData ---> Transmitter says file data to follow.

data subpacket ---> Transmitter sends a data subpacket.

... Continues until all data is sent.
Zmodem     507

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The ZXxx tags are the header types that the two computers trade back and forth as they 
decide what is to be done. You don’t need to understand them unless you find yourself trying 
to decipher a Zmodem transfer using the Async Professional tracing facility. To do so, you’ll 
likely need to consult the ZMODEM.DOC file and/or the Async Professional source code.

In most cases all data in the file is sent in one ZData frame (the ZData header followed by as 
many data subpackets as required). The receiver doesn’t have to acknowledge any of the 
blocks unless the transmitter specifically asks for it. The Zmodem protocol as implemented 
by Async Professional never asks for an acknowledgement; however, it respects such 
requests from the transmitter.

Typically, once a file transfer is underway, the receiver interrupts the transmitter only if it 
receives a bad block as determined by comparing block check values. An error is reported 
by sending a ZrPos header, telling the transmitter where in the file to start retransmitting.

The protocol can be canceled at any time if either side sends five <CAN> characters (^X).

Control character escaping
Zmodem escapes certain control characters. Escaping means that characters are 
transformed before being transmitted to prevent certain binary data characters, such as 
<XON> and <CAN>, from being interpreted as data link control characters.

Escaping isn’t something you need to enable or disable because it’s always on. It is mentioned 
here because escaping is what permits you to use software flow control with Zmodem. That 
isn’t possible with the Xmodem/Ymodem family.

ZEof ---> Transmitter indicates end-of-file.

<--- ZrInit Receiver says ready for next file.

ZFin ---> Transmitter indicates no more files.

<--- ZFin Receiver acknowledges.

‘OO’ ---> Transmitter signs off.

Table 14.5: Description of a typical ZModem protocol transfer  (continued)

Sender Receiver Explanation
08     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Zmodem always escapes the following characters:

<DLE> Data link escape character (10h, ^P)
<XON> XOn character (11h, ^Q)
<XOFF> XOff character (13h, ^S)
<CAN> Zmodem escape character (18h, ^X)
<DLE*> Data link escape character with high bit set (90h)
<XON*> XOn character with high bit set (91h)
<XOFF*> XOff character with high bit set (93h)

Zmodem escapes all control characters when requested to by the remote protocol.

Protocol options
While the Zmodem specification describes all sorts of features, not all Zmodem 
implementations are expected to support all of the features. One of the first things that 
happens in a Zmodem protocol is that the receiver tells the transmitter what features it 
supports. The transmitter might modify its standard behavior to accommodate the 
receiver’s support (or lack of support) for a particular option.

Since this process is handled automatically, you generally don’t need to worry about it. For 
your information, the protocol options that Async Professional Zmodem provides and 
doesn’t provide are listed here.

Async Professional supports the following Zmodem protocol options:

• True full duplex for data and control channels.

• Receiving data during disk I/O.

• Sending a break signal.

• Using 32 bit CRCs.

• Escaping all control characters.

Async Professional does not support the following protocol options:

• Encryption.

• LZ data compression.

• Escaping the 8th bit.

• End-of-line conversion for Unix newline characters.

• Sparse files.
Zmodem     509

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Transfer resume
The Zmodem specification describes an option called recover/resume. This option is 
requested by the transmitter when it wants to resume a previously interrupted file transfer. 
When the receiver sees the request for this option, it compares the incoming file name with 
the files in its destination directory. If the incoming file already exists and is smaller than the 
one being transmitted, the receiver assumes that the transmitter wants to transfer only the 
remaining portion of the file.

When this condition exists, the receiver opens the existing file and moves the file pointer to 
the end of the file. It then tells the transmitter to move its file pointer to the same point in its 
copy of the file. The transmitter starts sending data from that point, which resumes the 
transfer from where it was interrupted.

This option can also be used to append new data to a remote copy of a file.

In either case, you use this option as follows:

ApdProtocol.FileMask := 'BIGFILE';
ApdProtocol.ZmodemRecover := True;
ApdProtocol.StartTransmit;

File management options
Zmodem has a variety of file management options built into it. These are simple rules that 
tell Zmodem whether or not to accept a file. Table 14.6 shows the possible options.

The zfoWriteCrc option, which requests that a file be transferred only if its CRC is different 
from the remote copy’s, is not supported. When this option is requested, it is treated the 
same as the zfoWriteNewer option.

Table 14.6: ZModem file management options

Option Code Explanation

zfoWriteNewerLonger Transfer if new, newer, or longer.

zfoWriteCrc Not supported, interpreted same as zfWriteNewer.

zfoWriteAppend Transfer if new, append if existing.

zfoWriteClobber Transfer always.

zfoWriteNewer Transfer if new or newer.

zfoWriteDifferent Transfer if new or different dates or sizes.

zfoWriteProtect Transfer only if new.
10     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The file management options are always requested by the transmitter. To use them, assign a 
value to the ZmodemFileOption property before calling StartTransmit. The default 
behavior is zfoWriteNewer. For example, to transmit all files regardless of whether such files 
already exist on the remote machine, make the following assignment:

ApdProtocol.ZmodemFileOption := zfoWriteClobber;

Even though the transmitter sets the file management options, Async Professional allows the 
receiver to change them. For example, suppose the transmitter has requested 
zfoWriteClobber but you want to accept only newer files. In this case you would set the 
ZmodemOptionOverride property to True before calling StartReceive:

ApdProtocol.ZmodemOptionOverride := True;
ApdProtocol.ZmodemFileOption := zfoWriteNewer;

Setting this property to True tells Zmodem to ignore the file management options requested 
by the transmitter and to use zfoWriteNewer instead.

Another file management property called ZmodemSkipNoFile is available. Set this property 
to True to force the receiver to skip any incoming file that doesn’t already exist in the 
destination directory.

Whatever file management rules are in effect, the receiver applies them and either accepts 
each file or rejects it. If the file is accepted, the file transfer proceeds normally. If the file is 
rejected, the receiver sends a ZSkip frame to the transmitter, which stops sending the 
current file and moves on to the next one in its list.

Don’t forget that you can implement your own file management rules with an 
OnProtocolAccept event handler.

Automatic block size control
The Zmodem protocol decreases or increases the number of bytes transmitted per block in 
response to retransmission requests, usually due to poor line conditions or random line 
errors. The rationale is that small blocks can transmit more frequently without errors, since 
there’s less time for a small block to be hit by line noise. And, even if a small block is 
corrupted by noise, it is faster to retransmit than a large block.

The protocol employs the following logic to control the block size. If the transmitter receives 
an unsolicited request from the receiver to resend data, it reduces the block size from 1024 to 
512. If the transmitter receives another request to resend, it reduces the block size from 512 
to 256. It never reduces the block size below 256 bytes. Conversely, the transmitter raises the 
block size immediately back to 1024 bytes when it sends four blocks in a row without 
receiving any requests to resend.
Zmodem     511

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Similar logic is employed with 8K Zmodem, which uses 8192 byte blocks by default. The 
block size is halved for each retransmission request received, down to a minimum of 256 
bytes. The block size is increased to 8K bytes in a single step after four blocks are 
transmitted without any requests to resend.

Block size control is automatic and cannot be disabled. While this behavior is not 
documented in the public domain Zmodem specification, it is the process followed by the 
popular DSZ program and is acceptable to any common Zmodem implementation.

Large block support
Async Professional Zmodem also includes support for 8K byte blocks. This behavior is 
outside the public domain specification and was added largely for programmers who need 
to transfer files to or from several popular BBS and FIDONet mailer programs. Since large 
blocks are not supported by all common Zmodem implementations, their use is not 
automatic—you must specifically enable them before starting a file transfer by setting the 
Zmodem8K property to True.

The output buffer size of the port object used by the protocol window must also be large 
enough to support the 8K option. The output buffer must be capable of holding an entire 8K 
block with escaping, which in the worst case can double the size of the block. Hence, the 
output buffer must be at least 2*8192+30, or 16414, bytes. (See “Buffer sizes” on page 485 
for more information.)
12     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Kermit
The Kermit protocol was developed to allow file transfers in environments that other 
protocols can’t handle. Such environments include links that only pass 7 data bits, links that 
can’t handle control characters, computer systems that can’t handle large blocks, and diverse 
other links such as those between a PC and a mainframe.

Kermit is a public domain protocol that was developed at Columbia University. (The name 
refers to Kermit the Frog, from The Muppet Show.) What follows is a simplified explanation 
of Kermit that provides more than enough information to use it with Async Professional. 
For additional details, get the Kermit protocol specification from Columbia University, 
Kermit Distribution, Department OP, 612 West 115th Street, New York, NY 10025.

Character quoting
Character quoting means pretty much the same thing that escaping means in Zmodem. The 
character is replaced by a quote character and a modified form of the original character. The 
quote character tells the receiver how to convert the modified character back to its original 
value. Quoting ensures that certain binary characters are never put into the data stream 
where they could be misinterpreted by a modem or another part of the serial link.

Although Zmodem transforms only a few critical characters such as <XON> and <XOFF>, 
Kermit quotes nearly all characters. This is one of the features that permits Kermit to run in 
nearly any environment. When quoting is finished, a Kermit data packet consists almost 
entirely of printable ASCII characters. The only exceptions are an <SOH> character at the 
start of each packet and a <CR> at the end.

Kermit quotes control characters by replacing them with a quote character and a modified 
version of the control character. For example, ^A becomes ‘#A’ where ‘#’ is the quote 
character. The process of converting ^A to ‘A’ is called “Ctl” and it works like this:

Ctl(x) = x xor 40h;

This operation is its own inverse, that is, Ctl(Ctl(x)) = x.

Kermit also quotes characters with their eighth bit set, which allows it to transmit 8 bit data 
over 7 bit data links. The quote character in this case is ‘&’ and the quoted data character is 
obtained simply by stripping the high bit. For example, the quoted version of character $C1 
(‘A’ with its high bit set) is ‘&A’.

Binary numbers in Kermit packet headers and in repeated character strings are also 
transformed to assure that they are printable characters. This is achieved by adding 32 to 
each number before it is transmitted and subtracting 32 after it is received. In Kermit 
parlance, these operations are known as “ToChar” and “UnChar.”
Kermit     513

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Kermit has a simple built-in data compression mechanism called run length encoding. 
When it sees a long string of repeated characters, it compresses the string into a quote 
character, a length byte, and the repeated character. Obviously, there must be at least 4 
repeated characters before there is any compression. The quote character for run length 
encoding is ‘~’. Hence, the string “AAAAA” becomes “~%A”, where ‘%’ is equivalent to a 
binary 5 after the “ToChar” operation.

Kermit packets
Figure 14.5 shows the general format of a Kermit packet.

The <SOH> character, also called the mark field, indicates the start of a Kermit packet.

The length byte specifies the number of bytes that follow. Since it must be transmitted as a 
printable 7 bit character the binary maximum value is 94, which means that the maximum 
length of a normal Kermit packet is 96 bytes including the <SOH> and the <length> field.

The <seq> byte is a packet sequence number in the range of 0 to 63. After 63 it cycles 
back to 0.

The <type> byte describes the various Kermit packet types, which are analogous to the 
Zmodem frame types.

The data field contains up to 91 bytes including all quote characters. The number of actual 
data bytes could be considerably less, particularly if binary data is being transmitted.

The standard Kermit <check> field is a single-byte checksum. Kermit offers two optional 
block check methods called two-byte checksum and three-byte CRC. See the 
BlockCheckMethod property (page 530) for more information.

The <term> character is the packet terminator which equals carriage return (ASCII 13) by 
default. You will probably never need to change the terminator.

 Figure 14.5: The format for a typical Kermit packet.

<SOH> <len> <seq> <type> <up to 91 data bytes> <check> <term>
14     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Table 14.7 describes a typical Kermit protocol transfer.

The KXxx tags are the packet types that the two computers exchange as they decide what is 
to be done. You don’t need to understand them unless you find yourself trying to decipher a 
Kermit transfer using the Async Professional tracing facility. To do so, you’ll likely need to 
consult the Kermit specification file and/or the Async Professional source code.

Kermit options
Like Zmodem, Kermit offers a variety of options. An implementation of Kermit is not 
required to support all options. Hence, one of the first things that happens in a Kermit 
protocol is that the two sides exchange their desired options and use the lowest common 
denominator of the two sets.

Table 14.7: A description of a typical Kermit protocol transfer

Transmitter Receiver Explanation

KSendInit ---> Transmitter sends its options.

<--- KAck Receiver answers with its options.

KFile ---> Transmitter sends filename.

<--- KAck Receiver acknowledges filename.

KData ---> Transmitter sends data packet.

<--- KAck Receiver acknowledges data packet.

KData ---> Transmitter sends data packet.

<--- KAck Receiver acknowledges data packet.

... Continues until all data sent.

KEndoffile ---> Transmitter says end of file.

<--- KAck Receiver acknowledges and closes file.

KBreak ---> Transmitter says end of protocol.

<--- KAck Receiver acknowledges end of protocol.
Kermit     515

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Table 14.8 shows the Kermit options that Async Professional supports and the default values 
each uses. The entries in the first column are TApdProtocol property names that can be used 
to adjust each option.

KermitMaxLen is the maximum number of bytes you want Kermit to include in one packet. 
The normal maximum value is 94; the default value is 80 as suggested by the Kermit 
Protocol Manual. If KermitMaxLen exceeds 94, the Kermit “long packets” feature is enabled. 
The absolute maximum value is 1024.

KermitTimeoutSecs is the amount of time, in seconds, that a Kermit transmitter will wait for 
an acknowledgement or a Kermit receiver will wait for the next byte to be received. If more 
than KermitTimeoutSecs seconds elapse without receiving anything, Kermit assumes an 
error occurred and resends.

KermitPadCount and KermitPadCharacter describe padding that can be added at the front 
of all Kermit packets. The only reason for padding is if the remote machine needs a delay 
between sending a packet and receiving a response. In this case, you can specify enough 
padding characters to generate the required delay. Generally, though, padding is 
unnecessary. The Kermit protocol as implemented by Async Professional automatically 
honors a remote’s request for padding.

KermitTerminator is the character that follows the check field in a packet. Although all 
Kermit packets have a terminator, it is used only by systems that need an end-of-line 
character before they can start processing input.

Table 14.8: Kermit property options and default values

Property Default Explanation

KermitMaxLen 80 bytes Maximum length of the data field.

KermitTimeoutSecs 5 seconds Maximum timeout between characters.

KermitPadCount 0 bytes No pad characters before packets.

KermitPadCharacter ‘ ’ Space character used for padding.

KermitTerminator <CR> Packet terminator is a carriage return.

KermitCtlPrefix ‘#’ Control character prefix is ‘#’.

KermitHighbitPrefix ‘Y’ Honor 8-bit quoting but don't require
it.

BlockCheckMethod ‘1’ Use a 1 byte checksum.

KermitRepeatPrefix ‘~’ Repeat prefix is ‘~’.

KermitMaxWindows 0 No sliding windows.
16     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
KermitCtlPrefix is the control character prefix that Kermit uses when performing “Ctl” 
quoting to transform control characters into printable ASCII characters. Generally you 
won’t need to change this prefix.

KermitHighbitPrefix specifies how Kermit transforms high-bit characters into characters 
without the high-bit set. Generally you won’t need to change this setting. See the property 
description for more information.

BlockCheckMethod specifies the type of block checking Kermit should perform. ‘1’ 
corresponds to the bcmChecksum value of the TBlockCheckMethod type, and it means that 
Kermit should use a single-byte checksum. All Kermit implementations are guaranteed to 
support this form of block checking. bcmChecksum2 means that Kermit should use a two-
byte checksum, which offers only slightly more protection than the single-byte checksum. 
bcmCrcK means that Kermit should use a three-byte CRC. This is the preferred block check 
method because it offers the highest level of error detection. Unfortunately, not all Kermit 
implementations support the non-default block check methods. If the remote computer 
doesn’t support the block check method you request, both sides drop back to the single-byte 
checksum.

KermitRepeatPrefix is the repeated-character prefix that Kermit uses when compressing 
long strings of repeated characters. Generally you won’t need to change this prefix.

KermitMaxWindows is the number of sliding windows requested. Setting this to a value 
between 1 and 27 (the maximum allowed) enables sliding windows support.

The two sides of a Kermit protocol automatically negotiate which options to use, so no 
intervention is required by your program. If you wish to change the default options, use 
these properties.

Async Professional does not provide Kermit server functions and does not support file 
attribute packets.

Long packets
Async Professional includes support for long packets, which is an extension to standard 
Kermit that permits data packets of up to 1024 bytes. Long packets can substantially 
improve protocol throughput on clean connections that have small turnaround delays. Long 
packet support is turned off by default and must be enabled by setting KermitMaxLen to a 
value between 95 and 1024. Most other Kermit implementations also disable this option by 
default.

Although the specification allows for packets up to 9024 bytes, Async Professional limits 
long packets to 1024 bytes. Packets longer than 1024 bytes do not appreciably increase 
throughput, but they dramatically increase retransmission time when a line error occurs.
Kermit     517

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The specification also recommends the use of the higher-order checksums with long 
packets, but does not require it. Async Professional defaults to 2 byte checksums when long 
packet support is enabled, but drops back to 1 byte checksums if requested to do so by the 
remote Kermit.

Sliding Windows Control
Async Professional includes supports for the Kermit extension known as Sliding Windows 
Control, also called “SuperKermit.” Sliding Windows Control (SWC) provides a “send-
ahead” facility that dramatically improves throughput when turnaround delays tend to be 
large, as when using satellite links.

Send-ahead means that the transmitter sends many blocks without waiting for an 
acknowledgement for each block. The transmitter collects acknowledgements when they 
eventually arrive and marks the previously transmitted blocks as acknowledged. This 
reduces turnaround delay (the time it takes the receiver to send an acknowledgement) to 
zero.

SWC operates by keeping a circular table of transmitted packets. The maximum number of 
packets in this table is called the window size, which is a number between 0 (no sliding 
window support) and 31. If the transmitter and receiver specify different window sizes, the 
smaller of the two is used. Async Professional’s Kermit actually limits the maximum number 
of windows to 27 to avoid encountering a bug in the popular program MSKERMIT.

Sliding window support is off by default. It is enabled by setting the KermitMaxWindows 
property to a non-zero value.

On the sender’s side, each transmitted packet is added to the table. When an 
acknowledgement is eventually received for a packet, its entry in the table is freed. If the 
table fills, the transmitter does not send more packets until it receives acknowledgements for 
one or more existing packets.

On the receiver’s side, each received packet is added to the table and remains there until the 
table is full. Then the oldest packet is written to disk. When errors are detected, the receiver 
sends a <NAK> for each missed packet, starting past the last known good packet and 
continuing up to the most recently received packet.

It is possible to enable long packets and SWC simultaneously, but memory consumption 
rises dramatically from the single 80 byte buffer normally used by Kermit. In the worst case 
you could have 27 windows of 1024 bytes each, adding up to 27648 bytes.
18     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
ASCII
The term ASCII protocol is a bit of a misnomer, because in an ASCII transfer neither side of 
the link is following well-documented rules. An ASCII protocol is really just a convenient 
way of transmitting a text file.

A typical use for the ASCII protocol is when you need to transfer a text file to a 
minicomputer that doesn’t have any protocols available. One way of accomplishing this is to 
run an Async Professional program that supports a terminal window and the ASCII 
protocol, such as the TCom demo program. You connect to the minicomputer, navigate to 
the minicomputer’s editor, and open up a new text file. Then you start an ASCII protocol 
transmit of the file you need to transfer. The minicomputer’s editor sees this as keystroke 
input to the editor. You finish the transfer by saving the editor’s file.

The ASCII protocol provides options for tailoring such transfers to the remote machine’s 
speed, which might necessitate delays between transmitted characters and lines. For 
example, when transmitting a file into a remote computer’s editor, you might need to use 
delays to avoid overflowing the editor’s keystroke buffer.

It is difficult for the receiver to know when an ASCII transfer is over because there is no 
agreed-upon method for indicating termination. The ASCII protocol terminates on any of 
three conditions: when it receives a ^Z character, when it times out waiting for more data, or 
when the user aborts the protocol and the application calls CancelProtocol. When any of 
these conditions is detected, the file is saved and the protocol ends.

End-of-line translations
Computer systems sometimes use different character sequences to terminate each line of a 
text file. Most PC software stores both a carriage return <CR> and a line feed <LF> at the 
end of each line. Other systems store only <LF> or only <CR> at the end of each line.
ASCII     519

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The ASCII protocol provides a number of options for translating from one end-of-line 
sequence to another, both when transmitting and when receiving. When performing these 
translations, the <CR> and <LF> characters are treated separately, based on the values 
assigned to the AsciiCRTranslation and AsciiLFTranslation properties. Table 14.9 shows the 
enumerated values used to control the behavior.

Table 14.9: ACII protocol enumerated property values

Value Explanation

aetNone The character is not to be modified (the default).

aetStrip The character is to be stripped from the data stream.

aetAddCRBefore A <CR> is to be inserted before each <LF>. This can be
specified only for the AsciiLFTranslation property.

aetAddLFAfter An <LF> is to be added after each <CR>. This can be
specified only for the AsciiCRTranslation property.
20     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
FTP 
Async Professional provides two File Transfer Protocol (FTP) components that make it easy 
to implement FTP client support in your application.

The TApdFtpClient component takes care of the FTP protocol details and presents a 
friendly interface for transferring files to and from an FTP server. In addition, the 
component also provides a set of standard functions for manipulating files and directories at 
the FTP server.

The TApdFtpLog component automates the process of logging an FTP client-server dialog 
for auditing FTP activities.

Overview of FTP
File Transfer Protocol (FTP) is used to transfer files from one location on the Internet to 
another. An FTP client establishes a connection (called the control connection) to an FTP 
server at a well-known port number (usually 21). The control connection is used for a 
command-response dialog between the client and server. The client issues an FTP 
command which consists of an ASCII string containing a mnemonic command followed by 
any parameters required for the command. The server then responds with a reply consisting 
of an ASCII string containing a three digit reply code followed by some text. During a file 
transfer, a separate data connection is established to transfer the file data. When the transfer 
is complete, the data connection is closed.

When an FTP client establishes a control connection with an FTP server, the server will 
respond with a reply code that indicates that the user login procedure can commence. The 
login procedure consists of sending commands containing the user’s ID name, password, 
and (possibly) account information as parameters. An FTP server requires authenticated 
login information before giving a user access to files and directories, however many servers 
allow a user to login “anonymously” for restricted access. Users log in anonymously using 
“ANONYMOUS” for their user ID name and their e-mail address for their password.
FTP     521

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
FTP error codes
If an FTP server rejects a command from an FTP client for one reason or another, the server 
will reply with an error code. Table 14.10 is a list of common FTP errors.

Table 14.10: Common FTP errors

Reply Code Explanation

421 Service not available, closing control connection.

425 Can’t open data connection.

426 Connection closed, transfer aborted.

451 Requested action aborted, local error in processing.

452 Requested action not taken.

500 Syntax error, command unrecognized.

501 Syntax error in parameters or arguments.

502 Command not implemented.

503 Bad sequence of commands.

504 Command not implemented for that parameter.

505 No such file or directory.

506 Usage error.

522 Transfer error bytes written.

530 Error in user login.

550 Requested action not taken due to error.

551 Requested action aborted.

553 Requested action not taken due to system error.
22     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
 TApdProtocol Component
TApdProtocol implements all of the Async Professional file transfer capabilities in one 
comprehensive component. General issues associated with using this component are 
discussed in the first part of this chapter.

Note that certain properties that are described in the following reference section are specific 
to a particular protocol type. If a particular property is not supported by the current value of 
the ProtocolType property (e.g., the AsciiCharDelay property is not relevant to the 
Zmodem protocol), assigning a value to that property stores the new value in a field of the 
component, but has no effect until the ProtocolType is changed to the corresponding 
protocol. Protocol-specific properties have names that begin with the name of the protocol 
itself (e.g., ZmodemOptionOverride, ZmodemSkipNoFile, ZmodemFileOption, 
ZmodemRecover, and Zmodem8K).

Example
This example shows how to construct and use a protocol component. It includes a terminal 
window so you can navigate around an on-line service while you test the program, and a 
TApdProtocolStatus component so you can see the progress of the transfer.

Create a new project, add the following components, and set the property values as 
indicated in Table 14.11.

Table 14.11: Example components and property values

Component Property Value

TApdComPort ComNumber <Set as needed for your PC>

TApdEmulator

TApdTerminal

TApdProtocol FileMask EXPROT*.*

TApdProtocolStatus

TButton Name Upload

TButton Name Download
TApdProtocol Component     523

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Double-click on the Upload button’s OnClick event handler within the Object Inspector and 
modify the generated method to match this:

procedure TForm1.UploadClick(Sender : TObject);
begin

ApdProtocol1.StartTransmit;
end;

This method starts a Zmodem background protocol transmit session for all of the files 
matching the mask “EXPROT*.*”. (Zmodem is the default protocol type for TApdProtocol 
instances.)

Double-click on the Download button’s OnClick event handler within the Object Inspector 
and modify the generated method to match this:

procedure TForm1.DownloadClick(Sender : TObject);
begin

ApdProtocol1.StartReceive;
end;

This method starts a Zmodem background session to receive whatever files the transmitter 
sends.

The form includes a TApdProtocolStatus component, which is automatically displayed by 
the protocol and periodically updated to show the progress of the file transfer.

This example is in the EXPROT project in the \ASYNCPRO\EXAMPLES directory.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomProtocol (AdProtcl)

TApdProtocol (AdProtcl)
24     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Properties
AbortNoCarrier

ActualBPS

AsciiCharDelay

AsciiCRTranslation

AsciiEOFTimeout

AsciiEOLChar

AsciiLFTranslation

AsciiLineDelay

AsciiSuppressCtrlZ

Batch

BlockCheckMethod

BlockErrors

BlockLength

BlockNumber

BytesRemaining

BytesTransferred

ComPort

DestinationDirectory

ElapsedTicks

FileDate

FileLength

FileMask

FileName

FinishWait

HandshakeRetry

HandshakeWait

HonorDirectory

IncludeDirectory

InitialPosition

InProgress

KermitCtlPrefix

KermitHighbitPrefix

KermitLongBlocks

KermitMaxLen

KermitMaxWindows

KermitPadCharacter

KermitPadCount

KermitRepeatPrefix

KermitSWCTurnDelay

KermitTerminator

KermitTimeoutSecs

KermitWindowsTotal

KermitWindowsUsed

Overhead

ProtocolError

ProtocolLog

ProtocolStatus

ProtocolType

RTSLowForWrite

StatusDisplay

StatusInterval

TotalErrors

TransmitTimeout

TurnDelay

UpcaseFileNames

! Version

WriteFailAction

XYmodemBlockWait

Zmodem8K

ZmodemFileOption

ZmodemFinishRetry

ZmodemOptionOverride

ZmodemRecover

ZmodemSkipNoFile

Methods
CancelProtocol

EstimateTransferSecs

StartReceive

StartTransmit

StatusMsg

Events
OnProtocolAccept

OnProtocolError

OnProtocolFinish

OnProtocolLog

OnProtocolNextFile

OnProtocolStatus
TApdProtocol Component     525

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

AbortNoCarrier property

property AbortNoCarrier : Boolean

Default: False

Determines whether the protocol is canceled automatically when the DCD modem signal 
drops.

Using the AbortNoCarrier property is better than checking DCD and calling 
CancelProtocol in your own code. When you do this, the protocol engine sends a cancel 
sequence to the remote computer. If hardware flow control is enabled and the modem has 
lowered the DSR or CTS signals as well as DCD, the protocol waits several seconds before 
deciding it can’t send the cancel command, leading to an unnecessary delay for the 
application. The AbortNoCarrier property prevents the protocol engine from sending the 
cancel sequence, so the protocol stops immediately.

Note that when transferring through Winsock the DCD signal is not present (Winsock does 
not contain the concept of a DCD line). The TApdWinsockPort artificially raises and lowers 
the DCD property according to the connection state. The DCD property is therefore valid 
for testing connection states, and the AbortNoCarrier functionality will work as expected.

See also: CancelProtocol

ActualBPS run-time property

property ActualBPS : LongInt

Determines the data transfer rate used by EstimateTransferSecs.

This property can be used to set a bit per second (bps) rate that differs from the associated 
comport component’s baud rate. The bps rate is used only by EstimateTransferSecs to 
compute transfer times. The actual bps differs from the port baud rate only in cases like the 
following: Two machines are communicating via MNP or V.32 modems at 9600 bps; both 
modems are using built-in data compression facilities to increase the effective bps rate 
(perhaps to 11000 bps); the machines are communicating with their modems at a rate of 
19200 baud to ensure that the modems don’t waste time waiting for data to send; and the 
machines are using hardware flow control to pace the flow of data between the modems and 
the machines.
26     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Without setting ActualBPS, the protocol would base transfer rate calculations on a bps rate 
of 19200, the port baud rate. You should set ActualBPS to 9600, the actual connection speed. 
Even this is somewhat inaccurate because it doesn’t take into account the improvements due 
to data compression, which are difficult to predict.

See also: EstimateTransferSecs

AsciiCharDelay property

property AsciiCharDelay : Word

Default: 0

Determines the number of milliseconds to delay between characters during an ASCII file 
transfer. 

The default delay of zero should be retained whenever possible to maximize performance. 
However, if ASCII data is being fed directly into an application such as a text editor, it might 
be necessary to insert delays to allow the application time to process the data.

The following example sets the inter-character delay to 2 milliseconds and the inter-line 
delay to 50 milliseconds:

ApdProtocol1.AsciiCharDelay := 2;
ApdProtocol1.AsciiLineDelay := 50;

See also: AsciiLineDelay

AsciiCRTranslation property

property AsciiCRTranslation : TAsciiEOLTranslation

TAsciiEOLTranslation = (
aetNone, aetStrip, aetAddCRBefore, aetAddLFAfter);

Default: aetNone

Determines the end-of-line translation mode for carriage returns.

Acceptable values to assign to this property are as follows:

aetAddCRBefore does not apply to AsciiCRTranslation, so it is treated as aetNone.

Value Description

aetNone Do not modify the character.

aetStrip Strip the character from the data stream.

aetAddLFAfter Add an <LF> after each <CR>.
TApdProtocol Component     527

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

The following example causes all <LF> characters to be stripped while <CR> characters are 
transmitted:

ApdProtocol1.ProtocolType := ptAscii;
ApdProtocol1.AsciiCRTranslation := aetNone;
ApdProtocol1.AsciiLFTranslation := aetStrip;
ApdProtocol1.StartTransmit;

See also: AsciiEOLChar, AsciiLFTranslation

AsciiEOFTimeout property

property AsciiEOFTimeout : Word

Default: 364

Determines the number of ticks before an ASCII transfer is automatically terminated.

Because most text files are terminated by a ^Z character (ASCII 26), the ASCII protocol 
closes the file and ends the protocol when it finds a ^Z. If the received file isn’t terminated by 
a ^Z, the ASCII protocol determines the file was completely received after a specified 
number of ticks elapse without receiving any new data. The default of 20 seconds can be 
changed by assigning a new tick value to this property.

AsciiEOLChar property

property AsciiEOLChar : Char

Default: ^M (ASCII 13)

Determines the character that triggers an inter-line delay.

After an ASCII file transmit sends the character specified by this property, it pauses for the 
number of milliseconds specified by the AsciiLineDelay property.

Note that this character is not involved in on-the-fly translation of end-of-line characters 
read from or written to an ASCII file; that translation is controlled by the 
AsciiCRTranslation and AsciiLFTranslation properties.

The default end-of-line character is <CR> or ^M. If you are transmitting Unix files, which 
use <LF> or ^J for the end-of-line marker, you should set AsciiEOLChar to ^J.

See also: AsciiLineDelay
28     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

AsciiLFTranslation property

property AsciiLFTranslation : TAsciiEOLTranslation

TAsciiEOLTranslation = (
aetNone, aetStrip, aetAddCRBefore, aetAddLFAfter);

Default: aetNone

Determines the end-of-line translation mode for line feeds.

Acceptable values to assign to this property are as follows:

aetAddLFAfter does not apply to AsciiLFTranslation, so it is treated as aetNone.

See also: AsciiCRTranslation, AsciiEOLChar

AsciiLineDelay property

property AsciiLineDelay : Word

Default: 0

Determines the number of milliseconds to delay between lines during an ASCII file transfer.

The default delay of zero should be retained whenever possible to maximize performance. 
However, if ASCII data is being fed directly into an application such as a text editor, it might 
be necessary to insert delays to allow the application time to process the data.

See also: AsciiCharDelay

AsciiSuppressCtrlZ property

property AsciiSuppressCtrlZ : Boolean

Default: False

Determines whether an ASCII protocol stops transmitting when it encounters the first ^Z in 
the file.

If this property is False, the ASCII protocol transmits all characters in the file, including ^Z 
characters. If it is True, it stops before transmitting the first ^Z that it encounters. Generally 
you should leave this property set to False because the receiver might use ^Z as an end-of-
protocol indicator, as Async Professional does.

Value Description

aetNone Do not modify the character.

aetStrip Strip the character from the data stream.

aetAddCRBefore Insert a <CR> before each <LF>.
TApdProtocol Component     529

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Batch read-only, run-time property

property Batch : Boolean

Returns True if the current protocol supports batch transfers.

Batch transfers are those that allow sending more than one file in the same protocol session. 
Batch transfers in Async Professional include: Kermit, Ymodem, and Zmodem.

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.

BlockCheckMethod property

property BlockCheckMethod : TBlockCheckMethod

TBlockCheckMethod = (
bcmNone, bcmChecksum, bcmChecksum2, bcmCrc16, bcmCrc32, bcmCrcK);

Determines the error checking method used by the protocol.

The default error checking method depends on the protocol. See the section describing each 
protocol at the beginning of this chapter for additional information.

The following values can be assigned to the property:

The Xmodem1K, Xmodem1KG, Ymodem, YmodemG, and ASCII protocols provide either 
no error checking or a single error checking mode, so they ignore assignments to 
BlockCheckMethod.

Value Description

bcmNone No error checking.

bcmChecksum Single byte checksum.

bcmChecksum2 Two byte checksum used by Kermit.

bcmCrc16 16-bit CRC.

bcmCrc32 32-bit CRC used by Zmodem.

bcmCrcK Three byte CRC used by Kermit.
30     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Assigning bcmCrc16 to BlockCheckMethod converts an Xmodem protocol into an 
XmodemCrc protocol. Conversely, assigning bcmCheckSum to BlockCheckMethod 
converts an XmodemCrc protocol to an Xmodem protocol.

The Zmodem protocol accepts only the bcmCrc16 and bcmCrc32 types. The Kermit 
protocol accepts only the bcmChecksum, bcmCheckSum2, and bcmCrcK types.

No error is generated if an unaccepted type is assigned, but the assignment is ignored. You 
should be sure to set the desired ProtocolType before setting a non-default 
BlockCheckMethod.

See also: ProtocolType

BlockErrors read-only, run-time property

property BlockErrors : Word

The number of errors that have occurred while transferring the current block.

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.

See also: TotalErrors

BlockLength read-only, run-time property

property BlockLength : Word

The number of bytes currently being transferred per block.

For some protocols this value remains fixed (e.g., Xmodem always uses 128 byte blocks); for 
others it can vary during the transfer process (e.g., Zmodem can vary between 8192 bytes 
and 256 bytes depending on options and line conditions).

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.

BlockNumber read-only, run-time property

property BlockNumber : Word

The number of blocks transferred so far.

This is obtained by dividing the number of bytes transferred by the current block length, so 
it will change if the block length changes.

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.
TApdProtocol Component     531

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

BytesRemaining read-only, run-time property

property BytesRemaining : LongInt

The number of bytes still to be transferred in the current file.

This is computed as the FileLength minus the value of BytesTransferred. When the file size 
isn’t known, BytesRemaining returns zero.

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.

See also: BytesTransferred, FileLength

BytesTransferred read-only, run-time property

property BytesTransferred : LongInt

The number of bytes transferred so far in the current file.

When transmitting, this number is sometimes only an estimate. The uncertainty comes 
from the fact that the protocol window doesn’t know when a particular byte has actually 
been transferred. BytesTransferred is the number of bytes the protocol window has 
transferred to the output buffer of the communications driver, minus the number of bytes 
that the driver reports are currently in the buffer.

Unfortunately, this calculation is still imperfect because it’s impossible to know how much of 
the output buffer holds actual file data and how much holds overhead characters needed by 
the protocol. Each protocol has a few simple rules it uses to estimate this proportion, which 
in practice yield good estimates.

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.

See also: BytesRemaining
32     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

CancelProtocol method

procedure CancelProtocol;

Cancels the protocol currently in progress.

CancelProtocol cancels the protocol regardless of its current state. If appropriate, a cancel 
string is sent to the remote computer. The protocol generates an OnProtocolFinish event 
with the error code ecCancelRequested, then cleans up and terminates.

The following example shows how to cancel a protocol from within a protocol status dialog 
box:

procedure TStandardDisplay.CancelClick(Sender: TObject);
begin

ApdProtocol1.CancelProtocol;
end;

See also: InProgress, OnProtocolError

ComPort property

property ComPort : TApdCustomComPort

Determines the serial port used by the protocol.

A properly initialized comport component must be assigned to this property before using 
the protocol.

The comport should almost always be set to use 8 data bits, 1 stop bit, and no parity. It 
should have input and output buffers that meet the guidelines described in “Buffer sizes” on 
page 485. Most transfer protocols require that some form of flow control be enabled in the 
comport component.

DestinationDirectory property

property DestinationDirectory : string

Determines the directory where received files are stored.

If the value specifies only a drive (e.g., “D:”), files are stored in the current directory on that 
drive. If the property is set to an empty string, as it is by default, received files are stored in 
the current directory.

See also: FileName
TApdProtocol Component     533

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

ElapsedTicks read-only, run-time property

property ElapsedTicks : LongInt

The time elapsed since the protocol started.

In order to provide accurate character per second transfer rates, the protocol engine doesn’t 
start the timer until it receives the first block from the remote computer, or until it sends the 
first data block. ElapsedTicks is measured in ticks, which occur at roughly 18.2 per second.

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.

See also: EstimateTransferSecs

EstimateTransferSecs method

function EstimateTransferSecs(const Size : LongInt) : LongInt;

Returns the amount of time to transfer a file.

You can call EstimateTransferSecs in a status event handler to obtain the approximate 
number of seconds required to transfer Size bytes of data. Typically, a status routine calls it 
in two places. In the first place, which should generally be executed only one time when the 
status routine is first called, it passes the total size of the file to get the total transfer time. In 
the second place, which should be executed every time the status routine is called, it passes 
the number of bytes remaining to get the transfer time remaining.

EstimateTransferSecs automatically accounts for the baud rate of the port’s connection and 
various internal details of the active protocol. The estimated transfer time is also affected by 
two approximate overhead factors that are specific to the type of protocol. See the Overhead 
and TurnDelay properties for more information about these factors. If the modem data rate 
is different from the comport data rate, also see ActualBPS.

To compute the transfer time, EstimateTransferSecs first computes an effective transfer rate 
using the following formulas:

ActualCPS = ActualBPS div 10

Efficiency = ratio of data bytes to highest possible number of
bytes, calculated as follows:

BlockLength
-------------------------------------------------

BlockLength + Overhead + ((TurnDelay * ActualCPS)
div 1000)

EffectiveCPS = ActualCPS * Efficiency
34     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

Then the estimated transfer time is Size divided by EffectiveCPS.

The following example calls EstimateTransferSecs in a status routine to get the total and 
remaining transfer times:

procedure TForm1.ProtocolStatus(CP : TObject; Options : Word);
var

TotalTime, RemainingTime : LongInt;
begin

with TApdProtocol1(CP) do begin
...
TotalTime := EstimateTransferSecs(FileLength);
RemainingTime := EstimateTransferSecs(BytesRemaining);
....

end;
end;

See also: ActualBPS, OnProtocolStatus, Overhead, TurnDelay

FileDate read-only, run-time property

property FileDate : TDateTime

Returns the date and time of the file being transferred.

For transmitted files the file timestamp is always known. For received files the timestamp is 
known only if the protocol supports this feature and the receiver has received this 
information. FileDate is accurate after FileName returns a non-empty string.

If the timestamp is not known, FileDate returns zero.

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.

See also: FileLength, FileName
TApdProtocol Component     535

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

FileLength read-only, run-time property

property FileLength : LongInt

Returns the size of the file being transferred.

For transmitted files the file size is always known. For received files the file size is known 
only if the protocol supports this feature and the receiver has received this information. 
FileLength is known after FileName returns a non-empty string. If the file size is not known, 
FileLength returns zero.

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.

See also: FileDate

FileMask property

property FileMask : TFileName

Determines the file mask to use when transmitting files.

FileMask can specify a single file or can contain DOS wildcards to transmit multiple files 
using a batch protocol such as Zmodem. If it does not specify a drive and directory, files are 
read from the current directory.

Only a single mask can be used for each transfer. To transfer a group of files that cannot be 
described by a single mask, see “NextFile processing” on page 494.

The following example transmits all files with a ZIP extension in the C:\UPLOAD directory:

ApdProtocol1.FileMask := 'C:\UPLOAD\*.ZIP';
ApdProtocol1.StartTransmit;

See also: Batch

FileName property

property FileName : string

Determines the name of the file currently being received.

This should be considered a read-only property for all protocols except Xmodem and 
ASCII, which do not transfer a filename along with the file data. For these two protocols you 
must assign a value to FileName before calling StartReceive. For the remaining protocols 
supported by Async Professional, you can read the value of FileName within a protocol 
status routine to obtain the file name transferred by the protocol.
36     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

If FileName does not include drive or path information, the incoming file is stored in the 
current directory or the directory specified by DestinationDirectory. If FileName includes 
drive and/or path information and HonorDirectory is True, the incoming file is stored in 
that directory regardless of whether a value was assigned to DestinationDirectory.

The following example stores a file received via Xmodem to 
C:\DOWNLOAD\RECEIVE.TMP:

ApdProtocol1.ProtocolType := ptXmodem;
ApdProtocol1.FileName := 'C:\DOWNLOAD\RECEIVE.TMP';
ApdProtocol1.StartReceive;

See also: DestinationDirectory, HonorDirectory

FinishWait property

property FinishWait : Word

Default: 364

Determines how long the receiver waits for an end-of-transmission signal before timing out.

This property applies only to Xmodem, Ymodem, and Zmodem protocols.

At the end of an Xmodem or Ymodem file transfer the transmitter sends an <EOT> to the 
receiver to signal the end of the file and then waits FinishWait ticks (20 seconds by default) 
for a response. Normally this provides ample time. However, when Xmodem1KG and 
YmodemG are used over links with long propagation times or slow receivers, the default 
value might not be enough. Use FinishWait to extend the amount of time that the 
transmitter waits before timing out and reporting an error. Note that FinishWait is specified 
in ticks. 

Similarly, in a Zmodem transfer the transmitter sends a ZFin packet to the receiver to signal 
the end of the file and then waits FinishWait ticks to receive an acknowledgement before 
timing out.

See also: ZmodemFinishRetry
TApdProtocol Component     537

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

HandshakeRetry property

property HandshakeRetry : Word

Default: 10

Determines the retry count for protocol handshaking.

This property controls how many times each protocol attempts to detect the initial 
handshake from its remote partner. HandshakeRetry applies to all protocols but ASCII, 
which does not perform handshaking.

See also: HandshakeWait

HandshakeWait property

property HandshakeWait : Word

Default: 182

Determines the wait between retries for protocol handshaking.

This property is the number of ticks a protocol waits when a handshake attempt fails before 
it tries again. HandshakeWait applies to all protocols but ASCII, which does not perform 
handshaking.

See also: HandshakeRetry

HonorDirectory property

property HonorDirectory : Boolean

Default: False

Determines whether a protocol honors the directory name of a file being received.

If HonorDirectory is set to True, a received file is stored in the directory specified by the 
transmitter, unless that directory does not already exist, in which case it is stored in the 
current directory or the DestinationDirectory. If HonorDirectory is set to False, the 
transmitter’s directory is ignored.

See also: IncludeDirectory
38     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

IncludeDirectory property

property IncludeDirectory : Boolean

Default: False

Determines whether the complete pathname is transmitted.

If IncludeDirectory is set to True, the protocol sends the drive and directory along with the 
file name of each file it transmits. The receiver might use or ignore this information. If 
IncludeDirectory is False, only the file name is transmitted, even if the file is not found in the 
current directory.

See also: HonorDirectory

InitialPosition read-only, run-time property

property InitialPosition : LongInt

The initial file offset for a resumed transfer.

This property applies only to Zmodemprotocols, which support resumed file transfers. For a 
transfer from scratch, InitialPosition returns zero. For a resumed transfer, InitialPosition 
returns the offset where the transfer was resumed. This offset should be subtracted from 
BytesTransferred to obtain the actual number of bytes transferred during the resumed 
session.

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.

The following example shows how to compute the character per second transfer rate in a 
protocol status routine. The constant values are used to convert ticks to seconds. Note that 
the same expression is valid whether or not the transfer has been resumed.

CPS :=
(91*(ApdProtocol.BytesTransferred-ApdProtocol.InitialPosition))
div (5*ApdProtocol.ElapsedTicks);

See also: BytesTransferred
TApdProtocol Component     539

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

InProgress read-only, run-time property

property InProgress : Boolean

Returns True if a protocol is currently in progress.

A property such as this is important because Async Professional protocols run in the 
background. A call to StartTransmit or StartReceive returns immediately to your code.

InProgress is True immediately after StartTransmit or StartReceive is called. InProgress is 
False immediately before the OnProtocolFinish event is generated.

Use InProgress to determine whether a file transfer is already taking place or not before 
trying to start another transfer.

See also: OnProtocolFinish

KermitCtlPrefix property

property KermitCtlPrefix : Char

Default: ‘#’

Determines the character Kermit uses to quote control characters.

See “Character quoting” on page 513 for more information.

See also: KermitHighbitPrefix, KermitRepeatPrefix

KermitHighbitPrefix property

property KermitHighbitPrefix : Char

Default: ‘Y’

Determines the technique Kermit uses to quote characters that have their eighth bit set.

The value specified by this property is not always transmitted literally as a quote character. If 
it equals ‘Y’, the default, it means that the protocol won’t use high bit quoting unless the 
remote requires it, in which case it uses the prefix character requested by the remote.

If KermitHighbitPrefix equals ‘&’ or is in the ASCII range 33-62 or 96-126, it indicates that 
the protocol requires high bit quoting and that its value is the character used for the prefix.

If C equals ‘N’ or any other value not listed here, the protocol won’t use high bit quoting at 
all, even if the remote requests it.

See “Character quoting” on page 513 for more information.

See also: KermitCtlPrefix, KermitRepeatPrefix
40     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

KermitLongBlocks read-only, run-time property

property KermitLongBlocks : Boolean

Returns True if Kermit long packets are in use.

See also: KermitMaxLen

KermitMaxLen property

property KermitMaxLen : Word

Default: 80

Determines the maximum number of bytes in one Kermit packet.

The normal maximum value is 94, but the default value of 80 is suggested by the Kermit 
Protocol Manual. If KermitMaxLen is set to a value in the range of 95 to 1024, long packets 
are enabled with the specified packet size. As with other Kermit settings, however, long 
packets will be used only if the remote partner also supports it.

See “Kermit options” on page 515 for more information.

See also: KermitMaxWindows

KermitMaxWindows property

property KermitMaxWindows : Word

Default: 0

Determines whether Kermit sliding windows control is enabled.

If KermitMaxWindows is set to a value between 1 and 27, sliding windows are enabled with 
the specified window count. This allows a Kermit transmitter to send additional packets 
without waiting for an acknowledgement from the receiver, thus improving throughput. As 
with other Kermit settings, however, sliding windows control will be used only if the remote 
partner also supports it.

See “Sliding Windows Control” on page 518 for more information.

See also: KermitWindowsTotal, KermitWindowsUsed
TApdProtocol Component     541

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

KermitPadCharacter property

property KermitPadCharacter : Char

Default: ‘ ’ (ASCII 32)

Determines the character that Kermit uses to pad the beginning of each packet.

See “Kermit options” on page 515 for more information.

See also: KermitTerminator

KermitPadCount property

property KermitPadCount : Word

Default: 0

Determines the number of pad characters that Kermit transmits at the beginning of each 
packet.

See “Kermit options” on page 515 for more information.

See also: KermitPadCharacter

KermitRepeatPrefix property

property KermitRepeatPrefix : Char

Default: ‘~’

Determines the prefix that Kermit uses when compressing strings of repeated characters.

When Kermit sees four or more equal and adjacent characters, it compresses the sequence 
into a quote character (KermitRepeatPrefix), a length byte, and the repeated character. The 
default quote character rarely needs to be changed.

See “Character quoting” on page 513 for more information.

See also: KermitCtlPrefix, KermitHighbitPrefix
42     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

KermitSWCTurnDelay property

property KermitSWCTurnDelay : Word

Default: 0

Determines the turnaround delay used by EstimateTransferSecs when a Kermit sliding 
windows protocol is in use.

This property is the time in milliseconds for a data block to transit from the sender to the 
receiver, for the receiver to send an acknowledgement, and for the acknowledgement to 
arrive back at the sender. It is used by the EstimateTransferSecs method to estimate the time 
to transfer a given amount of data.

When Kermit sliding windows control is enabled, the transmitter does not generally wait for 
acknowledgement of a packet before sending the next one. Hence, an appropriate default is 
zero milliseconds.

EstimateTransferSecs uses the value of the TurnDelay property for Kermit transfers when 
sliding windows control is not enabled, and the KermitSWCTurnDelay property when it is 
enabled.

See also: Overhead, TurnDelay

KermitTerminator property

property KermitTerminator : Char

Default: ^M (ASCII 13)

Determines the character used to terminate a Kermit data packet.

This character is used only by Kermit hosts that cannot start processing a data line until a 
terminating character is received.

See “Kermit options” on page 515 for more information.

See also: KermitPadCharacter
TApdProtocol Component     543

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

KermitTimeoutSecs property

property KermitTimeoutSecs : Word

Default: 5

Determines how long Kermit waits for the next expected byte.

If a Kermit transmitter waits more than KermitTimeoutSecs for an acknowledgement, it 
resends the last packet. If a Kermit receiver waits more than KermitTimeoutSecs for the next 
byte, it sends an error packet to the transmitter.

See also: TransmitTimeout

KermitWindowsTotal read-only, run-time property

property KermitWindowsTotal : Word

Returns the total number of Kermit sliding windows negotiated for the current transfer.

If sliding windows control is disabled, KermitWindowsTotal returns 0.

See also: KermitMaxWindows, KermitWindowsUsed

KermitWindowsUsed read-only, run-time property

property KermitWindowsUsed : Word

Returns the number of Kermit sliding windows that currently contain data.

If sliding windows control is disabled, KermitWindowsUsed returns 0.

See also: KermitMaxWindows, KermitWindowsTotal
44     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnProtocolAccept event

property OnProtocolAccept : TProtocolAcceptEvent

TProtocolAcceptEvent = procedure(CP : TObject;
var Accept : Boolean; var FName : TPassString) of object;

TPassString = string[255];

Defines an event handler that is called as soon as the name of an incoming file is known.

This event handler provides an opportunity for the receiver to reject or rename the 
incoming file. If an OnProtocolAccept handler is not installed, all files are accepted (subject 
to the setting of the WriteFailAction property).

CP is the protocol component that is receiving the file. The event handler should set Accept 
to True to accept the file, False to reject it. FName is the name of the file to be received. The 
event handler can change the name if, for example, it would overwrite an existing file.

See “AcceptFile processing” on page 495 for more information.

See also: OnProtocolNextFile, WriteFailAction

OnProtocolError event

property OnProtocolError : TProtocolErrorEvent

TProtocolErrorEvent = procedure(
CP : TObject; ErrorCode : SmallInt) of object;

Defines an event handler that is called when an unrecoverable protocol error occurs.

This event is generated only for unrecoverable errors. Most protocol errors caused by line 
noise are handled automatically by the protocol and are not reported to this event handler.

CP is the protocol component that generated the error. ErrorCode is a number indicating 
the type of error.

Note that the OnProtocolFinish event is generated soon after the OnProtocolError event and 
passes the same error code. OnProtocolFinish is generated for both successful and failed 
transfers, so you may want to use it instead of an OnProtocolError handler.

See “Error handling” on page 488 for more information.

See also: BlockErrors, OnProtocolFinish
TApdProtocol Component     545

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnProtocolFinish event

property OnProtocolFinish : TProtocolFinishEvent

TProtocolFinishEvent = procedure(
CP : TObject; ErrorCode : SmallInt) of object;

Defines an event handler that is called when a protocol transfer ends.

This event is generated whether the protocol ends successfully or not. If it ends successfully, 
ErrorCode is zero. Otherwise, ErrorCode is a number indicating the type of error. CP is the 
protocol component that generated the error.

An application could use this handler to display a completion dialog box (needed only if a 
protocol status event handler is not also in use) or to enable the scheduling of another file 
transfer.

The following example displays a message whenever a protocol finishes, and enables an 
associated terminal window to accept data again:

procedure TForm1.ApdProtocol1ProtocolFinish(
CP : TObject; ErrorCode : SmallInt);

begin
ShowMessage('Protocol finished: '+ErrorMsg(ErrorCode));
ApdTerminal1.Active := True;

end;

See also: InProgress, OnProtocolError

OnProtocolLog event

property OnProtocolLog : TProtocolLogEvent

TProtocolLogEvent = procedure(CP : TObject; Log : Word) of object;

Defines an event handler that is called at well-defined points during a protocol transfer.

The primary purpose of this event is to give applications a chance to log statistical 
information about file transfers such as the transfer time and whether they succeeded or 
failed. Applications can also use this event for start-up and cleanup activities such as 
deleting partial files after unsuccessful downloads.
46     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

CP is the protocol component that needs to be logged. Log is a code that indicates the 
current state of the file transfer. The possible states are:

No other information is passed along with the event. Use protocol status properties such as 
FileName and ElapsedTicks to get additional information about the state of the transfer.

See “Protocol logging” on page 493 for more information.

See also: ProtocolLog

OnProtocolNextFile event

property OnProtocolNextFile : TProtocolNextFileEvent

TProtocolNextFileEvent = procedure(
CP : TObject; var FName : TPassString) of object;

TPassString = string[255];

Defines an event handler that is called to determine the next file to transmit in a batch 
transfer.

If no handler is installed for this event, Async Professional transmits the files that match the 
DOS filemask assigned to the FileMask property. If you need to transmit a batch of files that 
cannot be described by a single filemask, you need to install an event handler for 
OnProtocolNextFile.

CP is the protocol component that is transmitting. The event handler should return the next 
file to transmit in FName, or an empty string to terminate the batch.

See “NextFile processing” on page 494 for more information.

See also: FileMask

Log State

lfReceiveStart File receive is starting.

lfReceiveOK File was received successfully.

lfReceiveFail File receive failed.

lfReceiveSkip File was skipped (rejected by receiver).

lfTransmitStart File transmit is starting.

lfTransmitOK File was transmitted successfully.

lfTransmitFail File transmit failed.

lfTransmitSkip File was skipped (rejected by receiver).
TApdProtocol Component     547

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnProtocolStatus event

property OnProtocolStatus : TProtocolStatusEvent

TProtocolStatusEvent = procedure(
CP : TObject; Options : Word) of object;

Defines an event handler that is called regularly during a file transfer.

This event is generated for each block transmitted or received, after the completion of each 
major operation (e.g., renaming a file, detecting an error, ending the transfer), and at 
intervals of StatusInterval ticks (by default 18 ticks, or about 1 second). The program can 
use it to update a status display that informs the user about the protocol progress.

CP is the protocol component that is in progress. A number of the properties of this 
component can be read to establish the status of the transfer. Options is set to apFirstCall (1) 
on the first call to the handler, apLastCall (2) on the last call to the handler, and zero on all 
other calls.

A predefined status component called TApdProtocolStatus is supplied with Async 
Professional. For a standard protocol status window you can simply create an instance of 
this component and assign it to the StatusDisplay property of the TApdProtocol component. 
If you do so, there is no need to supply your own OnProtocolStatus event handler.

See “Protocol status” on page 489 for more information.

See also: StatusDisplay, StatusInterval

Overhead property

property Overhead : Word

Determines the number of overhead bytes per data block used by EstimateTransferSecs.

When a protocol transfers a data block, not all of the bytes are actually data from the file 
being transferred. Some of them are part of the packet header and others may be used to 
quote or escape data characters that cannot be transmitted as-is.

When you select a protocol by assigning to the ProtocolType property, the TApdProtocol 
component assigns a default value to Overhead that matches the characteristics of the 
protocol. For some protocols the exact value of Overhead depends on the actual data being 
transmitted, but the default is a reasonable estimate that gives reasonable transfer time 
estimates. If the estimates are consistently in error, you can assign a new value to Overhead.

See also: EstimateTransferSecs, TurnDelay
48     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ProtocolError read-only, run-time property

property ProtocolError : Integer

Returns the code of the last error returned by the protocol.

This property returns zero except for the first call after an error is encountered. See “Error 
Handling and Exception Classes” on page 900 for a complete list of error codes.

See also: ProtocolStatus

ProtocolLog property

property ProtocolLog : TApdProtocolLog

An instance of a protocol logging component.

If ProtocolLog is nil, as it is by default, the protocol does not perform any automatic logging. 
You can install an OnProtocolLog event handler to perform logging in this case.

If you create an instance of a TApdProtocolLog class (see page 583), or a descendant thereof, 
and assign it to ProtocolLog, the protocol will log itself automatically.

ProtocolStatus read-only, run-time property

property ProtocolStatus : Word

Returns a code that indicates the current state of the protocol.

This property is most useful within an OnProtocolStatus event handler. See “Protocol 
status” on page 489 for more information.

See also: ProtocolError
TApdProtocol Component     549

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

ProtocolType property

property ProtocolType : TProtocolType

TProtocolType = (ptNoProtocol, ptXmodem, ptXmodemCRC, ptXmodem1K,
ptXmodem1KG, ptYmodem, ptYmodemG, ptZmodem, ptKermit, ptAscii);

Default: ptZmodem

Determines the type of file transfer protocol.

Async Professional encapsulates all of the file transfer protocols that it supports into a single 
component. To select a particular type of protocol, you must assign the desired type to the 
ProtocolType property. You should generally assign to ProtocolType shortly after creating 
the TApdProtocol component and before assigning other properties, since various defaults 
are assigned whenever you change ProtocolType, and some properties are valid only when 
ProtocolType has a particular value.

Assigning a new value to ProtocolType first deallocates any protocol-specific memory used 
by the prior protocol, then allocates and initializes any structures required by the current 
protocol.

You should generally not assign ptNoProtocol to ProtocolType, but it can be used to 
deallocate previous protocol memory while temporarily not allocating new protocol 
memory.

See also: BlockCheckMethod

RTSLowForWrite property

property RTSLowForWrite : Boolean

Default: False

Determines whether protocols force RTS low while writing received data to disk.

When RTSLowForWrite is set to True, hardware flow control is used to prevent the 
transmitter from sending additional data while the receiver writes data to disk. As soon as 
the disk write is finished, RTS is raised again. This feature might be required if other 
Windows applications are being run at the same time as a protocol transfer or if the disk 
driver leaves interrupts disabled for an excessive time.

In order for this option to be effective, disk write caching must be disabled.

If the protocol is transferring files using a modem, it might also be necessary to configure 
the modem to react correctly to the RTS signal.
50     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

StartReceive method

procedure StartReceive;

Tells the protocol to start receiving files.

The steps leading up to calling StartReceive look something like this:

1.  Create a port component.

2.  Create a protocol component.

3.  Set ProtocolType.

4.  Set other properties to customize the protocol.

5.  Write suitable handlers for protocol events.

6.  Call StartReceive.

StartReceive returns immediately and receives files in the background, occasionally 
generating events to keep the application apprised of progress. When the protocol is 
finished, either successfully or with a fatal error, it generates an OnProtocolFinish event and 
its InProgress property starts returning False.

See also: ProtocolType, StartTransmit

StartTransmit method

procedure StartTransmit;

Tells the protocol to start transmitting files.

The steps leading up to calling StartTransmit look something like this:

1.  Create a port component.

2.  Create a protocol component.

3.  Set ProtocolType.

4.  Set other properties to customize the protocol.

5.  Write suitable handlers for protocol events.

6.  Set FileMask or use an OnProtocolNextFile event handler to return a list of files to 
transmit.

7.  Call StartTransmit.
TApdProtocol Component     551

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

StartTransmit returns immediately and transmits files in the background, occasionally 
generating events to keep the application apprised of progress. When the protocol is 
finished, either successfully or with a fatal error, it generates an OnProtocolFinish event and 
its InProgress property starts returning False.

See also: FileMask, OnProtocolNextFile, ProtocolType, StartReceive

StatusDisplay property

property StatusDisplay : TApdAbstractStatus

An instance of a protocol status window.

If StatusDisplay is nil, as it is by default, the protocol does not provide an automatic status 
window. You can install an OnProtocolStatus event handler to display status in this case.

If you create an instance of a class derived from TApdAbstractStatus, such as the provided 
TApdProtocolStatus component (see page 582), and assign it to ProtocolStatus, the status 
window will be displayed and updated automatically.

StatusInterval property

property StatusInterval : Word

Default: 18

The maximum number of clock ticks between OnProtocolStatus events.

The OnProtocolStatus event is generated for each block transmitted or received, after the 
completion of each major operation (e.g., renaming a file, detecting an error, ending the 
transfer), and at intervals of StatusInterval ticks.

This property also determines how frequently the StatusDisplay window is updated.

See also: OnProtocolStatus, StatusDisplay
52     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

StatusMsg method

function StatusMsg(const Status : Word) : string;

Returns an English string for a protocol status code.

This routine is intended primarily for use in protocol status routines. It returns a status 
string from the string table resource linked into your EXE. The string ID numbers 
correspond to the values of the psXxx protocol status constants (see page 491). If the string 
table doesn’t contain a string resource with the requested ID, an empty string is returned.

The returned string is never longer than MaxMessageLen (80) characters.

See also: ProtocolStatus

TotalErrors read-only, run-time property

property TotalErrors : Word

The number of errors encountered since the current file transfer was started.

This error count is reset whenever a new file is started. This property is most useful within 
an OnProtocolStatus event handler. See “Protocol status” on page 489 for more 
information.

See also: BlockErrors

TransmitTimeout property

property TransmitTimeout : Word

Default: 1092

Determines the maximum time a sender will wait for the receiver to release flow control.

If the receiver blocks flow control for longer than TransmitTimeout ticks (60 seconds by 
default), the protocol is aborted.
TApdProtocol Component     553

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

TurnDelay property

property TurnDelay : Word

Default: 0

Determines the turnaround delay, in milliseconds, per data block used by 
EstimateTransferSecs.

When a protocol transfers a data block, the transmitter must often wait for an 
acknowledgement from the receiver before it transmits the next block. This delay slows 
down the overall throughput of the protocol and must be accounted for by 
EstimateTransferSecs.

When you select a protocol by assigning to the ProtocolType property, the TApdProtocol 
component assigns a default value to TurnDelay that is a good estimate for the given 
protocol. However, the actual TurnDelay often depends on the characteristics of the 
communications link between the sender and receiver (e.g., a satellite link would impose a 
longer delay than a null modem cable). If the values returned by EstimateTransferSecs are 
consistently in error, you can assign a new value to TurnDelay.

See also: EstimateTransferSecs, Overhead

UpcaseFileNames property

property UpcaseFileNames : Boolean

Default: True

Determines whether the protocol converts file names to upper case.

Applications provide file names to protocols in the OnProtocolNextFile event or by setting 
the FileName property. File names can also be received as part of the protocol transfer. 
Because the DOS/16-bit Windows file system stores all file names in upper case, the protocol 
component converts file and path names to uppercase.

Windows 95/98 and Windows NT preserve the specified case in file names, although they 
don’t normally use case to distinguish between file names. For example, the file name 
“MixCase.Txt” is stored by the file system with the upper and lower case characters 
preserved, however, it can be accessed by any combination of upper and lower case (e.g., 
“MIXCASE.TXT” or “mIXCAse.tXt”). If you want to display the preserved case in status 
and log routines, set UpcaseFileNames to False.
54     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

WriteFailAction property

property WriteFailAction : TWriteFailAction

TWriteFailAction = (
wfWriteNone, wfWriteFail, wfWriteRename, wfWriteAnyway);

Default: wfWriteRename

Determines the receiver’s behavior when the destination file already exists.

You should assign one of the following values to WriteFailAction:

When wfWriteRename is selected and the destination file already exists, the first character in 
the incoming file name is replaced with ‘$’ (e.g., “SAMPLE.DOC” becomes 
“$AMPLE.DOC”). If that renamed file already exists, it is overwritten without warning.

The logic that handles these overwrite options is executed after the OnProtocolAccept event 
has been generated. If you write an event handler that deals with possible overwrites, be sure 
to set WriteFailAction to wfWriteAnyway before starting a transfer.

See also: OnProtocolAccept, ZmodemFileOption

XYmodemBlockWait property

property XYmodemBlockWait : Word

Default: 91

Determines the number of ticks Xmodem and Ymodem wait between blocks for a response 
from the remote.

If the wait exceeds XYmodemBlockWait ticks, a sending protocol retransmits the block and 
a receiving protocol aborts the transfer. The default wait is about 5 seconds.

See also: TransmitTimeout

Value Description

wfWriteFail Fail the receive attempt.

wfWriteRename Rename the incoming file.

wfWriteAnyway Overwrite the existing file.
TApdProtocol Component     555

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Zmodem8K property

property Zmodem8K : Boolean

Default: False

Determines whether 8K blocks are enabled.

See “Large block support” on page 512 for more information.

ZmodemFileOption property

property ZmodemFileOption : TZmodemFileOptions

TZmodemFileOptions = (zfoNoOption, zfoWriteNewerLonger,
zfoWriteCrc, zfoWriteAppend, zfoWriteClobber, zfoWriteNewer,
zfoWriteDifferent, zfoWriteProtect);

Default: zfoWriteNewer

Determines the Zmodem file management options to use.

It should be assigned one of the following values:

Regardless of the value of this property, new incoming files are accepted unless the 
ZmodemSkipNoFile property is set to False.

The logic that handles these file management options is executed after the 
OnProtocolAccept event has been generated. If you write an event handler that deals with 
possible overwrites, be sure to set ZmodemFileOption to zfoWriteClobber before starting to 
receive.

See also: ZmodemOptionOverride, ZmodemSkipNoFile

Value Description

zfoWriteNewerLonger Transfer if new, newer or longer.

zfoWriteCrc Not supported, treated same as WriteNewer.

zfoWriteAppend Transfer if new, append if exists.

zfoWriteClobber Transfer regardless.

zfoWriteNewer Transfer if new or newer.

zfoWriteDifferent Transfer if new or different dates or lengths.

zfoWriteProtect Transfer only if new.
56     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ZmodemFinishRetry property

property ZmodemFinishRetry : Word;

Default: 0

Specifies the number of times to retry the final handshake of a Zmodem protocol session.

A Zmodem transmitter signals that it has no more files to transmit by sending a ZFin frame. 
The receiver acknowledges this by sending its own ZFin frame. The transmitter then sends 
“OO” as the final frame of the transfer.

The Zmodem specification indicates that this portion of the protocol isn’t critical (since all 
files have already been completely received) and that a timeout while waiting for the 
response should be ignored. However, this strategy doesn’t work well with DSZ, a Zmodem 
implementation by Omen Technology, Inc.

DSZ retries after a ZFin timeout, which can sometimes cause unneeded packet transfers 
when the handshake timeout is 10 seconds or less. To handle this situation, Async 
Professional mimics DSZ when ZmodemFinishRetry is set a non-zero value. It waits 
FinishWait ticks for a response.

ZmodemFinishRetry is the number of times to resend the ZFin in response to a timeout. 
When ZmodemFinishRetry is zero the ZFin is sent only once. If no response is received the 
protocol finishes without an error.

See also: FinishWait

ZmodemOptionOverride property

property ZmodemOptionOverride : Boolean

Default: False

Determines whether a remote sender’s options are ignored.

If ZmodemOptionOverride is set to True, a receiving protocol component ignores the 
sender’s options and uses its own settings for ZmodemFileOption and ZmodemSkipNoFile. 
Otherwise, it uses the sender’s options.

See also: ZmodemFileOption
TApdProtocol Component     557

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

ZmodemRecover property

property ZmodemRecover : Boolean

Default: False

Determines whether Zmodem performs file recovery.

Zmodem is capable of resuming interrupted file transfers if the receiver kept the partial file 
when a previous transfer was interrupted. The transmitter requests this action by setting 
ZmodemRecover to True. The request is transmitted to the receiver along with the file name 
to be recovered. If the receiver has this file, it sends back the current file size. The transmitter 
then adjusts its file offset and starts sending data from that point. If the receiver doesn’t 
already have this file, a normal file transfer takes place.

See “Transfer resume” on page 510 for more information.

See also: InitialPosition

ZmodemSkipNoFile property

property ZmodemSkipNoFile : Boolean

Default: False

Determines whether a Zmodem receiver should skip all files that don’t already exist.

See also: ZmodemFileOption
58     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdFtpClient Component
The TApdFtpClient component is a specialized TApdWinsockPort that implements client-
side file transfer protocol (FTP) capabilities as defined by RFC 959. TApdFtpClient presents 
an intuitive interface that makes it easy to navigate and manipulate directories and files on 
an FTP server.

Connecting and logging on to an FTP server is performed by the Login method. Logging off 
and disconnecting is performed by Logout. Directory manipulation is performed by the 
ChangeDir, Delete, ListDir, MakeDir, and Rename methods. File transfer and manipulation 
is performed by the Delete, Rename, Retrieve, and Store methods. Server status and help 
information are performed by the Help, and Status methods, and an arbitrary FTP 
command string can be sent to the connected FTP server via SendFtpCommand.

Only one FTP operation is allowed at any given time, however these methods operate in an 
asynchronous (i.e., non-blocking) fashion. This means that when a method is called to 
initiate an FTP operation, it returns immediately and the operation is performed in the 
background. When the operation is completed, the OnFtpStatus event is fired to notify the 
application. During file transfer operations, the OnFtpStatus event is fired periodically to 
provide status updates.
TApdFtpClient Component     559

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

" TApdComPort (AdPort) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

# TApdWinsockPort (AdWnPort) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

TApdCustomFtpClient (AdFtp)

TApdFtpClient (AdFtp)

Properties
Account

" AutoOpen

" BaseAddress

" Baud

" BufferFull

BytesTransferred

" ComHandle

Connected

ConnectTimeout

" CTS

" DataBits

" DCD

" DeltaCTS

" DeltaDCD

" DeltaDSR

" DeltaRI

# DeviceLayer

" DSR

" DTR

FileLength 

FileType

" FlowState

FtpLog

" HWFlowOptions

" InBuffFree

" InBuffUsed

InProgress

" InSize

" LineBreak

" LineError

" LogHex

" LogName

" LogSize

" ModemStatus

# Open

PassiveMode

Password

" OutBuffFree

" OutBuffUsed

" Output

" OutSize

" Parity

RestartAt

" RI

" RS485Mode

" RTS

ServerAddress

" StopBits

" SWFlowOptions

" TapiMode

" TraceAllHex

" TraceName

" TraceSize

" Tracing

TransferTimeout

" UseEventWord

UserLoggedIn

UserName

! Version

# WsAddress

# WsLocalAddresses

# WsLocalAddressIndex

# WsMode

# WsPort

# WsSocksServerInfo

# WsTelnet

" XOffChar

" XOnChar
60     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Methods
Abort

" ActiveDeviceLayer

" AddDataTrigger

" AddStatusTrigger

" AddTimerTrigger

" AddTraceEntry

ChangeDir

" CharReady

" CheckForString

CurrentDir

Delete

" FlushInBuffer

" FlushOutBuffer

" ForcePortOpen

" GetBlock

" GetChar

Help

" InitPort

ListDir

Login

Logout

MakeDir

" PeekBlock

" PeekChar

" ProcessCommunications

" PutBlock

" PutChar

" PutString

" RemoveAllTriggers

" RemoveTrigger

Rename

Retrieve

" SendBreak

SendFtpCommand

" SetBreak

" SetStatusTrigger

" SetTimerTrigger

Status

Store

Events
OnFtpError

OnFtpLog

OnFtpReply

OnFtpStatus

" OnPortClose

" OnPortOpen

" OnTrigger

" OnTriggerAvail

" OnTriggerData

" OnTriggerLineError

" OnTriggerModemStatus

" OnTriggerOutbuffFree

" OnTriggerOutbuffUsed

" OnTriggerOutSent

" OnTriggerStatus

" OnTriggerTimer

# OnWsAccept

# OnWsConnect

# OnWsDisconnect

OnWsError
TApdFtpClient Component     561

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference

Abort method

procedure Abort;

Terminates a file transfer in progress.

Calling Abort stops a file transfer that is in progress. 

See also: Retrieve, Store

Account property

property Account : string

Specifies the user’s account information.

Account information is required by some FTP servers for login or storing files. If the server 
requests account information to complete an operation, the Account string is automatically 
sent to the server.

See also: Password, Login, UserName

BytesTransferred  read-only, run-time property

property BytesTransferred : Longint

The number of bytes transferred so far in the current file.

When sending a file, BytesTransferred is the number of bytes written to the Winsock buffer, 
which may be less than the number of bytes actually transmitted to the server. When 
receiving a file, BytesTransferred is the actual number of bytes received. This is useful within 
an OnFtpStatus event handler when the status code is scProgress.

See also: OnFtpStatus
62     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ChangeDir method

function ChangeDir(const RemotePathName : string) : Boolean;

Changes the current working directory on the FTP server.

RemotePathName specifies the directory at the server. If RemotePathName contains an 
empty string, or a change working directory operation is not allowed given the current 
protocol state, ChangeDir returns False, otherwise True is returned and the operation is 
initiated.

If the directory is successfully changed at the server, the OnFtpStatus event is fired with the 
scComplete status code. If the directory operation is rejected by the server, the OnFtpError 
event is fired and the operation is terminated.

See also: OnFtpError, OnFtpStatus

Connected  read-only, run-time property

property Connected : Boolean

Indicates whether a connection to an FTP server has been established.

While a control connection to an FTP server is open, Connected will return True. This does 
not indicate that the user is currently logged in to the server. To determine if the user is 
logged in, use the UserLoggedIn property.

See also: UserLoggedIn

ConnectTimeout property

property ConnectTimeout : Integer

Default: 0

ConnectTimeout determines the connection timeout when establishing the control 
connection.

When establishing the initial control connection to the FTP server, the ConnectTimeout 
property determines the timeout (in ticks) associated with the connection attempt. If 
ConnectTimeout is 0 (the default), the TApdFTPClient will not timeout. If ConnectTimeout 
> 0, the connection attempt will be terminated if a connection is not made within 
ConnectTimeout ticks. If a timeout occurs, the OnFTPError event is generated with 
ErrorCode = ecFtpConnectTimeout.

See also: Login
TApdFtpClient Component     563

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

CurrentDir method

function CurrentDir : Boolean;

Obtains the path name of the current working directory from the FTP server.

If a directory operation is not allowed given the current protocol state, CurrentDir returns 
False, otherwise True is returned and the operation is initiated. When the server responds 
with the requested information, the OnFtpStatus event is fired with the csCurrentDir 
command status code, and the InfoText parameter will point to a null terminated string 
containing the path name of the current working directory.

If the operation is rejected by the server, the OnFtpError event is fired and the operation is 
terminated.

See also: OnFtpError, OnFtpStatus

Delete method

function Delete(const RemotePathName : string) : Boolean;

Removes a file or directory at an FTP server. 

RemotePathName specifies the file or directory at the server. If RemotePathName is an 
empty string or a delete operation is not allowed given the current protocol state, Delete 
returns False, otherwise True is returned and the operation is initiated.

If the file or directory is successfully deleted at the server, the OnFtpStatus event is fired with 
the scComplete status code. If the delete operation is rejected by the server, the OnFtpError 
event is fired and the operation is terminated.

See also: OnFtpError, OnFtpStatus

FileLength read-only, run-time property

property FileLength : Longint

Returns the size of the file being transferred.

If the file size is not known, FileLength returns zero. This property is most useful within an 
OnFtpStatus event handler when the status code is scProgress.

See also: BytesTransferred, OnFtpStatus
64     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

FileType property

property FileType : TFtpFileType

TFtpFileType = (ftAscii, ftBinary);

Default: ftAscii

Specifies the file data type.

Transferring a file in the wrong format can damage the file so that it becomes unusable. This 
is particularly true of binary files, which, if transferred using ASCII format, are no longer 
usable. Be sure to set FileType prior to initiating a file transfer. For text files use ftAscii; 
otherwise, use ftBinary. 

FtpLog property

property FtpLog : TApdFtpLog

An instance of a FTP logging component.

If FtpLog is nil (the default), TApdFtpClient does not provide automatic logging. You can 
install an OnFtpLog event handler to provide logging services in this case.

FtpLog is usually set automatically at design time to the first TApdFtpLog component that is 
found on the form. If necessary, use the Object Inspector to select a different logging 
component.

Setting the FtpLog property at run time is necessary only when using a dynamically created 
logging component or when selecting among several logging components.

See also: OnFtpLog, TApdFtpLog
TApdFtpClient Component     565

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Help method

function Help(const Command : string) : Boolean;

Obtains help information from an FTP server.

If Command is not an empty string, the FTP command syntax for the specified command is 
obtained, otherwise the names of all the commands supported by the server are retrieved. If 
the help operation is allowed given the current protocol state, Help returns False, otherwise 
True is returned and the operation is initiated.

If the help operation is successful, the OnFtpStatus event is fired with the csDataAvail 
command status code, and the InfoText parameter will point to a null terminated string 
containing the raw text of the help information received from the server.

If the help operation is rejected by the server, the OnFtpError event is fired and the 
operation is terminated.

See also: OnFtpError, OnFtpStatus

InProgress  read-only, run-time property

property InProgress : Boolean

Returns True if an FTP operation is currently in progress.

This property is important since a call to initiate a command to an FTP server returns 
immediately to your code. If you do not use an OnFtpStatus event handler to detect when 
the operation is complete, you can check InProgress in a polling loop.

See also: OnFtpStatus

ListDir method

function ListDir(
const RemotePathName : string; FullList : Boolean) : Boolean;

Obtains a listing of contents of a remote directory.

RemotePathName specifies the remote directory at the server. If RemotePathName is an 
empty string, the contents of the current working directory will be obtained. Set FullList to 
True to request that full file information for each file in the directory be obtained from the 
server, otherwise only file names will be obtained. If a list operation is not allowed given the 
current protocol state, List returns False, otherwise True is returned and the operation is 
initiated.
66     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

If the list operation is successful, the OnFtpStatus event is fired with the csDataAvail 
command status code, and the InfoText parameter will point to a null terminated string 
containing the raw text of the directory listing received from the server.

If the list operation is rejected by the server, the OnFtpError event is fired and the operation 
is terminated.

See also: OnFtpError, OnFtpStatus

Login method

function Login : Boolean;

Establishes an FTP session with the FTP server specified by ServerAddress.

The logon procedure consists of opening a port to establish a control connection to an FTP 
server and logging on to the server with the user identification specified by UserName and 
Password. The ServerAddress, UserName, and Password properties must be set prior to 
calling Login. If login is allowed given the current protocol state the function returns True 
immediately. Otherwise False is returned. 

If a connection to the server is established, the OnFtpStatus event is fired with the scOpen 
status code. 

If the server authenticates the user identification, the OnFtpStatus event is fired with the 
scLogin status code and the UserLoggedIn property is set to True. Otherwise, the 
OnFtpError event is fired and the connection is left open. Subsequent calls to Login will 
send the user identification information to the server via the existing connection. Call 
Logout to close the existing connection.

If a connection to the server cannot be established, an EApdSocket exception is raised.

See also: ConnectTimeout, Logout, OnFtpError, OnFtpStatus, Password, ServerAddress,   
UserLoggedIn, UserName
TApdFtpClient Component     567

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Logout method

function Logout : Boolean;

Terminates the active FTP session and closes the control connection. 

If a file transfer is in progress then the control connection will remain open until the transfer 
has completed.

If logout is allowed given the current protocol state the function returns True immediately. 
When the user is logged out by the server, the OnFtpStatus event is fired with the scLogout 
status code and the UserLoggedIn property is set to False.

When the control connection port has closed, the OnFtpStatus event is fired with the 
scClose status code.

See also: Login, OnFtpStatus, UserLoggedIn

MakeDir method

function MakeDir(const RemotePathName : string) : Boolean;

Creates the specified directory on the FTP server.

RemotePathName specifies the new directory at the server. If RemotePathName contains an 
empty string, or a directory operation is not allowed given the current protocol state, 
ChangeDir returns False, otherwise True is returned and the operation is initiated.

If the directory is successfully created at the server, the OnFtpStatus event is fired with the 
scComplete status code. If the directory operation is rejected by the server, the OnFtpErrors 
event is fired and the operation is terminated.

See also: OnFtpError, OnFtpStatus

OnFtpError event

property OnFtpError : TFtpErrorEvent

TFtpErrorEvent = procedure(
Sender : TObject; ErrorCode : Integer;
ErrorText : PChar) of object;

Defines an event handler that is called an FTP protocol error occurs.

The server has rejected the FTP operation attempted and the operation is terminated. 
ErrorCode contains the FTP error code returned by the server, and ErrorText points to a 
null terminated string containing the text of the error.

See also: FTP Error Codes
68     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

OnFtpLog event

property OnFtpLog : TFtpLogEvent

TFtpLogEvent = procedure(
Sender : TObject; LogCode : TFtpLogCode) of object;

TFtpLogCode = (lcClose, lcOpen, lcLogin,
lcLogout, lcDelete, lcRename, lcReceive, lcStore,
lcComplete, lcRestart, lcTimeout, lcUserAbort);

Defines an event handler that is called at designated points during an FTP file operation.

The primary purpose of this event is to give the application a chance to log auditing 
information about file operations during a FTP session.

See also: TApdFtpLog

OnFtpReply event

property OnFtpReply : TFtpReplyEvent

TFtpReplyEvent = procedure(Sender : TObject;
ReplyCode : Integer; ReplyText : PChar) of object;

Defines an event handler that is called when an FTP server returns a reply.

An FTP reply consists of a 3-digit alphanumeric code as defined in RFC 959, followed by 
some text. ReplyCode contains the integer form of the 3-digit alphanumeric code, and 
ReplyText points to a null terminated string containing the entire reply text.

The primary purpose of this event is to monitor the server’s response to the operations 
initiated by the application. This event can be useful during debugging.

OnFtpStatus event

property OnFtpStatus : TFtpStatusEvent

TFtpStatusEvent = procedure(Sender : TObject;
StatusCode : TFtpStatusCode; InfoText : PChar) of object;

TFtpStatusCode = (scClose, scOpen, scLogout, scLogin, scComplete,
scCurrentDir, scDataAvail, scProgress, scTransferOK, scTimeout);

Defines an event handler that is called when the state of the FTP protocol changes.

StatusCode indicates the current state of the FTP client. When StatusCode equals 
csDataAvail, InfoText points to a null terminated string containing raw text received from 
the server. Otherwise InfoText is nil.
TApdFtpClient Component     569

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following describes the possible status codes:

Status Meaning

scClose The control connection port to the FTP server is closed.
The Login method must be called to re-connect to the FTP
server. All other functions are disabled.

scOpen Connection to an FTP server has been established and the
control port is open. Login, Help, Status, and
SendFtpCommand functions are enabled. This status event
does not indicate that the server has authenticated the
login identification and so should not be used invoke
another FTP operation.

scLogin The FTP server has authenticated the user login
identification. All functions except Login are enabled.

scLogout The FTP server has logged the user out. If this status is
the result of a call to Logout, then it will be followed by
scClose status when the port closes and should not be used
in this case to log on as another user.

scComplete This status event is fired upon the successful completion
of an FTP operation initiated by ChangeDir, Delete,
MakeDir, Rename, or SendFtpCommand.

scCurrentDir Indicates that the current working directory information
initiated by CurrentDir is available. InfoText points to
the null-terminated text string containing the full path
name of the current working directory.

scDataAvail Indicates that an information request initiated by Help,
ListDir, or Status has completed. InfoText points to
requested text.

scProgress This status event is fired periodically during a file
transfer initiated by Retrieve or Store. The
BytesTransferred property contains the number of file data
bytes sent or received so far.

scTransferOk A file transfer initiated by Retrieve or Store is complete.

scTimeout The server has not responded during the interval defined by
TransferTimeout. The file transfer operation in progress
is terminated.
70     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

OnWsError event

property OnWsError : TWsErrorEvent

TWsErrorEvent = procedure (
Sender : TObject; ErrorCode : Integer) of object;

Defines an event handler that is generated when a Winsock error occurs.

This event handler is generated when an unhandled Winsock error occurs within the 
control or data connection. ErrorCode contains the error code returned by Winsock. See 
“Error Handling and Exception Classes” on page 900 for a list of error codes.

Password property

property Password : string

Specifies the user’s login password.

FTP requires users to log in with a user name and password to gain access to that computer. 
Set Password prior to calling Login when connecting to an FTP server.

Users who do not have a personal login account can gain access an FTP site with an 
anonymous account. To log in with the anonymous account, set UserName to 
ANONYMOUS and the password is your e-mail address.

See also: Account, Login, UserName

Rename method

function Rename(
const RemotePathName, NewPathName : string) : Boolean;

Renames a remote file or directory at an FTP server.

RemotePathName specifies the file or directory at the server. If RemotePathName or 
NewPathName is an empty string or a rename operation is not allowed given the current 
protocol state, Rename returns False, otherwise True is returned and the operation is 
initiated. 

If the file or directory is successfully renamed at the server, the OnFtpStatus event is fired 
with the scComplete status code. If the rename operation is rejected by the server, the 
OnFtpError event is fired and the operation is terminated.

See also: OnFtpError, OnFtpStatus
TApdFtpClient Component     571

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

RestartAt run-time property

property RestartAt : Longint

Specifies where to resume an interrupted file transfer.

If the FTP server supports resumable file transfer, it can be restarted at somewhere other 
than the beginning of the file by calling Retrieve with rmRestart, or Store with smRestart. 
The value contained by RestartAt is used to determine the byte location in the file to resume 
the transfer.

When restarting a Retrieve operation, if RestartAt is zero, then the transfer will resume at 
the end of the local file which is the point where the original transfer was interrupted. 
Otherwise, the transfer will resume at the location specified by RestartAt and subsequent 
data in the local file will be overwritten. If RestartAt is greater than the size of the local file, 
then no transfer will take place and the call to Retrieve will return False. 

When restarting a Store operation, the transfer will resume at the location specified by 
RestartAt and subsequent data in the remote file will be overwritten. If RestartAt is zero the 
entire file will be transferred. If RestartAt is greater than the size of the local file, then no 
transfer will take place and the call to Store will return False.

See also: Retrieve, Store

Retrieve method

function Retrieve(const RemotePathName, LocalPathName : string;
RetrieveMode : TFtpRetrieveMode) : Boolean;

TFtpRetrieveMode = (rmAppend, rmReplace, rmRestart);

Retrieve transfers a file from the FTP server to the local machine.

RemotePathName specifies the file at the server, and LocalPathName specifies the pathname 
of the file on the local machine. RetrieveMode specifies how data will be written to an 
existing local file. 

The file will be transferred according to the file type specified by the FileType property.

If the local file already exists: rmAppend specifies that the incoming file data will be 
appended to the end of the file; rmReplace specifies that the contents of the local file will be 
replaced; rmRestart specifies that either the contents of the local file will be replaced starting 
at the location specified by the RestartAt property, or if RestartAt = 0, the incoming data will 
be appended to the end of the file. See RestartAt for more information about restarting a file 
transfer.

If the local file does not exist, it will be created. 
72     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

If either RemotePathName or LocalPathName contain an empty string, or a retrieve 
operation is not allowed given the current protocol state, Retrieve returns False, otherwise 
the file transfer is initiated, the InProgress property is set to True, and the function returns 
True. Periodically during the transfer, the OnFtpStatus event is fired with the scProgress 
status code. The BytesTransferred property contains the number of bytes written to 
LocalFile so far.

If the file is successfully transferred, the InProgress property is set to False and the 
OnFtpStatus event is fired with the scTransferOk status code.

If the transmission times out, then the OnFtpStatus event is fired with the scTimeout status 
code. If the server rejects the transfer command, the OnFtpError event is fired and the 
operation is terminated.

See also: BytesTransferred, FileType, InProgress, OnFtpError, OnFtpStatus, RestartAt, 
TransferTimeout

SendFtpCommand method

function SendFtpCommand(const FtpCmd : string) : Boolean;

Sends a FTP protocol command to the server. 

FtpCmd is an FTP command string as specified in RFC 959. The FTP commands that can 
be issued via this method are restricted to those not requiring a data connection. Thus all 
file transfer commands (e.g., STOR, RETR, etc.) and the LIST and NLST commands are 
prohibited. To illustrate, here are a few accepted commands:

SendFtpCommand('CWD pub/apro');
SendFtpCommand('STAT pub');
SendFtpCommand('HELP RETR');

The function returns True immediately if the command is initiated, otherwise False is 
returned. Upon successful completion, the OnFtpStatus event is fired with the scComplete 
status code. 

If the server rejects the command for some reason, then the OnFtpError event is fired and 
the operation is terminated.

See also: OnFtpError, OnFtpStatus
TApdFtpClient Component     573

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

ServerAddress property

property ServerAddress : string

Specifies the FTP server’s IP address or host name.

ServerAddress accepts the IP address in dot notation (e.g., 165.212.210.10) or as a host 
name (e.g., ftp.turbopower.com). If a host name is used, a DNS lookup is performed to 
determine whether a DNS entry exists for the host name. If an IP address can be found, the 
port is opened to establish an FTP control connection. If an IP address cannot be found, an 
EApdSocketException is raised.

Status method

function Status(const RemotePathName : string) : Boolean;

Obtains status information from the FTP server.

RemotePathName specifies a file or directory at the server. If RemotePathName is an empty 
string, general server status information is requested. If RemotePathName specifies a 
directory at the server, a full listing of the directory contains is requested. If 
RemotePathName specifies a file at the server, then the file size and timestamp are 
requested.

If a status operation is not allowed given the current protocol state, Status returns False. 
Otherwise, True is returned and the operation is initiated. When the server responds with 
the requested status information, the OnFtpStatus event is fired with the csDataAvail 
command status code, and the InfoText parameter will point to a null terminated string 
containing the raw text of the status information.

If the operation is rejected by the server, the OnFtpError event is fired and the operation is 
terminated.

See also: OnFtpError, OnFtpStatus
74     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

Store method

function Store(const RemotePathName, LocalPathName : string;
StoreMode : TFtpStoreMode) : Boolean;

TFtpStoreMode = (smAppend, smReplace, smUnique, smRestart);

Transfers a file from the local machine to the FTP server.

RemotePathName specifies the file at the server. LocalPathName specifies the file on the 
local machine. StoreMode identifies how the file will be written to an existing remote file.

The file will be transferred according to the file type specified by the FileType property. Be 
sure to set FileType prior to initiating a file transfer. For text files use ftAscii, otherwise use 
ftBinary.

If the remote file specified by RemotePathName already exists in the server’s working 
directory, StoreMode controls the effect of the transfer according to the following values:

If the remote file does not exist, it will be created in the server’s current working directory. 
See ChangeDir for information about changing the server’s working directory.

Value Effect

smAppend The local file data will be appended at the end of the remote
file.

smReplace The contents of the remote file will be replaced.

smUnique A remote file will be created with a unique name and the local
file will be written to it.

smRestart Either the contents of the remote file will be replaced
starting at the location specified by the RestartAt property,
or, if RestartAt equals 0, the file data will be appended to
the end of the remote file. See RestartAt for more information
about restarting a file transfer.
TApdFtpClient Component     575

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

If either RemotePathName or LocalPathName contain an empty string, or a store operation 
is not allowed given the current protocol state, Store returns False, otherwise the file transfer 
is initiated, the InProgress property is set to True, and the Store returns True. Periodically 
during the transfer, the OnFtpStatus event is fired with the scProgress status code. The 
BytesTransferred property contains the number of bytes accepted so far by Winsock. When 
the file has been successfully transferred, the InProgress property is set to False and the 
OnFtpStatus event is fired with the scTransferOk status code.

If the transmission times out, then the OnFtpStatus event is fired with the scTimeout status 
code. If the server rejects the transfer command, the OnFtpError event is fired and the 
operation is terminated.

See also: BytesTransferred, FileType, InProgress, OnFtpError, OnFtpStatus, RestartAt, 
TransferTimeout

TransferTimeout property

property TransferTimeout : Integer

Default: 1092

Determines the maximum time (ticks) to wait during file transfer.

During a file transfer operation, each time a block of data is written out to, or read in from 
the FTP data connection, a timer is started with the time-out value specified by 
TransferTimeout. If the timer times out before the next block of data is received or accepted 
by Winsock, then the transfer operation is terminated, and the OnFtpStatus event is fired 
with the scTimeout status code.

See also: OnFtpStatus, Retrieve, Store

UserLoggedIn  read-only, run-time property

property UserLoggedIn : Boolean

Indicates whether or not an FTP session is active.

This property can be checked periodically to determine if the user is logged in to an FTP 
server and an FTP session currently underway.

See also: Login, Logout
76     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

UserName property

property UserName : string

Specifies the user’s login name.

FTP requires users to log in with a user name and password to gain access to the server. Be 
sure to set Password prior to calling Login when connecting to an FTP server.

Users who do not have a personal login account can gain access an FTP site with an 
anonymous account. To log in with the anonymous account, set UserName to 
ANONYMOUS and the password is to the user’s e-mail address.

See also: Password, UserLogin 
TApdFtpClient Component     577

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdAbstractStatus Class
TApdAbstractStatus is an abstract class that defines the methods and properties needed by a 
component that automatically displays status while a TApdProtocol component is in the 
process of transferring a file. You generally won’t need to create a descendent class of your 
own, since Async Professional supplies one, the TApdProtocolStatus component described 
on page 582.

However, TApdProtocolStatus shows a particular set of information about a transfer in a 
predefined format, and you may find that this format is not suitable for your needs. If that is 
that case, you need to create your own descendant of TApdAbstractStatus. Probably the best 
way to do so is to study the source code of TApdProtocolStatus (in the AdPStat unit) and its 
associated form, TStandardDisplay.

The TApdAbstractStatus class contains an instance of a TForm that holds various controls 
used to display the protocol status. You design this form, create an instance, and assign the 
instance to the Display property of TApdAbstractStatus.

TApdAbstractStatus overrides the standard VCL properties Ctl3D, Position, and Visible and 
the standard VCL method Show. When these routines are used in the status component, the 
overridden versions perform the same actions on the associated Display form. Thus you can 
display the status form by calling Show, erase it by setting Visible to False, adjust its position 
by assigning to Position, and use 3D effects by setting Ctl3D to True.

Once you have created an instance of your TApdAbstractStatus descendant, you must assign 
it to the StatusDisplay property of your TProtocol component. When the protocol needs to 
update the status display it calls the UpdateDisplay method of TApdAbstractStatus, which 
you must override in order to update your particular kind of status window.

The source code for the TApdProtocolStatus component (in the AdPStat unit) serves as a 
comprehensive example of writing a TApdAbstractStatus descendant.
78     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdAbstractStatus (AdProtcl)

Properties
Display Protocol ! Version

Methods
CreateDisplay DestroyDisplay UpdateDisplay
TApdAbstractStatus Class     579

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Reference Section

CreateDisplay virtual abstract method

procedure CreateDisplay; virtual; abstract;

An abstract method that creates a form to display protocol status.

A descendant of TApdAbstractStatus must override this method with a routine that creates a 
TForm component that contains various controls (typically of type TLabel) for displaying 
the protocol status. The TForm should usually also contain a TButton control and 
associated CancelClick event handler that allows the user to cancel the protocol.

CreateDisplay must then assign the instance of this form to the Display property.

See also: DestroyDisplay, Display

DestroyDisplay virtual abstract method

procedure DestroyDisplay; virtual; abstract;

An abstract method that destroys the display form.

A descendant of TApdAbstractStatus must override this method to destroy the TForm 
instance created by CreateDisplay.

Display run-time property

property Display : TForm

A reference to the form created by CreateDisplay.

CreateDisplay must assign a properly initialized instance of a TForm to this property. 
UpdateDisplay can refer to this property to update the status window.

Protocol property

property Protocol : TApdCustomProtocol

The protocol component that is using the status component.

When deriving your own components from TApdAbstractStatus you will probably want to 
reference TApdProtocol properties to display information about the progress of the 
protocol. Use this property to do so. It is automatically initialized when you assign the status 
component to the StatusDisplay property of TApdProtocol.
80     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

UpdateDisplay method

procedure UpdateDisplay(First, Last : Boolean); virtual; abstract;

An abstract method that writes the contents of the status window.

A descendant of TApdAbstractStatus must override this method to update the display form. 
The TApdProtocol component calls this method regularly from its OnProtocolStatus event 
handler.

On the very first call to UpdateDisplay, First equals True and UpdateDisplay should typically 
call the Show method of Display to draw the outline and background of the status form. On 
the very last call to UpdateDisplay, First equals False and UpdateDisplay should typically set 
the Visible property of Display to False to erase the status window.

For all other calls to UpdateDisplay, First and Last both equal False. During these calls, 
UpdateDisplay must update the various labels in the Display form. To get information about 
the protocol status, it should use the Protocol field of TApdAbstractStatus to read the values 
of various properties such as FileName and BytesTransferred. See “Protocol status” on 
page 489 for a list of the most commonly used properties.

The CancelClick event handler, if one is provided, should call the CancelProtocol method of 
TApdProtocol to terminate the protocol because the user clicked the Cancel button.
TApdAbstractStatus Class     581

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
 TApdProtocolStatus Component
TApdProtocolStatus is a descendant of TApdAbstractStatus that implements a standard 
protocol status display. All you need to do is create an instance of a TApdProtocolStatus 
component and assign it to the StatusDisplay property of your TApdProtocol component. 
TApdProtocolStatus includes all of the most-often used information about a protocol 
transfer and it also provides a Cancel button so that the user can stop the protocol at any 
time.

TApdProtocolStatus overrides all the abstract methods of TApdAbstractStatus. 
TApdProtocolStatus has no methods that you must call or properties that you must adjust. 
You might want to change the settings of the Ctl3D and Position properties to modify the 
appearance of the window. Figure 14.6 shows the TStandardDisplay form that is associated 
with a TApdProtocolStatus component.

For an example of using a TApdProtocolStatus component, see the introduction to 
TApdProtocol on page 523.

Hierarchy
TComponent (VCL)

TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdAbstractStatus (AdProtcl). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

TApdProtocolStatus (AdPStat)

 Figure 14.6: The TApdProtocolStatus component’s TStandardDisplay form.
82     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
 TApdProtocolLog Component
TApdProtocolLog is a small class that can be associated with a TApdProtocol component to 
provide automatic protocol logging services. Just create an instance of TApdProtocolLog 
and assign it to the ProtocolLog property of the TApdProtocol component.

TApdProtocolLog creates or appends to a text file whose name is given by the HistoryName 
property. Each time the OnProtocolLog event of TApdProtocol is generated, the associated 
TApdProtocolLog instance opens the file, writes a new line to it, and closes the file.

TApdProtocolLog also deletes the partial file that exists whenever a receive fails and the 
protocol type is not Zmodem (which can resume interrupted transfers).

Following is a sample of the text file created by TApdProtocolLog:

Zmodem transmit started on 7/6/01 8:33:21 AM : C:\TEMP\PROJ1.EXE
Zmodem transmit finished OK 7/6/01 8:33:28 AM : C:\TEMP\PROJ1.EXE

Elapsed time: 0:07 CPS: 1792 Size: 12547

Zmodem transmit started on 7/6/01 8:33:28 AM : C:\TEMP\PROJ2.EXE
Zmodem transmit finished OK 7/6/01 8:33:37 AM : C:\TEMP\PROJ2.EXE

Elapsed time: 0:08 CPS: 1971 Size: 15775

Zmodem transmit started on 7/6/01 8:33:37 AM : C:\TEMP\PROJ2.EXE
Zmodem transmit failed C:\TEMP\PROJ2.EXE Cancel requested

Zmodem receive started on 7/6/01 8:34:03 AM : ZIPVO.PAS
Zmodem receive failed ZIPVO.PAS Cancel requested

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdProtocolLog (AdProtcl)

Properties
DeleteFailed

HistoryName

Protocol

! Version

Methods
UpdateLog
TApdProtocolLog Component     583

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

DeleteFailed property

property DeleteFailed : TDeleteFailed

TDeleteFailed = (dfNever, dfAlways, dfNonRecoverable);

Default: dfNonRecoverable

Determines whether received files are deleted after a protocol failure.

When a protocol receive session fails, there might be a partially received file in the 
destination directory (depending on when and why the session failed). DeleteFailed 
controls whether a partial file is automatically deleted by the TApdProtocol OnProtocolLog 
event handler. DeleteFailed can have one of the following values:

Regardless of the value of DeleteFailed, received files are never deleted when the protocol 
error is ecCantWriteFile, since that error usually indicates that the receiver doesn’t want to 
disturb an existing file with the same name.

HistoryName property

property HistoryName : string

Default: “APRO.HIS”

Determines the name of the file used to store the protocol log.

You should generally set the value of HistoryName before calling TApdProtocol’s 
StartReceive or StartTransmit methods. However, because the log file is opened and closed 
for each update, you can change HistoryName at any time you wish. If you set HistoryName 
to an empty string, automatic logging is disabled until you assign a non-empty string.

Value Description

dfNever Partial files are never deleted.

dfAlways Partial files are always deleted.

dfNonRecoverable Partial files are deleted if the protocol cannot
resume a failed transfer (all protocols except
Zmodem).
84     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Protocol property

property Protocol : TApdCustomProtocol

The protocol component that is using the log component.

Protocol is automatically initialized when the ProtocolLog property of the owning protocol 
component is set. You can change Protocol to assign the log component to a different 
protocol component.

UpdateLog virtual method

procedure UpdateLog(const Log : Word); virtual;

Call for each protocol logging event.

The Log parameter has the same values passed to the OnProtocolLog event handler of 
TApdProtocol. UpdateLog creates or appends to the log file, builds and writes a text string 
for each event, and closes the log file. Additionally, it deletes the partially received file if Log 
equals lfReceiveFail and the protocol type is not Zmodem.

Note that TApdProtocolLog contains a field named Protocol that UpdateLog uses to obtain 
additional information about the protocol such as the FileName, FileLength, ElapsedTicks, 
and ProtocolType.

See also: TApdProtocol.OnProtocolLog
TApdProtocolLog Component     585

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
86     Chapter 14: File Transfer Protocols



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 15: Fax Components

Document transfer using facsimile (fax) machines has become quite common—you might 
even say pervasive—in today’s business environment. Almost all of the currently 
manufactured modems are faxmodems. A faxmodem is a standard data modem that also 
has the ability, when used with appropriate software, to send and receive faxes. Since the 
faxmodem is under program control, it can provide more sophisticated capabilities than a 
dedicated fax machine. A few of the possibilities include database storage, editing, and 
forwarding of received documents, as well as scheduled fax transmissions to multiple 
recipients.

Unfortunately, controlling a faxmodem is a relatively complex task. As is typical for the 
communications industry, faxmodem technology is governed by multiple, evolving, 
incomplete standards. With the exception of the terse technical specifications offered by the 
TIA/EIA committee that controls faxmodem standards, little has been written about 
controlling faxmodems. The TIA/EIA specifications describe the bare necessities of 
faxmodem behavior; many ambiguities must be resolved by research and experimentation.

Microsoft has provided various levels of fax services in successive versions of Windows and 
is trying to broaden and homogenize its fax services over all of its Windows operating 
systems and environments. Parts of the fax services are available to programmers, but the 
documentation is both scarce and sparse, causing many programmers to look elsewhere for 
fax services.

Async Professional overcomes this information shortage by providing a complete set of 
routines for computer control of faxmodems. These routines cover all phases of faxmodem 
usage including document conversion, fax printer drivers, and send/receive support for the 
current generation of faxmodems. These routines have a structure similar to the file transfer 
protocols, complete with the programming hooks that allow you to write full-featured 
applications.
     587

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Faxmodem Control from an Application
Integrating faxmodem support into your application involves two central tasks:

• Document conversion

• Faxmodem send/receive

Document conversion means converting a file into a format suitable for fax transmission or 
converting a received fax into a format suitable for further processing (viewing, printing, 
etc.). Faxmodem send/receive covers all the steps needed to control a faxmodem when 
sending and receiving fax documents.

Document conversion
Document conversion is the process of creating a compressed bitmap image suitable for fax 
transmission. Async Professional can convert the following file formats:

• ASCII text files

• Windows bitmap image files (BMP)

• PC Paintbrush image files (PCX)

• Multi-page PCX files (DCX)

• Tagged Image File Format image files (TIFF)

Files that have been converted to fax format in this way, as well as files that have been 
received by Async Professional’s fax routines, are given the extension APF (Async 
Professional Fax).

Async Professional also includes a printer driver for Windows 95/98/ME, and Windows NT 
4.0/2000 (see the README.TXT file for an up-to-date list of the supported environments) 
that provides convenient conversion of virtually any document file by “printing” that file to 
the fax printer driver. The fax printer driver converts the printed image to an APF file and 
can optionally alert a fax transmit program that a file is now available for fax transmit.

Received faxes are stored in the compressed bitmap image (APF format), so the data must 
be unpacked before you can view, print, edit, or otherwise process the fax. Async 
Professional provides an unpacker component that can unpack fax file to image files, to 
memory bitmaps, or for special processing by your application. A viewer component and a 
printer component make it easy to view or print the fax.
88     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Faxmodem send/receive
Faxmodem send/receive is the process of sending the appropriate commands to a 
faxmodem to prepare it for sending or receiving faxes, initiating or receiving a call, 
transferring a bitmap image, and terminating the connection.

Like a file transfer protocol, a successful fax transmission requires cooperation between the 
sender and receiver. A number of standards have been developed for this purpose. Early fax 
machines communicated using what was known as the Group 1 and Group 2 protocols. 
Although your fax machine may have a Group 1 button, which allows it to receive faxes (very 
slowly) from an old Group 1 fax machine, all fax machines sold today support the Group 3 
facsimile protocol. The faxmodems that Async Professional can control do not support 
Group 1 or Group 2 at all. If you need to send or receive faxes with a Group 1 partner, keep 
your old fax machine!

Within Group 3, there are currently two EIA/TIA standards for computer control of 
faxmodems: Class I and Class II. To identify these classes, Async Professional uses Arabic 
numerals (Class 1 and Class 2) rather than Roman numerals because the numbers are 
clearer to read in the source code and documentation. Class 2 depends on somewhat more 
sophisticated chips within the faxmodem than Class 1. Class 2 chips are capable of 
negotiating certain fax transmission parameters without any feedback from the computer.

Many modem manufacturers began producing Class 2 faxmodems before the specification 
was complete, using an interim version of the specification. When the specification was 
finally ratified, it differed significantly from the interim Class 2 specification. In the 
meantime, interim Class 2 modems had become a defacto standard and could not be 
ignored by the specification committee. To distinguish between interim Class 2, which is 
referred to as simply Class 2, the final Class 2 specification is formally identified as Class 2.0. 
Over the past few years, the Class 1 standard has been improved upon to a slight degree also. 
Recently, the EIA/TIA committee began the formalization process for the Class 1.0 
standard. While this new standard introduces a few new optional features, it is primarily a 
simple renaming of the old Class 1 standard.
Faxmodem Control from an Application     589

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Faxmodem specifications
Wherever possible the faxmodem components insulate you from the details of document 
conversion and faxmodem control. Just as with the file transfer protocols, you don’t need to 
read and understand all of the faxmodem technical specifications to use the faxmodem 
routines. However, it does help to have a basic understanding of the specifications. For 
further information, see the technical specifications listed in Table 15.1.

These documents are available from the EIA and TIA organizations directly. They can also 
be obtained from Global Engineering Documents, a company that distributes engineering 
specifications of all kinds. You can reach them by telephone at 800-854-7179 or 303-792-
2181. Their fax number is 303-397-2740.

Table 15.1: Technical specification documents

Document Number Description

RS-465 Group 3 Facsimile Apparatus for Document Transmission.

RS-466 Procedures for Document Facsimile Transmission.

EIA/TIA-578 Asynchronous Facsimile DCE Control Standard.

EIA/TIA-592 Asynchronous Facsimile DCE Control Standard—Service
Class II.
90     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Document Conversion
Faxmodems don’t transmit documents directly. Instead, they transmit a compressed bitmap 
image in a format that is specific to Group 3 fax devices. The TApdFaxConverter component 
provides methods for converting standard image file formats into this format. Async 
Professional uses a proprietary image file format (APF) that stores bitmap data in this 
Group 3 format. The TApdFaxUnpacker component provides methods for unpacking APF 
files into standard image file formats.

Fax file format
The Group 3 compressed bitmap format was designed specifically for transmission of data 
over possibly noisy lines. The compression technique results in a file that combines relatively 
small size with ease of recovery from missing or garbled data. As the receiving fax machine 
or faxmodem software detects bad compression strings, it simply discards them and starts 
collecting valid strings again. No transmission time is spent calculating and sending block 
check characters. A document received with line errors is usually missing just a few pixels; if 
the received document looks bad enough, the sender must transmit again.

Although the format of each compressed raster line is defined by the Group 3 facsimile 
specification, the APF file format used by Async Professional is proprietary. The data within 
each raster line follows the Group 3 specification, but the file contains additional 
information that makes it easier to manage and transmit the image.

An APF file is formatted as shown in Table 15.2.

You usually don’t need to understand this format in any detail, but the information is 
documented here in case you need to write APF manipulation routines that aren’t provided 
with Async Professional.

Table 15.2: APF file format

fax header

header for page 1

data for page 1

.

.

.

header for page N

data for page N
Document Conversion     591

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The file always begins with a header that contains, among other information, the number of 
pages in the fax. Each page of the document follows, including a page header and the 
compressed page data. The fax header and page header structures are defined in detail later 
in this section.

The page data is a series of compressed raster line images. The line image optionally begins 
with a word containing the number of bytes in the compressed line. (This word is stored 
only in APF files that are ready for transmission; it is used to aid in padding each line to 
match timing parameters of the receiving fax machine.) The length word is followed by the 
line image in Group 3 compression format. If a pixel is set, it corresponds to a black dot on 
the original image; if it is clear, it corresponds to a white dot.

Fax images can be converted and stored using two different resolutions. Standard resolution 
is 200 horizontal dots per inch by 100 vertical dots per inch. High resolution has the same 
horizontal resolution, but uses 200 vertical dots per inch. In some fax documentation, the 
resolutions are described as 98 dots per inch and 196 dots per inch. Those numbers are 
actually more exact, but 100 and 200 are easier to remember and are commonly used in 
most fax documentation.

The standard width of a fax page is 1728 pixels, or about 8.5 inches. Several optional widths 
are also available. Async Professional supports only one of the optional widths: 2048 pixels 
per row, or about 10 inches. There is no fundamental limit on fax page length. Even so, you’ll 
probably want to limit it to 11 inches, or 14 inches if you want to mimic legal size paper. This 
is especially important when you consider that many faxes are now printed on sheet-fed 
laser printers.

You specify the fax resolution and horizontal width when a document is converted to an 
APF file. The resolution and width of each page are stored in the page header. When the APF 
file is later transmitted, the TApdSendFax component reads the page header to determine 
the resolution and width to use to transmit the fax.

APF file header
Table 15.3 shows the fields in the APF file header structure, TFaxHeaderRec.

Table 15.3: APS file header fields 

Field Purpose

Signature A unique string that identifies the file as an APF file.

FDateTime Date and time that the file was created (in DOS format).

SenderID The station ID of the fax device that transmitted the fax
data.
92     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
APF page header
Table 15.4 shows the fields in the APF page header structure, TPageHeaderRec.

TGraphic registration of the APF format
The APF format has been registered as a TGraphic descendent.  Components that make use 
of TGraphic, such as TPicture, will be able to load and save the APF format.

The TGraphic descendent of the APF format can be used to convert other graphics formats, 
like JPG, ICO, EMF and WMF to and from the APRO fax format.  If you have additional 
third party TGraphic descendents installed in your Delphi or C++ Builder environment, 
these additional formats can be converted to and from the APRO APF format.

Filler A dummy byte used to align the rest of the header on a word
boundary.

PageCount The number of pages in the APF file.

PageOfs The offset, in bytes, of the first page in the file.

Padding 26 bytes of extra data, leaving room for future expansion
and forcing the size of the fax header to 64 bytes.

Table 15.4: APF page header fields

Field Purpose

ImgLength The length of the compressed Group 3 data on the page.

ImgFlags Flags describing the content of the page.

Padding 10 bytes of extra data, leaving room for future expansion
and forcing the size of the fax header to 16 bytes.

Table 15.3: APS file header fields  (continued)

Field Purpose
Document Conversion     593

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
 TApdFaxConverter Component
Converting a document to APF format is the first step in the fax transmission process. You 
can convert your documents just before you transmit them or you can convert them in 
advance. If you like, this conversion process can be completely transparent to your users or 
you can convert your documents in a separate step that is not immediately followed by 
transmission. Async Professional also provides a Windows printer driver that can create 
APF files.

The TApdFaxConverter component can be used to convert ASCII text, BMP, PCX, DCX, 
and TIFF files to Async Professional’s proprietary file format. For input images not directly 
supported by Async Professional, events and methods are published by the component that 
allow the conversion of user-defined input images. Additionally, TApdFaxConverter can be 
used for generically reading input image file for user-defined tasks.

ASCII text documents
The TApdFaxConverter component converts ASCII text files into APF files when the 
InputDocumentType property of the converter is set to idText or idTextEx. Each text line of 
the input file must end with a carriage return and a line feed. The converter can handle all 
256 characters in the OEM character set. The converter cannot convert files that contain 
embedded word processor formatting commands.

The text converter reads each line of the text file and converts the line into an appropriate 
number of bitmapped raster lines. In essence, it converts each line into a picture of itself. To 
do this, it uses a font table that contains a bitmap of each ASCII character. The number of 
raster lines per text line depends on the pixel height of each character and the vertical 
resolution of the fax conversion. The number of pixels in each raster line depends on the 
pixel width of each character. For each raster line and each character in the line, the 
converter finds the character bitmap in the font table and extracts the appropriate horizontal 
pixel row. After looping through all the rows in the font, the converter has created a bitmap 
image of the text line.

Async Professional can use any of the fonts available to Windows (such as the TrueType 
fonts) when InputDocumentType is set to idTextEx, or it uses a set of built-in bitmapped 
fonts when the InputDocumentType property is set to idText. The EnhFont property 
controls which font is used when InputDocumentType is set to idTextEx.
94     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
There are two built-in fonts available when InputDocumentType is set to idText – a standard 
font (ffStandard) and a smaller font (ffSmall). ffSmall is a small 12x8 (12 pixels wide by 8 
pixels high) font used for creating header lines at the top of each transmitted fax page. 
ffStandard is a 20x16 font used for all other text. ffStandard was chosen to provide text lines 
at 6 lines per inch (66 lines on a standard 11 inch page). If you specify a high resolution 
image, the fonts are scaled vertically to 16 and 32 pixels, respectively.

The built-in fonts are stored in APFAX.FNT, which is 16KB. This font file can be distributed 
with your applications. Alternatively, you can bind APFAX.FNT directly into your program 
by activating the compiler define BindFaxFont in AWCVTFAX.PAS (it’s defined by default). 
When BindFaxFont is defined, APFAX.RES (created from APFAX.FNT using Borland’s 
Resource Workshop and a user-defined resource type) is linked into your program at 
compile time. This adds about 16KB to your EXE file.

BMP, PCX, DCX, and TIFF graphic images
Async Professional provides document conversion routines for four popular graphics image 
formats: BMP, PCX, DCX, and TIFF. The PCX format originated with the PC Paintbrush 
program. The Async Professional conversion routines are tested with PCX images up 
through version 3.0. DCX files are special container files that contain one or more PCX 
images. TIFF (Tagged Image File Format) is a multi-platform format that is designed to 
allow easy migration between platforms such as the Macintosh and the IBM PC. The Async 
Professional conversion routines are tested with TIFF images up through version 4.0. BMP 
files are standard Windows bitmap files.

Most Async Professional conversion routines work with monochrome images only. The 
exception to this rule is the bitmap converter, which has the ability to dither color images. 
Note that the dithering process is slower, so you should keep your images monochrome if 
possible. Converting a BMP, PCX, or TIFF image file always produces an APF file containing 
one fax page. Converting a DCX file produces a fax containing as many pages as are 
contained in the DCX file.

Because BMP, PCX, DCX, and TIFF images are already a sequence of compressed raster 
lines, the job of the TApdFaxConverter component is different than that done in the text 
conversion process. For these files, the conversion routines unpack the images, then repack 
them into the format required for faxing.
TApdFaxConverter Component     595

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The images supported by Async Professional are stored assuming a pixel aspect ratio of 1 to 
1, which means that the height of a pixel is the same as its width. For example, a 10 by 10 box 
of pixels would appear on screen as a square, not a rectangle. Fax images, on the other hand, 
have one of two aspect ratios. In high resolution, the aspect ratio is 1 to 1. In standard 
resolution, the aspect ratio is 2 to 1. Hence, in a standard resolution fax, a 10 by 10 box of 
pixels would not appear as a square. Instead it would be a rectangle twice as high as it is 
wide.

Given the differences in aspect ratios, an image converted to a standard resolution APF 
image appears distorted—tall and thin. To solve this problem, the TApdFaxConverter 
component can either double the width of an image or halve the height of an image when it 
is converted to a standard resolution fax and the modified image still fits on the page.

These behaviors are enabled by turning on the coDoubleWidth and coHalfHeight options, 
respectively. The coDoubleWidth option is on by default. coDoubleWidth was chosen over 
coHalfHeight, since doubling the width of the image does not discard data, whereas halving 
the height of the image causes every other line to be discarded.

The TApdFaxConverter also includes another option, coCenterImage, that is used during 
image file conversions. When this option is enabled, as it is by default, graphic images are 
automatically centered horizontally on the fax page. See the Options property on page 619 
for more information about these options.

Processing image files
There are times when you might find it useful to be able to process an image file (i.e., any file 
that can be represented in the form of a bitmap) within your program. For instance, you 
might want to implement a cover page editor that allows the user to open image files and put 
them on the cover page, without having to convert the image into an APF file as an interim 
step.

The TApdFaxConverter allows you to manually process image files, doing whatever you 
wish with the raster data read from the file. This is done using the OpenFile, GetRasterLine, 
and CloseFile methods. The first step in manually processing an image file is to set the 
DocumentFile and InputDocumentType properties of the converter.

The next step is to call the component’s OpenFile method. This opens the image file, reads 
any header data for the image, validates the header data, and returns control to you. One of 
several exceptions can be raised depending on whether or not the input file exists and 
whether or not the input file is a valid image file of the type specified by the 
InputDocumentType property.
96     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
After opening the image file, make one or more calls to the GetRasterLine method of the 
converter. GetRasterLine takes four parameters: Buffer, BufLen, EndOfPage, and 
MorePages.

Buffer is the buffer that receives the raster data you are reading. You should make this buffer 
at least 512 bytes long. The actual length, in bytes, of the raster line is in BufLen upon return. 
If the EndOfPage parameter is set to True on return, the end of the current page has been 
reached. If MorePages is True, there are more pages in the file to be processed.

Lastly, you must call CloseFile to close the image file when you are done processing it. 
Calling CloseFile closes the physical image file and disposes of several internal data 
structures that are used to read the image file.

The following pseudo-code shows a typical use of the manual image processing methods of 
the converter:

procedure ProcessImageFile(
FName : string; DocType : TFaxInputDocumentType);

var
Cvt : TApdFaxConverter;
Buffer : PByteArray; {type defined in SysUtils}
BufLen : Integer;
EndOfPage : Boolean;
MorePages : Boolean;

begin
GetMem(Buffer, 512);

try
Cvt := TApdFaxConverter.Create(nil);

except
FreeMem(Buffer, 512);
raise;

end;

Cvt.InputDocumentType := DocType;
Cvt.DocumentFile := FName;

try
Cvt.OpenFile;

except
Cvt.Free;
FreeMem(Buffer, 512);
raise;

end;
TApdFaxConverter Component     597

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
MorePages := True;
try

while MorePages do begin
...code for handling beginning of new page...

EndOfPage := False;
while not EndOfPage do begin
Cvt.GetRasterLine(Buffer^, BufLen, EndOfPage, MorePages);
...code to process data in Buffer...

end;

...code for handling end of page...
end;

finally
Cvt.CloseFile;
Cvt.Free;
FreeMem(Buffer, 512);

end;
end;

For a more complete demonstration of these features, see the EXIMAGE example program.

Converting user-defined image files
The TApdFaxConverter component allows you to convert image types that are not directly 
supported. This is done through the OnOpenUserFile, OnCloseUserFile, and 
OnReadUserLine events. When InputDocumentType equals idUser, the TApdFaxConverter 
calls these events to open, close, and read the image file, instead of using its own internal 
routines. These events allow you to create your own fax converter, if you know the format of 
the image you need to convert.

OnOpenUserFile is called to open the user-defined image file. When this event is called, you 
should open the physical image file, read its headers (if any), and allocate any buffers needed 
for reading and processing the data.

OnReadUserLine is called to read a single line of raster data from the user-defined image 
file. The two Boolean parameters passed to the event tell the converter when the end of an 
input page is reached and whether there are any more pages to convert.

OnCloseUserFile is called to close the user-defined image file. When this event is called, you 
should close the physical input file and deallocate any buffers that were allocated by the 
OnOpenUserFile event.

The following example assumes a hypothetical image file type. This image file has a 4-byte 
header. The first two bytes of the header are the width (in pixels) of the image, the next two 
bytes contain the height (in pixels) of the image. The rest of the image file is raw, 
98     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
uncompressed, raster data. Each raster line in the file is just long enough to hold each line 
(i.e., no padding). The OnOpenUserFile, OnReadUserLine, and OnCloseUserFile events 
open, read, and close image files of this hypothetical image type.

type
TImageHeader = packed record

Width : Word;
Height : Word;

end;

var
Header : TImageHeader; InputFile : File; ReadLen : Integer;
BytesInFile : LongInt; BytesProcessed : LongInt;

procedure Form1.ApdFaxConverter1OpenUserFile(
F : TObject; FName : string);

begin
{open the physical file}
AssignFile(InputFile, FName);
Reset(InputFile, 1);

{read the header}
BlockRead(InputFile, Header, SizeOf(TImageHeader));

{calculate the length, in bytes, of each raster line}
ReadLen := (Header.Width + 7) shl 3;

{calculate the number of bytes in the file, for status info}
BytesInFile := FileSize(InputFile) - SizeOf(TImageHeader);
BytesProcessed := 0;

end;

procedure Form1.ApdFaxConverter1ReadUserLine(
F : TObject; Data : PByteArray; var Len : Integer;
var EndOfPage, MorePages : Boolean; var BytesRead,
BytesToRead : LongInt);

begin
{if we're at the end of the file, we're done}
EndOfPage := Eof(InputFile);
MorePages := False;
if EndOfPage then

Exit;

{read the next block of raster data}
BlockRead(InputFile, Data, ReadLen);
Len := ReadLen;
TApdFaxConverter Component     599

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
{update status information}
Inc(BytesProcessed, ReadLen);
BytesRead := BytesProcessed;
BytesToRead := BytesInFile;

end;

procedure Form1.ApdFaxConverter1CloseUserFile(F : TObject);
begin

{close image file}
CloseFile(InputFile);

end;

Example
This simple example demonstrates the steps involved in creating an APF file from an ASCII 
text file. Create a new project, add the following components, and set the property values as 
indicated in the following table:

Double click on the TButton component. A shell for an OnClick event is generated for you. 
Modify the generated code to match the following code:

procedure TForm1.Button1Click(Sender : TObject);
var

SaveCursor : TCursor;

begin
SaveCursor := Cursor;
Cursor := crHourglass;
try
ApdFaxConverter1.ConvertToFile;
finally
Cursor := SaveCursor;
end;

end;

Table 15.5: Example components and property values

Component Property Value

TApdFaxConverter DocumentFile C:\MYFILE.TXT (or some other
existing text file)

TApdFaxConverter InputDocumentType idText

TLabel

TButton
00     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
This event changes the form’s cursor to an hourglass, converts the file you specified in the 
DocumentFile property, and then changes the cursor back to what it was before the 
conversion.

Next, click on the TApdFaxConverter component, then click on the “Events” tab in the 
Object Inspector. Double click on the “OnStatus” event. A shell of an OnStatus event 
handler is generated for you. Modify the shell to match the following code:

procedure TForm1.ApdFaxConverter1Status(
F : TObject; Starting, Ending : Boolean;
PagesConverted, LinesConverted : Integer;
BytesToConvert, BytesConverted : LongInt;
var Abort : Boolean);

begin
if (BytesConverted <> 0) then begin

Label1.Caption := Format('Conversion is %d%% complete',
[(BytesToConvert * 100) div BytesConverted]);

Label1.Refresh;
end;
Abort := False;

end;

This procedure displays the progress of the conversion operation. You could also take 
advantage of the “PagesConverted” and “LinesConverted” parameters to display additional 
status information.

Now, save the project and run it. Click on the button. After a few moments, the hourglass 
cursor should disappear and you will have, in the same directory as your input file, a file 
called MYFILE.APF (where MYFILE is the first part of the filename that you chose for the 
DocumentFile property). You can view this file with the VIEWER demonstration program, 
or with the viewer in TCom.

The CVT2FAX demonstration program provides a more extensive example of converting 
files to APF format.

Using shell execute
The TApdFaxConverter component can convert many file formats into APF files when the 
InputDocumentType property is idShell.  When the InputDocumentType property is 
idShell, the TApdFaxConverter component will use the ShellExecute API method to execute 
the application associated with the selected file type and print the document to the 
TurboPower fax printer driver. Unlike other InputDocumentTypes that you may have used 
in the past, idShell uses the application that created the document to print to the printer 
driver (i.e. Microsoft Word would be the one to send a .DOC file).  Essentially, this would 
use the ShellExecute with the “printto” parameter to print the specified document to our 
“APF Fax Printer” or “Print To Fax” depending on your operating system.  
TApdFaxConverter Component     601

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
If the application associated with the selected file format does not support the “printto” 
verb, but does support the “print” verb, then idShell will change the default printer to the fax 
printer driver, print the document using ShellExecute and the “print” verb, and then change 
back to the original default printer.  For example, in Windows 95 Notepad does not support 
the “printto”, but does support “print”, but both are supported in Windows 98 and 2000.  
An exception is raised if the application does not support the “printto” or “print” verbs.

The following example converts C:\MYDOC.DOC to an APF file:

OpenDialog1.Filter := 'Any file(*.*)|*.*';
if OpenDialog1.Execute then begin

ApdFaxConverter1.DocumentFile := OpenDialog1.FileName;
ApdFaxConverter1.InputDocumentType := idShell;
ApdFaxConverter1.ConvertToFile;

end; //End if

The printer driver will not generate TApdFaxDriverInterface events when a document is 
printed using the TApdFaxConverter component. When a document is being converted, 
two registry keys are added. One is the window handle that will receive an APW_ENDDOC 
message indicating that the print job is complete. The other is the name of the output file. 
See the protected ConvertShell method (not documented) in AdFaxCnv.pas for details on 
the specific registry keys. If either of these keys is present, the TApdFaxDriverInterface 
component’s OnDocStart and OnDocEnd events are not generated.
02     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomFaxConverter (AdFaxCvt)

TApdFaxConverter (AdFaxCvt)

Properties
DefUserExtension

DocumentFile

EnhFont

FontFile

FontType

InputDocumentType

LeftMargin

LinesPerPage

Options

OutFileName

Resolution

StationID

TabStop

TopMargin

! Version

Width

Methods
CloseFile

CompressRasterLine

Convert

ConvertBitmapToFile

ConvertToFile

GetRasterLine

MakeEndOfPage

OpenFile

Events
OnCloseUserFile

OnOpenUserFile

OnOutputLine

OnReadUserLine

OnStatus
TApdFaxConverter Component     603

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

CloseFile method

procedure CloseFile;

Closes an image file. 

If you need to manually process input image files without converting them to APF files, use 
CloseFile to close a previously opened (using OpenFile) image file. See “Processing image 
files” on page 596 for more information.

See CompressRasterLine for an example of the use of CloseFile.

See also: CompressRasterLine, GetRasterLine, OpenFile

CompressRasterLine method

procedure CompressRasterLine(
var Buffer, OutputData; var OutLen : Integer);

Performs Group 3 compression on the data line. 

If you need to write your own fax utilities and routines that output fax files, you must be able 
to output Group 3 compressed raster data. Buffer should contain one raster line of data. 
CompressRasterLine compresses the data in Buffer in Group 3 format and puts the result in 
OutputData. OutputData should be at least 512 bytes long. OutLen is the length of the 
compressed data.

For more information about APF files, see “Fax file format” on page 591.

The following example reads a line of raster data from an input file, compresses it, and writes 
it to disk:

var
Buffer : array[1..512] of Byte;
OutBuf : array[1..512] of Byte;
BufLen : Integer;
OutLen : Integer;
EOP : Boolean;
More : Boolean;
OutFile : File;

...
04     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

AssignFile(OutFile, 'C:\COMPRESS.IMG');
Rewrite(OutFile, 1);
...
ApdFaxConverter1.DocumentFile := 'C:\COMPRESS.IMG';
ApdFaxConverter1.OpenFile;
EOP := False;
while not EOP do begin

ApdFaxConverter1.GetRasterLine(Buffer, BufLen, EOP, More);
{make sure buffer length is 1728 pixels}
if (BufLen < 216) then

FillChar(Buffer[BufLen + 1], 0, 216 - BufLen);
ApdFaxConverter1.CompressRasterLine(Buffer, OutBuf, OutLen);
BlockWrite(OutFile, OutBuf, OutLen);

end;
CloseFile(OutFile);
ApdFaxConverter1.CloseFile;

See also: MakeEndOfPage

Convert method

procedure Convert;

Converts the input image file, outputting raster data to a user event. 

Convert reads each raster line from the input image file (specified by the DocumentFile 
property), compresses it in Group 3 format, and passes the compressed data to the 
OnOutputLine event. In that event, process the compressed data (either output it to a file or 
use it for some other purpose).

If InputDocumentType equals idUser, the OnOpenUserFile, OnReadUserLine, and 
OnCloseUserFile events are called to open, read, and close the image file. See “Converting 
user-defined image files” on page 598 for more information.
TApdFaxConverter Component     605

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The following example converts an image file and writes the compressed Group 3 data to a 
file:

const
OutFileOpened : Boolean = False; OutFile : File;

procedure TForm1.ApdFaxConverter1OutputLine(
F : TObject; Data : PByteArray; Len : Integer;
EndOfPage, MorePages : Boolean);

var
EOPBuf : array[1..64] of Byte;
EOPLen : Integer;

begin
if not OutFileOpened then begin

AssignFile(OutFile, 'C:\OUTPUT.IMG');
Rewrite(OutFile, 1);
OutFileOpened := True;

end;

if not EndOfPage then
BlockWrite(OutFile, Data^, Len);

if EndOfPage then begin
ApdFaxConverter1.MakeEndOfPage(EOPBuf, EOPLen);
BlockWrite(OutFile, EOPBuf, EOPLen);
if not MorePages then begin
CloseFile(OutFile);
OutFileOpened := False;

end;
end;

end;

...
ApdFaxConverter1.DocumentFile := OpenDialog.FileName;
ApdFaxConverter1.Convert;

See also: ConvertToFile, DocumentFile, InputDocumentType, OnCloseUserFile, 
OnOpenUserFile, OnOutputLine, OnReadUserLine
06     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ConvertBitmapToFile method

procedure ConvertBitmapToFile(Bmp : TBitmap);

Converts a memory bitmap to an APF file. 

ConvertToFile reads each raster line from the input bitmap (specified by the Bmp 
parameter), compresses it in Group 3 format, and writes the compressed data (along with 
the relevant document and page headers) in the APF file specified by OutFileName.

If the input bitmap is a color image, it will automatically get dithered to a monochrome 
image as part of the conversion process. If the OutFileName property does not specify a file 
extension, the default extension (DefFaxFileExt = “APF”) is appended to the output 
filename.

See also: OutFileName

ConvertToFile method

procedure ConvertToFile;

Converts the input image file to an APF file. 

ConvertToFile reads each raster line from the input image file (specified by DocumentFile), 
compresses it in Group 3 format, and writes the compressed data (along with the relevant 
document and page headers) in the APF file specified by OutFileName. If the 
InputDocumentType is idBmp and the input bitmap is a color image, it will automatically 
get dithered to a monochrome image as part of the conversion process.

If the OutFileName property does not specify a file extension, the default extension 
(DefFaxFileExt = “APF”) is appended to the output filename. If InputDocumentType equals 
idUser, the OnOpenUserFile, OnReadUserLine, and OnCloseUserFile events are called to 
open, read, and close the image file. See “Converting user-defined image files” on page 598 
for more information.

The following example converts a TIFF file to an APF file:

ApdFaxConverter1.DocumentFile := 'C:\MYIMAGE.TIF';
ApdFaxConverter1.InputDocumentType := idTiff;
ApdFaxConverter1.OutFileName := 'C:\FAX.APF';
ApdFaxConverter1.ConvertToFile;

See also: DocumentFile, InputDocumentType, OutFileName
TApdFaxConverter Component     607

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

DefUserExtension property

property DefUserExtension : string

The default extension for user-defined input image files. 

When a user-defined image file is converted and the DocumentFile property does not 
specify an extension, DefUserExtension, if any, is appended to the filename.

See “Converting user-defined image files” on page 598 for more information.

See also: OnCloseUserFile, OnOpenUserFile, OnReadUserLine

DocumentFile property

property DocumentFile : string

Specifies the name of the input image file. 

When Convert, ConvertToFile, or OpenFile is called, the TApdFaxConverter component 
attempts to open the file specified in DocumentFile.

If the filename specified in DocumentFile does not contain an extension, a default extension 
is appended when the file is opened. The default extension depends on the value of 
InputDocumentType:

Unless you are sure of the current directory, the value of DocumentFile should be a fully-
qualified (i.e., containing drive and directory information) filename.

The following example sets up a TApdFaxConverter to convert a TIFF file:

ApdFaxConverter1.DocumentFile := 'C:\MYIMAGE.TIF';
ApdFaxConverter1.InputDocumentType := idTiff;

See also: Convert, ConvertToFile, OpenFile

InputDocumentType Default Extension

idNone No default

idText TXT

idTextEx TXT

idTiff TIF

idPcx PCX

idDcx DCX

idBmp BMP

idUser The value of the DefUserExtension property
08     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

EnhFont property

property EnhFont : TFont

Determines the font used by the fax converter. 

If InputDocumentType is idTextEx, the FontFile and FontType properties are ignored and 
the font specified by EnhFont is used by the fax converter instead. Any font available to 
Windows can be used (double click on the property to invoke the font dialog and see a list of 
the fonts). Only one font can be used for a document (i.e., font sizes and types cannot be 
mixed within a single document).

There is an upper limit on the size of the font, but this limit is not typically reached unless a 
very large font is used (e.g., greater than 72 pt). If the limit is exceeded, an ecEnhFontTooBig 
error occurs during the conversion process.

The fax converter makes no attempt to keep all text on the page when the size of the font is 
changed. You must ensure that the line length in the text file fits on the page in the desired 
font. You might also need to adjust the LinesPerPage property to keep the lines on the page.

See also: FontFile, InputDocumentType

FontFile property

property FontFile : string

Specifies the filename of the font file used by the ASCII text converter. 

When an ASCII text file is opened or converted and InputDocumentType is idText, built-in 
fonts supplied in APFAX.FNT are used. If the compiler define BindFaxFont in 
AWFAXCVT.PAS is activated (the default), APFAX.FNT is bound directly into your 
program.

If BindFaxFont is not activated, the file specified in FontFile is loaded into memory. FontFile 
must be the fully-qualified name of the font file.

See also: Convert, ConvertToFile, EnhFont, FontType, InputDocumentType, OpenFile
TApdFaxConverter Component     609

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

FontType property

property FontType : TFaxFont

TFaxFont = (ffStandard, ffSmall);

Default: ffStandard

Specifies the size of the font used to convert ASCII text files. 

FontType is used only if InputDocumentType is idText (meaning that the default Async 
Professional font file is used). The default font file contains two sizes of fonts. If you want to 
use other fonts, see the EnhFont property.

ffStandard is a 20x16 font (20 pixels wide by 16 pixels high). This font allows about 8.5 
characters per horizontal inch (about 85 characters per line in a standard width fax), and 
about 12.5 lines per vertical inch.

ffSmall is a 12x8 font that allows for about 14 characters per horizontal inch (about 144 
characters per line in a standard width fax), and about 25 lines per vertical inch.

The following example converts a text file to an APF file using a small font:

ApdFaxConverter1.DocumentFile := 'C:\MYFILE.TXT';
ApdFaxConverter1.InputDocumentType := idText;
ApdFaxConverter1.OutFileName := 'C:\FAX.APF';
ApdFaxConverter1.FontType := ffSmall;
ApdFaxConverter1.ConvertToFile;

See also: EnhFont, FontFile, InputDocumentType

GetRasterLine method

procedure GetRasterLine(var Buffer; var BufLen : Integer;
var EndOfPage, MorePages : Boolean);

Reads a raster line from an input image file. 

GetRasterLine is used to manually read a line of raster data from an input image file. A call 
to GetRasterLine must be preceded by a call to OpenFile.

GetRasterLine returns the raster data in Buffer. BufLen contains the length, in bytes, of the 
raster data. EndOfPage is set to True if the end of the input page has been reached. 
MorePages is set to True if there are additional pages in the input file.

See “Processing image files” on page 596 for more information about reading image files.
10     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The following example opens an image file, reads the data from it, and closes it:

var
Buffer : array[1..512] of Byte;
BufLen : Integer;
EOP : Boolean;
More : Boolean;

...
ApdFaxConverter1.DocumentFile := OpenDialog.FileName;
ApdFaxConverter1.OpenFile;
EOP := False;
while not EOP do begin

ApdFaxConverter1.GetRasterLine(Buffer, BufLen, EOP, More);
...process the image data...

end;
ApdFaxConverter1.CloseFile;

See also: OpenFile

InputDocumentType property

property InputDocumentType : TFaxInputDocumentType

TFaxInputDocumentType = (idNone, idText, idTextEx, idTiff,
idPcx, idDcx, idBmp, idBitmap, idUser);

Default: idNone

Specifies the type of the input image file. 

The TApdFaxConverter component can read and convert a variety of input image files. With 
the exception of idBmp and idBitmap, all input image files must be monochrome images. 
That is, they can contain no more than one bit per pixel.

The value of InputDocumentType specifies the type of image. The following table shows the 
possible values of InputDocumentType:

InputDocumentType Image Type

idNone No input image

idText ASCII text file (using built-in fonts)

idTextEx ASCII text file (using font specified by EnhFont)

idTiff Tagged Image File Format (TIFF)

idPcx PC Paintbrush image file (PCX)

idDcx Multi-page PCX file

idBmp Windows 3.x bitmap file
TApdFaxConverter Component     611

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdFaxConverter, using the default font file, can convert CR/LF delimited ASCII text files 
that have characters in the Windows OEM character set. If the text file contains non-OEM 
characters, they will not be converted correctly unless you provide another font.

The idText and idTextEx values are both used for ASCII text files. If InputDocumentType is 
idText, the Async Professional built-in fonts are used to convert the text file. This means that 
the font in the file specified by FontFile is used. If InputDocumentType is idTextEx, one of 
the Windows fonts is used to convert the text file. This means that the font specified by 
EnhFont is used (FontFile and FontType are ignored).

TIFF files can be single or multi-strip images, but must contain either uncompressed raster 
data or MacPaint compressed raster data. The byte-order of the file can be either Intel (little 
endian, where words are stored in byte-reversed order) or Motorola (big endian, where 
words are stored high byte first).

Input BMP files must be uncompressed.

User-defined input images can be in any format. You must ensure, however, that raster data 
passed back to the TApdFaxConverter component is encoded such that one bit of raster data 
represents one pixel of input image. See “Converting user-defined image files” on page 598 
for more information about converting unsupported image files.

The following example sets a TApdFaxConverter component up to convert a text file:

ApdFaxConverter1.DocumentFile := 'C:\MYFILE.TXT';
ApdFaxConverter1.InputDocumentType := idText;

See also: Convert, ConvertToFile, EnhFont, FontFile, OpenFile

idBitmap Memory bitmap

idUser User-defined input image

InputDocumentType Image Type
12     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

LeftMargin property

property LeftMargin : Cardinal

Default: 50

Specifies the width in pixels of the left margin in the APF file. 

To make output faxes look more attractive, the TApdFaxConverter can add a fixed left 
margin to all pages in the fax. This is necessary for some fax machines (and some viewing 
software) that print or display the left edge of the fax too close to the edge of the page or the 
visible screen. The default left margin of 50 pixels provides a reasonable amount of white 
space at the left edge of the page, without using too much of the horizontal space. On a 
standard width fax, 50 pixels consumes only 3% of the horizontal space.

See also: TopMargin

LinesPerPage property

property LinesPerPage : Cardinal

Default: 60

The number of ASCII text lines on each fax page. 

The TApdFaxConverter can convert a text file into a fax and leave all of the data on one page. 
With large text files, however, this becomes a problem. Some continuous roll paper fax 
machines can print a page like this on one sheet of paper, but it becomes extremely long if 
the fax file is more than a few hundred lines.

It is probably more reasonable to break large text files up into multiple fax pages. To do this, 
set the LinesPerPage property to the number of lines you want on each page. If you are using 
the default font, the default LinesPerPage of 60 creates standard letter-sized pages about 10 
inches long. If you are using one of the Windows fonts, you may have to experiment with 
LinesPerPage to determine what fits on a page. If you want all of the text to appear on a 
single fax page, set LinesPerPage to 0.
TApdFaxConverter Component     613

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

MakeEndOfPage method

procedure MakeEndOfPage(var Buffer; var BufLen : Integer);

Generates an end-of-page code. 

Each fax page ends with a sequence of eight end-of-line fax codes. These codes indicate to 
the receiving fax machine that the end of a page has been reached. If you are creating APF 
files yourself, you must put these codes at the end of each page you create.

MakeEndOfPage puts eight end-of-line codes into Buffer. BufLen contains the length of the 
codes (this length varies, depending on whether you are creating a standard width or wide 
fax). You should write the data contained in Buffer to the end of the fax page you are 
creating. The buffer passed to MakeEndOfPage should be at least 64 bytes in length.

For more information about APF files, see the “Fax file format” on page 591.

See the Convert method on page 605 for an example.

See also: Convert, Width

OnCloseUserFile event

property OnCloseUserFile : TFaxCloseFileEvent

TFaxCloseFileEvent = procedure(F : TObject) of object;

Defines an event handler that is called to close a user-defined image file. 

When InputDocumentType is idUser, the TApdFaxConverter calls event handlers to open, 
read, and close a user-defined image file. OnCloseUserFile is called to close the input file. F 
contains a pointer to the fax converter component that called the event. When this event is 
called, you should close the image file and destroy any buffers related to reading and 
processing the image data.

See “Converting user-defined image files” on page 598 for more information.

See also: OnOpenUserFile, OnReadUserLine
14     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

OnOpenUserFile event

property OnOpenUserFile : TFaxOpenFileEvent

TFaxOpenFileEvent = procedure(
F : TObject; FName : string) of object;

Defines an event handler that is called to open a user-defined image file. 

When InputDocumentType is idUser, the TApdFaxConverter calls event handlers to open, 
read, and close a user-defined image file. OnOpenUserFile is called to open the input file. F 
contains a pointer to the fax converter component that called the event. FName contains the 
name of the file.

Use the value passed in FName to open the file. Do not use the value in DocumentFile 
because it is not guaranteed to have a file extension. FName is generated from the value in 
DocumentFile and DefUserExtension (if there is not extension in DocumentFile).

See “Converting user-defined image files” on page 598 for an example of converting an 
unsupported image file type.

The following example demonstrates the use of the OnOpenUserFile, OnReadUserLine, and 
OnCloseUserFile events:

var
InputFile : File;
LineLen : Integer;
BytesProcessed : LongInt;
TotalBytes : LongInt;

procedure Form1.ApdFaxConverter1OpenUserFile(
F : TObject; FName : string);

begin
AssignFile(InputFile, FName);
Reset(InputFile, 1);
...read file header...
LineLen := WidthInBytesAsReadFromImageHeader;
BytesProcessed := 0;
TotalBytes := FileSize(InputFile) - SizeOf(Header);

end;
TApdFaxConverter Component     615

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

procedure Form1.ApdFaxConverter1ReadUserLine(
F : TObject; Data : PByteArray; var Len : Integer;
var EndOfPage, MorePages : Boolean; var BytesRead,
BytesToRead : LongInt);

begin
BlockRead(InputFile, Data^, LineLen, Len);
Inc(BytesProcessed, Len);
EndOfPage := Eof(InputFile);
MorePages := False;
BytesRead := BytesProcessed;
BytesToRead := TotalBytes;

end;

procedure Form1.ApdFaxConverter1CloseUserFile(F : TObject);
begin

CloseFile(InputFile);
end;

See also: OnCloseUserFile, OnReadUserLine

OnOutputLine event

property OnOutputLine : TFaxOutputLineEvent

TFaxOutputLineEvent = procedure(
F : TObject; Data : PByteArray; Len : Integer;
EndOfPage, MorePages : Boolean) of object;

Defines an event handler that is called to output a line of Group 3 compressed data. 

When the Convert method is called, each line of raster data is read from the input image, 
compressed in Group 3 format, and passed to the OnOutputLine event. You can then 
process the compressed data.

F contains a pointer to the fax converter component that generated the event. Data is a 
pointer to an array of bytes that contain the compressed data. Len is the length of the 
compressed data.

If EndOfPage is True, the end of a page of input data has been reached. You should call 
MakeEndOfPage at this point, to output an end-of-page code. If MorePages is True, there 
are more pages of data to compress and output. If MorePages is False, you can dispose of any 
buffers and other data that are required for your output.

See also: Convert, MakeEndOfPage
16     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnReadUserLine event

property OnReadUserLine : TFaxReadLineEvent

TFaxReadLineEvent = procedure(
F : TObject; Data : PByteArray; var Len : Integer;
var EndOfPage, MorePages : Boolean) of object;

Defines an event handler that is called to read a line of data from a user-defined image file. 

When InputDocumentType is idUser, the TApdFaxConverter calls event handlers to open, 
read, and close a user-defined image file. OnReadUserLine is called each time a new line of 
raster data must be compressed.Data is a pointer to a 0-based array of bytes. On return from 
this function, it should contain a 1-bit-per-pixel representation of the data to be 
compressed. The bits should be on for black pixels and off for white pixels. Len should be 
equal to the length of the data.

EndOfPage should be set to True if the end of the user-defined page has been reached. If 
EndOfPage is True, the value of MorePages should indicate whether any more pages are 
available. If MorePages is True, the TApdFaxConverter begins a new page and begins calling 
OnReadUserLine for more data. If MorePages is False, the conversion process ends. See 
“Converting user-defined image files” on page 598 for more information.

See also: OnCloseUserFile, OnOpenUserFile, OnStatus

OnStatus event

property OnStatus : TFaxStatusEvent

TFaxStatusEvent = procedure(
F : TObject; Starting, Ending : Boolean;
PagesConverted, LinesConverted : Integer;
BytesConverted, BytesToConvert : LongInt;
var Abort : Boolean) of object;

Defines an event handler that is called to notify the user of the status of a conversion 
operation. 

During the conversion process, the TApdFaxConverter regularly calls the OnStatus event to 
notify the user of the progress of the conversion.

If Starting is True, the conversion of the document is just beginning. This is the appropriate 
time for you to do pre-conversion work (e.g., show the status display form).

If Ending is True, the conversion of the document is about to end. This is the appropriate 
time for you to do post-conversion work (e.g., destroy the form that you were using to 
display the conversion status).
TApdFaxConverter Component     617

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
PagesConverted is the number of pages that have been processed in the input document. 
PagesConverted is equal to 1 after the conversion of the first page is started, then equal to 2 
after the conversion of the second page is started, and so on. LinesConverted is the number 
of raster lines that have been read and compressed on the current page.

BytesConverted is the number of image bytes that have been read from the input file. 
BytesToConvert is the total number of bytes that will be read from the input file. These two 
values can be used to create a “percent complete” style progress bar for the conversion 
process.

Abort determines whether the conversion process will terminate prematurely. Set Abort to 
True if you need to abort the conversion process.

The following example shows how to implement a percent complete indicator for a fax 
converter:

procedure Form1.ApdFaxConverter1Status(
F : TObject; Starting, Ending : Boolean;
PagesConverted, LinesConverted : Integer;
BytesConverted, BytesToConvert : LongInt; var Abort : Boolean);

const
Frm : TConvertStatusForm = nil;

begin
if Starting then begin

Frm := TConvertStatusForm.Create(Application);
Frm.Show;

end else if Ending then begin
Frm.Close;
Frm.Free;

end else begin
if Frm.AbortBtnClicked then
Abort := True

else
{show progress}
Frm.Label1.Caption := Format(

'Conversion is %d percent complete',
[(BytesConverted * 100) div BytesToConvert]);

end;
end;
18     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OpenFile method

procedure OpenFile;

Opens an image file. 

If you need to process an image file without converting it to an APF file, use OpenFile to 
open the file specified by DocumentFile and InputDocumentType. Then use GetRasterLine 
to read raster data from the image file. When you are finished reading the image, use 
CloseFile to close the image file.

See “Processing image files” on page 596 for more information.

See also: CloseFile, CompressRasterLine, DocumentFile, GetRasterLine, 
InputDocumentType

Options property

property Options : TFaxCvtOptionsSet

TFaxCvtOptionsSet = Set of TFaxCvtOptions;

TFaxCvtOptions = (coDoubleWidth, coHalfHeight, coCenterImage,
coYield, coYieldOften);

Default: [coDoubleWidth, coCenterImage, coYield]

Sets optional features for the fax converter. 

The TApdFaxConverter optional features are turned on and off by adding or subtracting 
elements from the Options property. The valid Options are:

coDoubleWidth and coHalfHeight adjust for the difference between standard and high 
resolution faxes. If neither of these options are on, and an image is converted to a standard 
resolution fax (Resolution equals frNormal), the resulting fax looks vertically elongated. If 
coDoubleWidth is on, this effect is compensated for by doubling the width of the input 
image (if possible), causing the standard resolution fax to look normal. Doubling is not 

Option Result

coDoubleWidth Double the width of the input image.

coHalfHeight Halve the height of the input image.

coCenterImage Center images in page.

coYield Occasionally relinquish control to Windows.

coYieldOften Same as coYield, but done more frequently.
TApdFaxConverter Component     619

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

possible if the new width would be wider than the width specified by the Width property. If 
coHalfHeight is on, this effect is compensated for by discarding every other raster line of 
input image.

coDoubleWidth and coHalfHeight are mutually exclusive (they cannot both be on). 
Attempts to add one of these options to the option set when the other is already in the set 
are ignored.

If coCenterImage is on (the default), converted image files (not text files) are centered on the 
fax page. If coCenterImage is not on, converted image files are placed flush left on the page.

If coYield is on (the default), the TApdFaxConverter yields to Windows at the end of every 
converted page, giving other applications a chance to run. If coYield is not on, the 
TApdFaxConverter hogs the system for the amount of time required to convert the input 
file. This results in a faster conversion, but is not recommended.

coYieldOften is the same as coYield, except that yielding is much more frequent. Control is 
relinquished by the converter at the end of every converted raster line. This results in a 
slower conversion, but Windows runs better. If coYieldOften is turned on, coYield is turned 
on automatically.

The following example turns on the yielding features of the converter:

{make sure the converter yields regularly}
ApdFaxConverter1.Options := ApdFaxConverter1.Options +

[coYield, coYieldOften];

See also: Width

OutFileName property

property OutFileName : string

Specifies the name of the output fax file. 

When ConvertToFile is called, it creates a file with the name specified by OutFileName and 
puts the compressed fax data in that file.

OutFileName should be a fully qualified path name. If the file specified by this property 
already exists, it is overwritten without warning.

The following example converts a text file to an APF file that is stored in C:\FAX.APF:

ApdFaxConverter1.DocumentFile := 'C:\MYFILE.TXT';
ApdFaxConverter1.InputDocumentType := idText;
ApdFaxConverter1.OutFileName := 'C:\FAX.APF';
ApdFaxConverter1.ConvertToFile;

See also: ConvertToFile
20     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Resolution property

property Resolution : TFaxResolution

TFaxResolution = (frNormal, frHigh);

Default: frNormal

Specifies the resolution of output fax data. 

Fax images can be converted and stored using two different resolutions. Standard resolution 
is 200 horizontal dots per inch by 100 vertical dots per inch. High resolution has the same 
horizontal resolution, but uses 200 vertical dots per inch. In some fax documentation, the 
resolutions are described as 98 dots per inch and 196 dots per inch. Those numbers are 
actually more exact, but 100 and 200 are easier to remember and are commonly used in 
most fax documentation.

Resolution specifies which of the two resolutions is used. If Resolution is frNormal, the 
output resolution is 200x100. If Resolution is frHigh, the output resolution is 200x200.

If the file being converted is an image (i.e., not an ASCII text file), then the resultant fax 
might appear stretched in the vertical aspect. To deal with this, use the coDoubleWidth or 
coHalfHeight options.

See also: Options, Width

StationID property

property StationID : string

The station ID of the faxmodem. 

A fax device can identify itself to another fax device with a 20 character name, called the 
station ID. The Class 1, Class 2, and Class 2.0 specifications indicate that the station ID 
should contain just a phone number; therefore they limit it to just the digits 0 through 9 and 
space. However, the station ID is frequently used to store an alphabetic name. Most 
faxmodems support this convention by allowing upper and lower case letters, as well as 
other special characters in the station ID. This can cause problems for some fax machines, 
though, since they cannot print these characters.

Async Professional does not filter the characters stored in the station ID. If your software 
must be compatible with the broadest possible range of fax hardware, you might want to 
limit the characters stored in StationID.
TApdFaxConverter Component     621

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

StationID is stored in the header of the converted APF file. This string is not used when the 
fax is transmitted, since the StationID property of TApdAbstractFax is used to determine 
the string that is sent through the faxmodem. If you want to send the station ID embedded 
in the APF file, you should read the SenderID field from the fax header and use it to set the 
StationID property of TApdAbstractFax before sending.

See also: TApdAbstractFax.StationID

TabStop property

property TabStop : Cardinal

Default: 4

Specifies the size of expanded tabs in ASCII text files. 

During a fax conversion, tab characters ($09) in the input text are expanded to one to 
TabStop space characters ($20).

To demonstrate how space characters are inserted, these examples use the default TabStop of 
4. If the input data is:

<tab>This is a test

The tab character is expanded to:

<space><space><space><space>This is a test

If the input data is:

This is a<tab>test

The tab character is expanded to:

This is a<space><space><space>test

Only three spaces are needed because the word “test” is only three spaces away from a 
tabstop.
22     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

TopMargin property

property TopMargin : Cardinal

Default: 0

Specifies the size in raster lines of the top margin in the APF file. 

To avoid problems with fax machines that print faxes too close to the top of the paper 
(thereby distorting the image/text near the top of the page), the TApdFaxConverter can add 
a fixed-sized region of white space at the top of every page.

TopMargin is the number of blank raster lines added to the top of every converted page. The 
visible amount of white space varies depending on the value of Resolution (i.e., the margin 
appears smaller on high resolution faxes).

See also: LeftMargin, Resolution

Width property

property Width : TFaxWidth

TFaxWidth = (fwNormal, fwWide);

Default: fwNormal

Specifies the width of output faxes. 

The standard width of a fax page is 1728 pixels per row (about 8.5 inches). Async 
Professional supports one additional width: 2048 pixels per row (about 10 inches).

In most cases, the standard width of 1728 pixels is adequate. The larger width of 2048 is 
provided for special cases in which you are certain that the remote fax device can handle a 
wider fax. The Group 3 specification lists any width other than 1728 pixels as “optionally” 
supported, so support for 2048 pixel wide faxes varies from manufacturer to manufacturer.

See also: Resolution
TApdFaxConverter Component     623

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdFaxUnpacker Component
Fax images are transmitted and received in a compressed bitmap image format. The 
compressed data must then be unpacked before you can view, print, or edit the fax.

The unpacking methods of the TApdFaxUnpacker component handle all of the work of 
opening the APF file, finding the desired page, and uncompressing each raster line—but 
that’s as far as the general purpose routines can go. The unpacked raster lines are passed to 
your application through an event handler. Your application can print, display, or otherwise 
process the line.

Async Professional provides additional components to perform some of the most common 
operations for fax files: viewing, printing and converting to a graphics format. To view faxes, 
use the TApdFaxViewer component (see page 649). Printing is performed by the 
TApdFaxPrinter component (see page 674). The TApdFaxUnpacker itself can convert a fax 
to a different graphics format. It can unpack a fax into a memory bitmap (i.e., a VCL 
TBitmap instance), as well as a BMP, PCX, DCX, or TIFF image file. If you need to perform 
any other processing on a fax file, you must implement an OnOutputLine event handler.

OnOutputLine event
When the UnpackPage or UnpackFile methods of the TApdFaxUnpacker component are 
called, the data in the APF file is decompressed and passed to an OnOutputLine event 
handler.

In the following example an OnOutputLine event handler writes the raw raster data to a file:

var
OutFile : File;

...

procedure Form1.ApdFaxUnpackerOutputLine(
Sender : TObject; Starting, Ending : Boolean;
Data : PByteArray; Len, PageNum : Integer);

begin
if Starting then begin

AssignFile(OutFile, 'C:\MYIMAGE.IMG');
Rewrite(OutFile, 1);

end else if Ending then begin
CloseFile(OutFile);

end else
BlockWrite(OutFile, Data^, Len);

end;
24     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Sender is the object instance of the TApdFaxUnpacker component that generated the event. 
If Starting is True, the fax unpack process is just beginning. In this example, Starting is used 
to determine when to open the output file.

If Ending is True, the fax unpack process is ending (due to successful completion of the 
unpack or an error condition). In this example, Ending is used to determine when to close 
the output file.

Data is a pointer to a 0-based array of bytes that contains the decompressed data. Len is the 
length of the data. In this example, Len bytes are written from Data to the file OutFile.

PageNum contains the number of the page that is currently being unpacked. This can be 
used to determine when a page change occurs (this is important when converting 
multi-page faxes to multi-page image formats).

Memory bitmaps
The TApdFaxUnpacker can unpack a fax file (or page) to a TBitmap class. This is useful if 
you want to unpack a fax and manipulate the image before using it, or if you simply want to 
copy a fax to a TCanvas (or to the Picture property of a TImage component).

The UnpackFileToBitmap and UnpackPageToBitmap methods of the TApdFaxUnpacker 
component unpack a fax file and copy the uncompressed data into a VCL TBitmap instance. 
The following code demonstrates the use of these routines by displaying the fax data in a 
TImage component:

var
Bmp : TBitmap;
Image1 : TImage;

begin
ApdFaxUnpacker1.InFileName := 'D:\MYFAX.APF';
try

Bmp := ApdFaxUnpacker1.UnpackFileToBitmap;
Image1.Picture.Bitmap := Bmp;

except
MessageDlg('Unpack failed!', mtError, [mbOK], 0);

end;
end;
TApdFaxUnpacker Component     625

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Additionally, you can use the Canvas property of the Bitmap class to place additional 
graphics onto a fax image (for example, to create a custom cover page). The following 
example demonstrates the technique:

Form1 = class(TForm)
Image1 : TImage;

...

procedure TForm1.BitBtn1Click(Sender : TObject);
var

Bmp1 : TBitmap;
Bmp2 : TBitmap;

begin
ApdFaxUnpacker1.InFileName := 'D:\MYFAX1.APF';
Bmp1 := ApdFaxUnpacker1.UnpackPageToBitmap(1);

ApdFaxUnpacker1.InFileName := 'D:\MYFAX2.APF';
Bmp2 := ApdFaxUnpacker1.UnpackPageToBitmap(1);

Bmp1.Canvas.Draw(0, 0, Bmp2);
Bmp2.Free;

Image1.Picture.Bitmap := Bmp1;
end;

This example unpacks MYFAX1.APF and MYFAX2.APF into memory bitmaps. The bitmap 
of MYFAX2.APF is then placed on top of the bitmap of MYFAX1.APF by the call to Draw. 
Finally, the image is drawn on the form by placing the new bitmap (in Bmp1) into the 
Picture property of Image1 (a TImage component).

Scaling
The TApdFaxUnpacker component can scale (i.e., make the size larger or smaller) a fax as it 
is unpacked. When you call one of the TApdFaxUnpacker UnpackXxx methods, the Scaling 
property is examined to see if the output image should be scaled (Scaling equals True).

The image is scaled depending on the values of four properties. HorizMult and HorizDiv are 
combined to form a fraction (HorizMult/HorizDiv) that is multiplied by the width 
(horizontal aspect) of the fax to determine its new width. VertMult and VertDiv are 
combined to form a fraction (VertMult/VertDiv) that is multiplied by the height (vertical 
aspect) of the fax to determine its new height.
26     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
For example, assume a standard resolution fax (200x100) is being unpacked. When the fax 
is unpacked and converted into square pixels, the resulting image looks shorter than it 
should (since, in the original, the height of the pixels was twice as large as width of the 
pixels). To compensate for this, you can use the following:

ApdFaxUnpacker1.Scaling := True;
ApdFaxUnpacker1.HorizMult := 1;
ApdFaxUnpacker1.HorizDiv := 1;
ApdFaxUnpacker1.VertMult := 2;
ApdFaxUnpacker1.VertDiv := 1;

This specifies that the unpacked fax data is to be scaled to be twice as tall (VertMult / 
VertDiv = 2/1 = 2) as it normally would be. This makes the unpacked standard resolution 
fax look normal.

Similarly, the following code achieves the same effect, but the resultant image is smaller:

ApdFaxUnpacker1.Scaling := True;
ApdFaxUnpacker1.HorizMult := 1;
ApdFaxUnpacker1.HorizDiv := 2;
ApdFaxUnpacker1.VertMult := 1;
ApdFaxUnpacker1.VertDiv := 1;

This specifies that the width of the unpacked fax is to be halved (HorizMult / HorizDiv = 
1/2). This, too, compensates for the difference in aspect ratio between a standard and high 
resolution fax, but the resulting image is smaller than the one produced in the previous 
example.

To make it easier to compensate for the aspect ratio of standard resolution faxes, the 
AutoScaleMode property allows you to specify that the scaling should be performed 
automatically. You can request either method—doubling the height or halving the width.

The Scaling property can be used in many ways to produce a nearly unlimited range of 
images. For instance, you can create an image that is 1/3 the size of the original fax with the 
following code:

ApdFaxUnpacker1.Scaling := True;
ApdFaxUnpacker1.HorizMult := 1;
ApdFaxUnpacker1.HorizDiv := 3;
ApdFaxUnpacker1.VertMult := 1;
ApdFaxUnpacker1.VertDiv := 3;
TApdFaxUnpacker Component     627

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
You could create a thumbnail 32x42 image of the fax (assuming an 8.5" x 11" fax) with the 
following code:

ApdFaxUnpacker1.Scaling := True;
ApdFaxUnpacker1.HorizMult := 1;
ApdFaxUnpacker1.HorizDiv := 54;
ApdFaxUnpacker1.VertMult := 1;
ApdFaxUnpacker1.VertDiv := 54;

White space compression
To make it easier to view large faxes that have a lot of white space, the TApdFaxUnpacker can 
compress a specified number of blank raster lines into a smaller number of blank raster 
lines. This feature can be used to save paper when printing a large volume of faxes. For 
example, if a page is slightly longer than 11 inches, the white space compression feature can 
often make it fit nicely on an 11inch piece of paper, eliminating the need for an extra sheet of 
paper.

To use the white space compression feature, set WhitespaceCompression to True. Every 
occurrence of WhitespaceFrom or more consecutive blank lines is replaced with 
WhitespaceTo blank lines. For example, if WhitespaceFrom is 20 and WhiteSpaceTo is 5, 
then any occurrence of 20 or more consecutive blank lines is compressed to 5 blank lines.

Example
This example demonstrates the steps involved in unpacking a fax file to a memory bitmap. 
Create a new project, add the following components, and set the property values as 
indicated in Table 15.6.

Table 15.6: Example components and property values

Component Property Value

TApdFaxUnpacker InFileName <the name of an existing APF file>

TImage Align alClient
28     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
After adding the components and setting their properties, click on the combo box at the top 
of the Object Inspector and select “Form1.” Next, click on the “Events” tab at the bottom of 
the Object Inspector. From the events page, double click on the “OnCreate” event. A shell 
for an OnCreate event is generated for you. Modify the generated code to match this:

procedure TForm1.FormCreate(Sender : TObject);
var

Bmp : TBitmap;

begin
Bmp := ApdFaxUnpacker1.UnpackPageToBitmap(1);
Image1.Picture.Bitmap := Bmp;

end;

This event loads the fax specified by InFileName into the TBitmap Bmp. This TBitmap is 
assigned to the Picture property of the TImage component and is automatically displayed 
on the screen.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomFaxUnpacker (AdFaxCvt)

TApdFaxUnpacker (AdFaxCvt)
TApdFaxUnpacker Component     629

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Properties
AutoScaleMode

FaxResolution

FaxWidth

HorizDiv

HorizMult

InFileName

NumPages

Options

OutFileName

Scaling

! Version

VertDiv

VertMult

WhitespaceCompression

WhitespaceFrom

WhitespaceTo

Methods
ExtractPage

UnpackFile

UnpackFileToBitmap

UnpackFileToBmp

UnpackFileToDcx

UnpackFileToPcx

UnpackFileToTiff

UnpackPage

UnpackPageToBitmap

UnpackPageToBmp

UnpackPageToDcx

UnpackPageToPcx

UnpackPageToTiff

Events
OnOutputLine OnStatus
30     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

AutoScaleMode property

property AutoScaleMode : TAutoScaleMode

TAutoScaleMode = (asNone, asDoubleHeight, asHalfWidth);

Determines whether standard resolution faxes are automatically scaled. 

When a standard resolution fax is unpacked, the resulting image looks shorter than it 
should. That is because in the fax file each pixel is 1/100th of an inch tall, but just 1/200th of 
an inch wide.

AutoScaleMode can be used to automatically adjust the width or height of a standard 
resolution fax so that it looks normal when unpacked into memory or to an image file.

AutoScaleMode can contain any of the following values:

See Also: Scaling

ExtractPage method

procedure ExtractPage(const Page : Cardinal);

Extracts a single page in a fax file to an APF file.

ExtractPage reads and extracts the page specified by Page in the fax file specified by 
InFileName and writes the extracted page to the file specified by OutFileName. If the file 
name in OutFileName does not have an extension, a default extension of APF is appended. 
No scaling or conversion is performed on the extracted APF data.

If InFileName and OutFileName are the same, an ecAccessDenied exception will be raised. 
If the file specified by InFileName does not exist, an ecFileNotFound exception will be 
raised. If the file specified by OutFileName exists, it will be overwritten without warning.

Value Result

asNone No automatic scaling is performed.

asDoubleHeight The height of the unpacked fax is doubled. If the
Scaling property is True, this has the effect of
doubling the value of the VertMult property.

asHalfWidth The width of the unpacked fax is halved. If the Scaling
property is True, this has the effect of multiplying
HorizMult/HorizDiv by 1/2.
TApdFaxUnpacker Component     631

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The following example extracts each page in a fax to a separate fax file:

var
I : Integer;

....
ApdFaxUnpacker1.InFileName := OpenDialog1.FileName;
for I := 1 to ApdFaxUnpacker1.NumPages do begin
ApdFaxUnpacker1.OutFileName := 'PAGE' + IntToStr(I) + '.APF';
ApdFaxUnpacker1.ExtractPage(I);

end;
....

See also: InFileName, OutFileName

FaxResolution read-only,  run-time property

property FaxResolution : TFaxResolution

TFaxResolution = (frNormal, frHigh);

The resolution of the fax. 

If the file name specified in InFileName is valid, FaxResolution is the resolution of the first 
page of the fax (it is theoretically possible for each page in the fax to have a different 
resolution, but this is rarely the case). If FaxResolution is frNormal, the resolution of the fax 
is 200x100. If FaxResolution is frHigh, the resolution of the fax is 200x200.

The following example examines the resolution of a fax and sets the scaling properties 
appropriately:

ApdFaxUnpacker1.InFileName := OpenDialog.FileName;
ApdFaxUnpacker1.Scaling := False;

{double the height of the fax if it's in 200x100 resolution}
if (ApdFaxUnpacker1.FaxResolution = frNormal) then begin

ApdFaxUnpacker1.HorizMult := 1;
ApdFaxUnpacker1.HorizDiv := 1;
ApdFaxUnpacker1.VertMult := 2;
ApdFaxUnpacker1.VertDiv := 1;
ApdFaxUnpacker1.Scaling := True;

end;

See also: FaxWidth, InFileName
32     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

FaxWidth read-only, run-time property

property FaxWidth : TFaxWidth

TFaxWidth = (fwNormal, fwWide);

The width of the fax. 

If the file name specified in InFileName is valid, FaxWidth is the width of the first page of the 
fax (it is theoretically possible for each page in the fax to have a different width, but this is 
rarely the case). If FaxWidth is fwNormal, the width of the fax is 1728 pixels. If FaxWidth is 
fwWide, the width of the fax is 2048 pixels.

The following example examines the width of a fax and allocates a buffer large enough to 
hold a line of uncompressed fax data:

ApdFaxUnpacker1.InFileName := OpenDialog.FileName;
if (ApdFaxUnpacker1.FaxWidth = fwNormal) then

GetMem(Buffer, 1728 div 8)
else

GetMem(Buffer, 2048 div 8);

See also: FaxResolution, InFileName

HorizDiv property

property HorizDiv : Cardinal

Default: 1

Determines the horizontal divisor component for scaling. 

Attempts to set the value of HorizDiv to 0 are ignored.

For a detailed explanation of scaling, see “Scaling” on page 626.

See also: HorizMult, Scaling, VertDiv, VertMult
TApdFaxUnpacker Component     633

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

HorizMult property

property HorizMult : Cardinal

Default: 1

Determines the horizontal multiplier component for scaling. 

Attempts to set the value of HorizMult to 0 are ignored.

For a detailed explanation of scaling, see “Scaling” on page 626.

See also: HorizDiv, Scaling, VertDiv, VertMult

InFileName property

property InFileName : string

Specifies the name of the APF file to be unpacked. 

The TApdFaxUnpacker reads compressed Group 3 data from a file (in APF format) and 
decompresses it. The file specified by InFileName must be a valid APF file. If it is not, an 
EFaxBadFormat exception is raised when the file is accessed.

When InFileName is set, OutFileName is automatically set to the value of InFileName with 
the extension removed. For instance, if InFileName is set to “C:\MYFAX.APF”, then 
OutFileName is set to “C:\MYFAX”. Since OutFileName does not contain an extension, the 
UnpackXxxToXxx routines automatically append an appropriate extension to OutFileName 
before creating an output image file.

The following example specifies an input file and unpacks it to MYFAX.BMP:

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.UnpackFileToBmp;

See also: InFileName, OutFileName
34     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

NumPages read-only, run-time property

property NumPages : Cardinal

The number of pages in the fax. 

If the file specified in InFileName is valid, NumPages is the number of pages in the fax.

The following example unpacks each page of a fax into individual memory bitmaps and 
processes them:

var
I : Integer;
B : TBitmap;

...
ApdFaxUnpacker1.InFileName := OpenDialog.FileName;
for I := 1 to ApdFaxUnpacker1.NumPages do begin

B := UnpackPageToBitmap(I);
...process bitmap image...
B.Free;

end;

See also: InFileName

OnOutputLine event

property OnOutputLine : TUnpackOutputLineEvent

TUnpackOutputLineEvent = procedure(Sender : TObject;
Starting, Ending : Boolean; Data : PByteArray;
Len, PageNum : Integer) of object;

Defines an event handler that is called to output a line of decompressed raster data. 

As each line of data in an APF file is decompressed, the OnOutputLine event handler is 
called to output the decompressed data. Once the data is passed to OnOutputLine, it is 
discarded to make room for the next line of decompressed data. You can do anything you 
like with the decompressed data: display it to the screen, write it to a file, etc.

If Starting is True, no data is passed to the event—it is simply a notification that the 
unpacking process is beginning. Any resources needed for handling the unpacked data 
(buffers, output files, etc.) should be allocated.

If Ending is True, no data is passed to the event—it is simply a notification that the 
unpacking process is ending. Any resources that were allocated at the beginning of the 
unpack process should be freed.
TApdFaxUnpacker Component     635

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Data is a pointer to a zero-based array of bytes that contains the decompressed data. Each 
byte in the array represents 8 pixels of raster data. The raster data is represented as one-bit-
per-pixel. The bits are on for black pixels and off for white pixels. Len contains the length of 
the data. PageNum is the number of the page that is currently being unpacked.

The following example writes each line of decompressed data to a file:

var
OutFile : File;

...

procedure Form1.ApdFaxUnpackerOutputLine(
Sender : TObject; Starting, Ending : Boolean;
Data : PByteArray; Len, PageNum : Integer);

begin
if Starting then begin

AssignFile(OutFile, 'C:\MYIMAGE.IMG');
Rewrite(OutFile, 1);

end else if Ending then begin
CloseFile(OutFile);

end else
BlockWrite(OutFile, Data^, Len);

end;

See also: OnStatus

OnStatus event

property OnStatus : TUnpackStatusEvent

TUnpackStatusEvent = procedure(
Sender : TObject; FName : string; PageNum : Integer;
BytesUnpacked, BytesToUnpack : LongInt); of object;

Defines an event handler that is called to display the progress of an unpack operation. 

The OnStatus event handler is called after each line of a fax is read and decompressed. You 
can use the information passed to the event to create a status display for the user.

FName is the name of the file that is being unpacked. PageNum is the number of the page 
that is currently being unpacked.

BytesUnpacked is the number of bytes that have been unpacked so far. BytesToUnpack is the 
total number of bytes that will be unpacked in the file. You can use these two values to 
determine the percent completion of the unpack operation.
36     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The following example uses the OnStatus event to display a percent complete to the user:

procedure Form1.ApdFaxUnpacker1Status(
Sender : TObject; FName : string; PageNum : Integer;
BytesUnpacked, BytesToUnpack : LongInt) : Boolean;

begin
Label1.Caption := Format(

'Converting page %d of %s, %d%% complete',
[PageNum, FName, (BytesUnpacked * 100) div BytesToUnpack];

end;

See also: OnOutputLine

Options property

property Options : TUnpackerOptionsSet

TUnpackerOptionsSet = Set of TUnpackerOptions;

TUnpackerOptions = (uoYield, uoAbort);

Default: [uoYield]

A set of optional behaviors for the fax unpacker. 

If uoYield is on (the default), the TApdFaxUnpacker yields to Windows regularly, giving 
other applications a chance to run. If uoYield is not on, the TApdFaxUnpacker hogs the 
system for the amount of time required to unpack the file. This results in a faster unpack, but 
is not recommended.

There is one case in which yielding isn’t necessary—if your application is 32-bit and your 
unpack operation is in a separate thread. To turn the yield option off, either set it off in the 
Object Inspector or use the following code:

ApdFaxUnpacker1.Options := [];

To turn the yield option on, turn it on in the Object Inspector or use the following code:

ApdFaxUnpacker1.Options := [uoYield];

To abort a fax unpacking operation at run time, set Options to uoAbort.
TApdFaxUnpacker Component     637

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OutFileName property

property OutFileName : string

Specifies the name of the output image file. 

When the TApdFaxUnpacker component creates an image file (BMP, PCX, DCX, or TIF), 
the image is written to the file specified in OutFileName. You should specify a fully qualified 
path name, otherwise the file is created in the current directory and in Windows that 
changes frequently. If the specified file already exists, it is overwritten without warning.

When InFileName is set, OutFileName is automatically set to the value of InFileName with 
the extension removed. For instance, if InFileName is set to “C:\MYFAX.APF”, then 
OutFileName is set to “C:\MYFAX”. Since OutFileName does not contain an extension, the 
UnpackXxxToXxx routines automatically append an appropriate extension to OutFileName 
before creating an output image file.

The following example demonstrates the use of the OutFileName property:

ApdFaxUnpacker1.OutFileName := 'C:\MYFILE.BMP';
ApdFaxUnpacker1.UnpackFileToBmp;

See also: InFileName, UnpackXxxToXxx

Scaling property

property Scaling : Boolean

Specifies whether image scaling is performed. 

If Scaling is True, unpacked images are scaled to a new size determined by the values of four 
properties. HorizMult and HorizDiv are combined to form a fraction 
(HorizMult/HorizDiv) that is multiplied by the width of the fax to determine its new width. 
VertMult and VertDiv are combined to form a fraction (VertMult/VertDiv) that is multiplied 
by the height of the fax to determine its new height.

For example, assume that a fax is 1728 pixels wide and 2200 pixels tall. If HorizMult equals 1, 
HorizDiv equals 2, VertMult equals 4, and VertDiv equals 3, the fax would be scaled to 864 
pixels wide (1728 * 1 / 2) and 2933 pixels high (2200 * 4 / 3 = 2933).

See “Scaling” on page 626 for more information.

See also: HorizDiv, HorizMult, VertDiv, VertMult
38     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

UnpackFile method

procedure UnpackFile;

Unpacks all pages in a fax file. 

UnpackFile reads and unpacks every line of the fax file specified by InFileName and passes 
the unpacked data to the OnOutputLine event handler. If Scaling is True, the data is scaled 
before it is passed to the OnOutputLine event handler.

The following example unpacks a fax and writes the unpacked data to a file:

var
OutFile : File;

...

procedure Form1.ApdFaxUnpacker1OutputLine(
Sender : TObject; Starting, Ending : Boolean;
Data : PByteArray; Len, PageNum : Integer);

begin
if Starting then begin

AssignFile(OutFile, 'C:\MYIMAGE.IMG');
Rewrite(OutFile, 1);

end else if Ending then begin
CloseFile(OutFile);

end else
BlockWrite(OutFile, Data^, Len);

end;

...
ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.UnpackFile;

See also: InFileName, OnOutputLine, Scaling, UnpackPage
TApdFaxUnpacker Component     639

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

UnpackFileToBitmap method

function UnpackFileToBitmap : TBitmap;

Unpacks all pages in a fax file to a memory bitmap. 

UnpackFileToBitmap reads and unpacks every line of the fax file specified by InFileName 
and puts the unpacked data in a memory bitmap. The memory bitmap is returned by this 
function in the form of a VCL TBitmap instance. If Scaling is True, the data is scaled before 
the memory bitmap is created. You are responsible for freeing the bitmap when you are 
finished with it.

Since the TBitmap class does not include the concept of pages, all pages in the input APF file 
are placed into the TBitmap in a single image. If the input fax contains 9 pages, those 9 pages 
are placed into the TBitmap as a single image, one right after the other.

The following example unpacks a fax and puts the unpacked data in a memory bitmap:

var
Bmp : TBitmap;

...

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
Bmp := ApdFaxUnpacker1.UnpackFileToBitmap;
Form1.Image1.Picture.Bitmap := Bmp;
Bmp.Free;

See also: InFileName, Scaling, UnpackPageToBitmap
40     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

UnpackFileToBmp method

procedure UnpackFileToBmp;

Unpacks all pages in a fax file to a Windows bitmap file. 

UnpackFileToBmp reads and unpacks every line of the fax file specified by InFileName and 
writes the unpacked data to a Windows bitmap (BMP) file. The data is written to the file 
specified by OutFileName. If the file name in OutFileName does not have an extension, a 
default extension of BMP is appended. If Scaling is True, the data is scaled before it is written 
to the file.

Since the Windows bitmap file format does not include the concept of pages, all pages in the 
input APF file are placed into a single image in the BMP file. If the input fax contains 9 pages, 
those 9 pages are written to a single bitmap, one right after the other.

The following example creates a bitmap file called C:\MYIMAGE.BMP:

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.BMP';
ApdFaxUnpacker1.UnpackFileToBmp;

See also: InFileName, OutFileName, Scaling, UnpackPageToBmp

UnpackFileToDcx method

procedure UnpackFileToDcx;

Unpacks all pages in a fax file to a DCX file. 

UnpackFileToDcx reads and unpacks every line of the fax file specified by InFileName and 
writes the unpacked data to a DCX file. The data is written to the file specified by 
OutFileName. If the file name in OutFileName does not have an extension, a default 
extension of DCX is appended. If Scaling is True, the data is scaled before it is written to the 
file.

The DCX image file format is a multi-page file format. Each page in the input APF file is 
placed in a separate page in the DCX file.

The following example creates a DCX file called C:\MYIMAGE.DCX:

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.DCX';
ApdFaxUnpacker1.UnpackFileToDcx;

See also: InFileName, OutFileName, Scaling, UnpackPageToDcx
TApdFaxUnpacker Component     641

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

UnpackFileToPcx method

procedure UnpackFileToPcx;

Unpacks all pages in a fax file to a PCX file. 

UnpackFileToPcx reads and unpacks every line of the fax file specified by InFileName and 
writes the unpacked data to a PC Paintbrush (PCX) file. The data is written to the file 
specified by OutFileName. If the file name in OutFileName does not have an extension, a 
default extension of PCX is appended. If Scaling is True, the data is scaled before it is written 
to the file.

Since the PCX file format does not include the concept of pages, all pages in the input APF 
file are placed into a single image in the PCX file. If the input fax contains 9 pages, those 9 
pages are output to a single PCX image, one right after the other.

The following example creates a PCX file called C:\MYIMAGE.PCX:

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.PCX';
ApdFaxUnpacker1.UnpackFileToPcx;

See also: InFileName, OutFileName, Scaling, UnpackPageToPcx

UnpackFileToTiff method

procedure UnpackFileToTiff;

Unpacks all pages in a fax file to a TIFF file. 

UnpackFileToTiff reads and unpacks every line of the fax file specified by InFileName and 
writes the unpacked data to a Tagged Image File Format (TIFF) file. The data is written to 
the file specified by OutFileName. If the file name in OutFileName does not have an 
extension, a default extension of TIF is appended. If Scaling is True, the data is scaled before 
it is written to the file.

Since the TIFF file format does not include the concept of pages, all pages in the input APF 
file are placed into a single image in the TIFF file. If the input fax contains 9 pages, those 9 
pages are written to a single TIFF image, one right after the other.

The following example creates a TIFF file called C:\MYIMAGE.TIF:

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.TIF';
ApdFaxUnpacker1.UnpackFileToTiff;

See also: InFileName, OutFileName, Scaling, UnpackPageToTiff
42     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

UnpackPage method

procedure UnpackPage(const Page : Cardinal);

Unpacks a single page in a fax file. 

UnpackPage reads and unpacks the page specified by Page in the fax file specified by 
InFileName. The unpacked data is passed to the OnOutputLine event handler. If Page is 
invalid (i.e., if it is 0 or greater than the total number of pages in the fax file), an 
EInvalidPageNumber exception is raised. If Scaling is True, the data is scaled before it is 
passed to the OnOutputLine event handler.

The following example unpacks the first page of a fax and writes the unpacked data to a file:

var
OutFile : File;

...

procedure Form1.ApdFaxUnpacker1OutputLine(
Sender : TObject; Starting, Ending : Boolean;
Data : PByteArray; Len, PageNum : Integer);

begin
if Starting then begin

AssignFile(OutFile, 'C:\MYIMAGE.IMG');
Rewrite(OutFile, 1);

end else if Ending then begin
CloseFile(OutFile);

end else
BlockWrite(OutFile, Data^, Len);

end;

...
ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.UnpackPage(1);

See also: InFileName, OnOutputLine, Scaling, UnpackFile
TApdFaxUnpacker Component     643

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

UnpackPageToBitmap method

function UnpackPageToBitmap(const Page : Cardinal) : TBitmap;

Unpacks a single page in a fax file to a memory bitmap. 

UnpackPageToBitmap reads and unpacks the page specified by Page in the fax file specified 
by InFileName and puts the unpacked data in a memory bitmap. The memory bitmap is 
returned by this function in the form of a VCL TBitmap instance. If Scaling is True, the data 
is scaled before the memory bitmap is created. You are responsible for freeing the bitmap 
when you are finished with it.

The following example unpacks the first page of a fax and puts the unpacked data in a 
memory bitmap:

var
Bmp : TBitmap;
...

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
Bmp := ApdFaxUnpacker1.UnpackPageToBitmap(1);
Form1.Image1.Picture.Bitmap := Bmp;
Bmp.Free;

See also: InFileName, Scaling, UnpackFileToBitmap

UnpackPageToBmp method

procedure UnpackPageToBmp(const Page : Cardinal);

Unpacks a single page in a fax file to a Windows bitmap file. 

UnpackPageToBmp reads and unpacks the page specified by Page in the fax file specified by 
InFileName and writes the unpacked data to a Windows bitmap (BMP) file. The data is 
written to the file specified by OutFileName. If the file name in OutFileName does not have 
an extension, a default extension of BMP is appended. If Scaling is True, the data is scaled 
before it is written to the file.

The following example writes the first page of a fax file to C:\MYIMAGE.BMP:

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.BMP';
ApdFaxUnpacker1.UnpackPageToBmp(1);

See also: InFileName, OutFileName, Scaling, UnpackFileToBmp
44     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

UnpackPageToDcx method

procedure UnpackPageToDcx(const Page : Cardinal);

Unpacks a single page in a fax file to a DCX file. 

UnpackPageToDcx reads and unpacks the page specified by Page in the fax file specified by 
InFileName and writes the unpacked data to a DCX file. The data is written to the file 
specified by OutFileName. If the file name in OutFileName does not have an extension, a 
default extension of DCX is appended. If Scaling is True, the data is scaled before it is written 
to the file.

The DCX file format is a multi-page file format. Since only one page is unpacked by the 
UnpackPageToDcx method, the resultant DCX file contains only one page.

The following example writes the first page of a fax file to C:\MYIMAGE.DCX:

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.DCX';
ApdFaxUnpacker1.UnpackPageToDcx(1);

See also: InFileName, OutFileName, Scaling, UnpackFileToDcx

UnpackPageToPcx method

procedure UnpackPageToPcx(const Page : Cardinal);

Unpacks a single page in a fax file to a PCX file. 

UnpackPageToPcx reads and unpacks the page specified by Page in the fax file specified by 
InFileName and writes the unpacked data to a PC Paintbrush (PCX) file. The data is written 
to the file specified by OutFileName. If the file name in OutFileName does not have an 
extension, a default extension of PCX is appended. If Scaling is True, the data is scaled before 
it is written to the file.

The following example writes the first page of a fax file to C:\MYIMAGE.PCX:

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.PCX';
ApdFaxUnpacker1.UnpackPageToPcx(1);

See also: InFileName, OutFileName, Scaling, UnpackFileToPcx
TApdFaxUnpacker Component     645

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

UnpackPageToTiff method

procedure UnpackPageToTiff(const Page : Cardinal);

Unpacks a single page in a fax file to a TIFF file. 

UnpackPageToTiff reads and unpacks the page specified by Page in the fax file specified by 
InFileName and writes the unpacked data to a Tagged Image File Format (TIFF) file. The 
data is written to the file specified by OutFileName. If the file name in OutFileName does 
not have an extension, a default extension of TIF is appended. If Scaling is True, the data is 
scaled before it is written to the file.

The following example writes the first page of a fax file to C:\MYIMAGE.TIF:

ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.TIF';
ApdFaxUnpacker1.UnpackPageToTiff(1);

See also: InFileName, OutFileName, Scaling, UnpackFileToTiff

VertDiv property

property VertDiv : Cardinal

Default: 1

Determines the vertical divisor component for scaling. 

Attempts to set the value of VertDiv to 0 are ignored.

For a detailed explanation of scaling, see “Scaling” on page 626.

See also: HorizDiv, HorizMult, Scaling, VertMult

VertMult property

property VertMult : Cardinal

Default: 1

Determines the vertical multiplier component for scaling. 

Attempts to set the value of VertMult to 0 are ignored.

For a detailed explanation of scaling, see “Scaling” on page 626.

See also: HorizDiv, HorizMult, Scaling, VertDiv
46     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

WhitespaceCompression property

property WhitespaceCompression : Boolean

Default: False

Determines whether vertical white space is compressed. 

When WhitespaceCompression is True, large blocks of vertical white space are replaced 
with smaller blocks of vertical white space. If the unpacker encounters WhitespaceFrom or 
more blank raster lines while unpacking the fax, they are replaced with WhitespaceTo blank 
lines. For instance, if WhitespaceFrom is 20 and WhitespaceTo is 5, and the unpacker 
encounters 100 blank lines, only 5 blank lines are written. The same thing happens if only 20 
blank lines are encountered. If, however, the unpacker encounters 19 blank lines, those lines 
remain as is.

By default, compression of vertical white space is not enabled.

See “White space compression” on page 628 for more information.

See also: WhitespaceFrom, WhitespaceTo

WhitespaceFrom property

property WhitespaceFrom : Cardinal

Default: 0

Specifies the number of consecutive blank lines that are compressed if white space 
compression is enabled. 

When WhitespaceCompression is True, WhitespaceFrom is used to determine the number 
of consecutive lines of vertical white space that are compressed.

The value of WhitespaceFrom must be greater than the value of WhitespaceTo. If it is not, an 
EBadArgument exception is raised when an UnpackXxx method is called.

See “White space compression” on page 628 for more information.

See also: WhitespaceCompression, WhitespaceTo
TApdFaxUnpacker Component     647

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

WhitespaceTo property

property WhitespaceTo : Cardinal

Default: 0

Specifies the number of blank lines that are substituted for every occurrence of 
WhitespaceFrom or more consecutive blank lines. 

When WhitespaceCompression is True, WhitespaceTo is used to determine the number of 
blank lines that should be written for occurrences of WhitespaceFrom consecutive blank 
lines.

The value of WhitespaceTo must be less than the value of WhitespaceFrom. If it is not, an 
EBadArgument exception is raised when any of the UnpackXxx methods are called.

See “White space compression” on page 628 for more information.

See also: WhitespaceCompression, WhitespaceFrom
48     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdFaxViewer Component
The TApdFaxViewer component makes it easy to view received faxes (or any APF file). 
When the FileName property is set to the name of a fax file, the TApdFaxViewer loads the 
fax into memory, converting each page into a memory bitmap which can then be displayed 
on the screen. If the viewer is too small to view the fax, scrollbars are provided automatically.

The viewer has capabilities for scaling faxes, so you can implement features like “zoom in 
and out.” It also provides the ability to rotate faxes, allowing you to adjust for faxes that are 
sent upside down or sideways. The viewer can compress white space within the fax so that it 
is more easily viewed. It allows “drag and drop” of fax files onto the viewer. And, you can 
copy all or part of a fax to the Windows clipboard for use in other applications.

Scaling
The TApdFaxViewer component can scale (i.e., make the size larger or smaller) a fax that is 
viewed. The fax is scaled only on the screen, not in the input file. This preserves the original 
size of the fax, while making it more convenient to view. The scaling capabilities can also be 
used to implement a “Zoom In/Zoom Out” feature of the sort found in many image viewer 
and editing programs.

If Scaling is set to True (either when the fax is loaded or later), the image displayed on the 
screen is immediately scaled to the new dimensions. The image is scaled depending on the 
values of four properties. HorizMult and HorizDiv are combined to form a fraction 
(HorizMult/HorizDiv) that is multiplied by the width (horizontal aspect) of the fax to 
determine its new width. VertMult and VertDiv are combined to form a fraction 
(VertMult/VertDiv) that is multiplied by the height (vertical aspect) of the fax to determine 
its new height.

For example, assume a standard resolution fax (200x100) is being viewed. When the fax is 
converted into a memory bitmap (which has an aspect ratio of 1:1) for viewing, the resulting 
image looks shorter than it should (since, in the original, the height of the pixels was twice as 
large as width of the pixels). To compensate for this, use the following:

ApdFaxViewer1.Scaling := True;
ApdFaxViewer1.HorizMult := 1;
ApdFaxViewer1.HorizDiv := 1;
ApdFaxViewer1.VertMult := 2;
ApdFaxViewer1.VertDiv := 1;

This specifies that the viewed fax is scaled to be twice as tall (VertMult / VertDiv = 2/1 = 2) 
as it normally would be. This makes the viewed standard resolution fax look normal.
TApdFaxViewer Component     649

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Because changes to the scaling properties cause an immediate repaint of the image displayed 
on the screen, the above code would actually cause the screen image to be repainted up to 
five times (and probably with some pretty weird effects). Therefore, when you are changing 
the scaling properties, you should first turn off the immediate repaint of the display by 
calling BeginUpdate. After you make all the necessary changes to the scaling properties, call 
EndUpdate to repaint the screen. So a better version of the above code is as follows:

ApdFaxViewer1.BeginUpdate;
ApdFaxViewer1.Scaling := True;
ApdFaxViewer1.HorizMult := 1;
ApdFaxViewer1.HorizDiv := 1;
ApdFaxViewer1.VertMult := 2;
ApdFaxViewer1.VertDiv := 1;
ApdFaxViewer1.EndUpdate;

Here is another way to deal with the problem of the standard resolution fax looking shorter 
than it should:

ApdFaxViewer1.BeginUpdate;
ApdFaxViewer1.Scaling := True;
ApdFaxViewer1.HorizMult := 1;
ApdFaxViewer1.HorizDiv := 2;
ApdFaxViewer1.VertMult := 1;
ApdFaxViewer1.VertDiv := 1;
ApdFaxViewer1.EndUpdate;

This specifies that the width of the fax is to be halved (HorizMult / HorizDiv = 1/2). This, 
too, compensates for the difference in aspect ratio between a standard and high resolution 
fax, but the resulting image is smaller than the one produced in the previous example.

To make it easier to compensate for the aspect ratio of standard resolution faxes, the 
AutoScaleMode property allows you to specify that the scaling should be performed 
automatically. You can request either method—doubling the height or halving the width.

The Scaling property can be used in many ways to produce a nearly unlimited range of 
images. For instance, you can create an image that is 1/3 the size of the original fax with the 
following code:

ApdFaxViewer1.BeginUpdate;
ApdFaxViewer1.Scaling := True;
ApdFaxViewer1.HorizMult := 1;
ApdFaxViewer1.HorizDiv := 3;
ApdFaxViewer1.VertMult := 1;
ApdFaxViewer1.VertDiv := 3;
ApdFaxViewer1.EndUpdate;
50     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Rotation
Occasionally a fax is received upside down or sideways, making it difficult to view on the 
screen. To make it easier to deal with such faxes, the TApdFaxViewer can rotate the fax on 
the screen.

By default, faxes are displayed as they were received (0 degree rotation). Faxes can be rotated 
on the screen in 90 degree increments by setting the Rotation property. The TApdFaxViewer 
updates the screen immediately to reflect the new setting.

The following example demonstrates the use of the Rotation property in viewing upside 
down faxes:

procedure Form1.RotateBtnClick(Sender : TObject);
begin

ApdFaxViewer1.Rotation := vr180;
end;

White space compression
To make it easier to view large faxes that have a lot of white space, the TApdFaxViewer can 
compress a specified number of blank raster lines into a smaller number of blank raster 
lines. For example, if the fax contains a header, followed by a lot of blank space, followed by 
the text of the fax, the white space compression feature will likely allow the entire fax to be 
viewed on one screen.

To use the white space compression feature, set WhitespaceCompression to True. Every 
occurrence of WhitespaceFrom or more consecutive blank lines is replaced with 
WhiteSpaceTo blank lines. For example, if WhitespaceFrom is 20 and WhiteSpaceTo is 5, 
then any occurrence of 20 or more consecutive blank lines is compressed down to 5 blank 
lines.

The white space compression feature is active only when a fax is loaded into the viewer. If 
you need to change the white space compression settings, you must change the appropriate 
properties and then reload the fax from the file.

Drag and drop
The Windows File Manager program and the folders in Windows 95/98 support file drag 
and drop. If you click on a file, you can drag it over other windows. If a window is registered 
using the DragAcceptFiles API call, the file can be dropped on the window. The window can 
then process (or ignore) the file.

If AcceptDragged is True, the TApdFaxViewer calls the DragAcceptFiles API and allows APF 
files to be dropped on it. The APF file is automatically loaded into the viewer and the scaling 
and rotation settings are reset to their defaults.
TApdFaxViewer Component     651

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Your application can be notified of a dropped file if you implement an OnDropFile event 
handler. When a file is dropped on the viewer and the viewer accepts the file, the 
OnDropFile event is called. You can use this notification to update a status display or to 
change viewer settings to reflect the new file.

Navigation in the viewer
The TApdFaxViewer uses keyboard or mouse input to scroll viewed faxes on the screen, 
change pages within the fax, and select portions of the fax for copying to the clipboard.

Using the mouse to navigate
When the mouse is clicked on a horizontal scrollbar arrow, the display is scrolled right or left 
by HorizScroll pixels (the default is 8). Similarly, when the mouse is clicked on a vertical 
scrollbar arrow, the display is scrolled up or down by VertScroll pixels (the default is 8).

When the mouse is clicked to the left or the right of the scroll thumb on a horizontal 
scrollbar, the display is scrolled left or right by HorizScroll*10 pixels. Similarly, when the 
mouse is clicked above or below the scroll thumb on a vertical scrollbar, the display is 
scrolled up or down by VertScroll*10 pixels. The scroll thumb of a horizontal or vertical 
scrollbar can also be dragged to scroll the display.

Using the keyboard to navigate
The TApdFaxViewer recognizes the keystrokes in Table 15.7 for navigation in viewed faxes.

Table 15.7: TApdFaxViewer recognized keystrokes 

Key Action

Up arrow Scroll the display up by VertScroll pixels.

Down arrow Scroll the display down by VertScroll pixels.

Ctrl+Up arrow Scroll the display up by VertScroll*10 pixels.

Ctrl+Down arrow Scroll the display down by VertScroll*10 pixels.

Left arrow Scroll the display left by HorizScroll pixels.

Right arrow Scroll the display right by HorizScroll pixels.

Ctrl+Left arrow Scroll the display left by HorizScroll*10 pixels.

Ctrl+Right arrow Scroll the display right by HorizScroll*10 pixels.

Home Scroll the display horizontally to the left edge of
the fax (i.e., the left edge of the fax is displayed
at the left edge of the viewer).
52     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Copying a fax to the clipboard
The fax viewer allows you to copy all or part of a viewed fax to the Windows clipboard for 
later use by other applications. The desired part of the fax must first be selected. Selection 
can be done in three ways:

1.  Call SelectImage to select the entire current page.

2.  Call SelectRegion to select a specified rectangle in the current page.

3.  Portions of the current page can be manually selected by clicking on a section of the 
image and dragging the mouse to form a selection rectangle. If the mouse is dragged 
outside the borders of the TApdFaxViewer, the viewer is automatically scrolled to 
reflect the position of the mouse.

When you make a selection, it is displayed in reverse video. The selection can then be copied 
to the Windows clipboard by calling the CopyToClipboard method.

End Scroll the display horizontally to the right edge of
the fax (i.e., the right edge of the fax is displayed
at the right edge of the viewer).

Ctrl+Home Display the first page of the fax.

Ctrl+End Display the last page of the fax.

PgDn Display the next page of the fax.

PgUp Display the previous page of the fax.

Ctrl+PgDn Scroll the display vertically to the bottom edge of
the fax (i.e., the bottom edge of the fax is displayed
at the bottom edge of the viewer).

Ctrl+PgUp Scroll the display vertically to the top edge of the
fax (i.e., the top edge of the fax is displayed at the
top edge of the viewer).

Table 15.7: TApdFaxViewer recognized keystrokes  (continued)

Key Action
TApdFaxViewer Component     653

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Example
The following example demonstrates the steps involved in viewing an APF file. Create a new 
project, add the following components, and set the property values as indicated in 
Table 15.8.

Click on the combo box at the top of the Object Inspector and select “Form1.” Next, click 
Events tab at the bottom of the Object Inspector. From the events page, double-click the 
“OnCreate” event. A shell for an OnCreate event is generated for you. Modify the generated 
code to match this:

procedure TForm1.FormCreate(Sender : TObject);
begin

if OpenDialog1.Execute then
ApdFaxViewer1.FileName := OpenDialog1.FileName

else
Halt(1);

end;

This event prompts the user to enter the name of an APF file. If a file name is entered (i.e., 
Execute returns True), the file is opened in the viewer and displayed. If no file name is 
entered, the program simply terminates.

Table 15.8: Example components and property values

Component Property Value

TApdFaxViewer Align alClient

TOpenDialog DefaultExt APF

Filter APF files|*.apf|All files|*.*
54     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TWinControl (VCL)

TApdCustomFaxViewer (AdFView)

TApdFaxViewer (AdFView)

Properties
AcceptDragged

ActivePage

AutoScaleMode

BGColor

BusyCursor

FGColor

FileName

HorizDiv

HorizMult

HorizScroll

LoadWholeFax

NumPages

PageBitmaps

PageHeight

PageWidth

Rotation

Scaling

VertDiv

VertMult

VertScroll

WhitespaceCompression

WhitespaceFrom

WhitespaceTo

Methods
BeginUpdate

CopyToClipboard

EndUpdate

FirstPage

LastPage

NextPage

PrevPage

SelectImage

SelectRegion

Events
OnDropFile OnPageChange OnViewerError
TApdFaxViewer Component     655

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

AcceptDragged property

property AcceptDragged : Boolean

Default: True

Determines whether files dropped onto the viewer are automatically loaded. 

If AcceptDragged is True, the viewer allows APF files to be dragged and dropped on it. The 
dropped file is automatically loaded into the viewer using the current scaling, white space 
compression, and rotation settings.

See “Drag and drop” on page 651 for more information.

See also: OnDropFile

ActivePage run-time property

property ActivePage : Cardinal

The fax page that is currently being viewed. 

The TApdFaxViewer displays one page of the fax at a time. ActivePage can be used for a 
status display (e.g., “Viewing page 3 of 10”) or as an index into the PageBitmaps property to 
get a TBitmap class for the current page.

ActivePage can also be used to change the page currently being viewed by setting it to the 
desired page number. If ActivePage is set to an invalid page number (0 or a value larger than 
the number of pages in the fax), an EInvalidPageNumber exception is raised.

The following example demonstrates how to retrieve the bitmap for the currently viewed 
page:

var
Bmp : TBitmap;

...
Bmp := ApdFaxViewer1.PageBitmaps[ApdFaxViewer1.ActivePage];

See also: PageBitmaps, NumPages
56     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

AutoScaleMode property

property AutoScaleMode : TAutoScaleMode

TAutoScaleMode = (asNone, asDoubleHeight, asHalfWidth);

Default: asDoubleHeight

Determines whether standard resolution faxes are automatically scaled. 

When a standard resolution fax is loaded into the viewer, it looks shorter than it should. 
That is because in the fax file each pixel is 1/100th of an inch tall, but just 1/200th of an inch 
wide.

AutoScaleMode can be used to automatically adjust the width or height of a standard 
resolution fax so that it looks normal when displayed in the viewer.

AutoScaleMode can contain any of the following values:

See Also: Scaling

BeginUpdate method

procedure BeginUpdate;

Indicates the beginning of an update of the viewer’s scaling properties. 

When one of the scaling properties (Scaling, HorizMult, HorizDiv, VertMult, or VertDiv) is 
modified, the screen is repainted immediately. Since you will usually need to change more 
than one scaling property, you can use BeginUpdate to temporarily turn off immediate 
repainting. After you make all the necessary updates to the scaling properties, call 
EndUpdate to repaint the display.

Value Result

asNone No automatic scaling is performed.

asDoubleHeight The height of the viewed fax is doubled. If the Scaling
property is True, this has the effect of doubling the
value of the VertMult property.

asHalfWidth The width of the viewed fax is halved. If the Scaling
property is True, this has the effect of multiplying
HorizMult/HorizDiv by 1/2.
TApdFaxViewer Component     657

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

The following example demonstrates the use of the BeginUpdate method by scaling a fax 2-
to-1:

procedure TForm1.ScaleImage2To1;
begin

ApdFaxViewer1.BeginUpdate;
ApdFaxViewer1.Scaling := True;
ApdFaxViewer1.HorizMult := 2;
ApdFaxViewer1.HorizDiv := 1;
ApdFaxViewer1.VertMult := 2;
ApdFaxViewer1.VertDiv := 1;
ApdFaxViewer1.EndUpdate;

end;

See also: EndUpdate, HorizDiv, HorizMult, Scaling, VertDiv, VertMult

BGColor property

property BGColor : TColor

Default: clWhite

The background color of a displayed fax. 

Faxes contain only two colors of pixels: black and white. Normally, when a fax is displayed 
by the TApdFaxViewer, black pixels are displayed in black and white pixels are displayed in 
white.

BGColor changes the display color of white pixels. If BGColor is set to clBlue, the fax is 
displayed with black text and images on a blue background.

See also: FGColor

BusyCursor property

property BusyCursor : TCursor

The cursor that is displayed during lengthy operations. 

At times, the TApdFaxViewer component must load portions of the displayed fax into 
memory. This can be time-consuming, especially if the fax is large. To let the user know that 
a lengthy operation is taking place, the TApdFaxViewer changes the mouse cursor to the 
cursor specified by BusyCursor during the operation. After the operation is complete, the 
cursor is changed back to the cursor specified by the Cursor property.

The following example tells the fax viewer to display the hourglass cursor during lengthy 
operations:

ApdFaxViewer1.BusyCursor := crHourglass;
58     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

CopyToClipboard method

procedure CopyToClipboard;

Copies the selected image in the viewer to the Windows clipboard. 

Fax images copied to the Windows clipboard are stored in cf_Bitmap format. A program 
using the clipboard treats the fax data like a regular Windows bitmap image. For more 
information about the clipboard, the cf_Bitmap format, and the SetClipboardData routine, 
see the Windows API help file.

See “Copying a fax to the clipboard” on page 653 for more information.

See also: SelectImage, SelectRegion

EndUpdate method

procedure EndUpdate;

Indicates the end of an update of the viewer’s scaling properties and repaints the screen, 
reflecting the new settings. 

When one of the scaling properties (Scaling, HorizMult, HorizDiv, VertMult, or VertDiv) is 
modified, the screen is repainted immediately. Since you will usually need to change more 
than one scaling property, you can use BeginUpdate to temporarily turn off immediate 
repainting. After you make all the necessary updates to the scaling properties, call 
EndUpdate to repaint the display.

See also: BeginUpdate, HorizDiv, HorizMult, Scaling, VertDiv, VertMult

FGColor property

property FGColor : TColor

Default: clBlack

The foreground color of a displayed fax. 

Faxes contain only two colors of pixels: black and white. Normally, when a fax is displayed 
by the TApdFaxViewer, black pixels are displayed in black and white pixels are displayed in 
white.

FGColor changes the display color of black pixels. If FGColor is set to clGreen, the fax is 
displayed with green text and images on a white background.

See also: BGColor
TApdFaxViewer Component     659

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

FileName property

property FileName : string

The name of the file being viewed. 

FileName is the name of the APF file that the fax viewer is viewing. Setting FileName causes 
the viewer to immediately load the specified fax. Before the fax is loaded, the Scaling and 
Rotation properties are reset to their defaults.

FileName should be a fully qualified file name. Unqualified file names are assumed to be in 
the current directory, which changes frequently under Windows.

If LoadWholeFax is False, only the first page of the fax is loaded into memory and displayed. 
If LoadWholeFax is True, the whole fax is loaded into memory and the first page of the fax is 
displayed.

If FileName is set to an empty string, the currently loaded fax (if any) is discarded.

The following example demonstrates the use of the FileName property:

procedure Form1.OpenItemClick(Sender : TObject);
begin

if OpenDialog.Execute then
ApdFaxViewer1.FileName := OpenDialog.FileName;

end;

See also: LoadWholeFax, Rotation, Scaling

FirstPage method

procedure FirstPage;

Displays the first page in the fax. 

The TApdFaxViewer displays one page of the fax at a time. Calling FirstPage changes the 
display to the first page in the fax.

If LoadWholeFax is False, calling this method causes the current page to be discarded and 
the new page to be loaded into memory. This operation can take some time, depending on 
the size of the page.
60     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

The following example demonstrates the use of FirstPage:

procedure Form1.FirstPageBtnClick(Sender : TObject);
begin

{move to first page}
ApdFaxViewer1.FirstPage;

end;

See also: ActivePage, LastPage, LoadWholeFax, NextPage, PrevPage

HorizDiv property

property HorizDiv : Cardinal

Default: 1

Determines the horizontal divisor component for scaling. 

Attempts to set the value of HorizDiv to 0 are ignored. For a detailed explanation of scaling, 
see “Scaling” on page 626.

See also: BeginUpdate, EndUpdate, HorizMult, Scaling, VertDiv, VertMult

HorizMult property

property HorizMult : Cardinal

Default: 1

Determines the horizontal multiplier component for scaling. 

Attempts to set the value of HorizMult to 0 are ignored. For a detailed explanation of scaling, 
see “Scaling” on page 626.

See also: BeginUpdate, EndUpdate, HorizDiv, Scaling, VertDiv, VertMult

HorizScroll property

property HorizScroll : Cardinal

Default: 8

Determines the number of pixels that are scrolled during horizontal scrolling. 

When the right or left arrow keys are pressed or the right or left arrows on the horizontal 
scrollbar are clicked, the TApdFaxViewer scrolls the display to the left or right. HorizScroll 
determines the number of pixels that are scrolled. The default HorizScroll is 8 pixels.

See also: VertScroll
TApdFaxViewer Component     661

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

LastPage method

procedure LastPage;

Displays the last page in the fax. 

The TApdFaxViewer displays one page of the fax at a time. Calling LastPage changes the 
display to the last page in the fax.

If LoadWholeFax is False, calling this method causes the current page to be discarded and 
the new page to be loaded into memory. This operation can take some time, depending on 
the size of the page.

The following example demonstrates the use of LastPage:

procedure Form1.LastPageBtnClick(Sender : TObject);
begin

{move to last page}
ApdFaxViewer1.LastPage;

end;

See also: ActivePage, FirstPage, LoadWholeFax, NextPage, PrevPage

LoadWholeFax property

property LoadWholeFax : Boolean

Default: False

Determines whether the entire fax is loaded into memory. 

The TApdFaxViewer can load faxes one page at a time or all at once. If LoadWholeFax is 
False (the default), fax pages are loaded into memory as they are needed. If LoadWholeFax 
is True, all pages of the fax are loaded into memory when the FileName property is set.

Navigating through a fax is slower when LoadWholeFax is False, but it saves a considerable 
amount of memory, especially if you are viewing large faxes.

See also: FileName
62     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

NextPage method

procedure NextPage;

Displays the next page in the fax. 

The TApdFaxViewer displays one page of the fax at a time. Calling NextPage changes the 
display to the next page in the fax. If the current page is the last page in the fax, calling 
NextPage has no effect.

If LoadWholeFax is False, calling this method causes the current page to be discarded and 
the new page to be loaded into memory. This operation can take some time, depending on 
the size of the page.

The following example demonstrates the use of NextPage:

procedure Form1.NextPageBtnClick(Sender : TObject);
begin

{show next page}
ApdFaxViewer1.NextPage;

end;

See also: ActivePage, FirstPage, LastPage, LoadWholeFax, PrevPage

NumPages read-only, run-time property

property NumPages : Integer

The number of pages in the fax that is currently being viewed. 

NumPages can be used as an upper limit when accessing the PageBitmaps property, or in a 
status display (e.g., “Viewing page 1 of 3”).

The following example performs an operation on the bitmap for each page in the fax:

procedure Form1.ProcessPages;
var

I : Integer;
Bmp : TBitmap;

begin
for I := 1 to ApdFaxViewer1.NumPages do begin

Bmp := ApdFaxViewer1.PageBitmaps[I];
...process the bitmap...
Bmp.Free;

end;
end;

See also: ActivePage, PageBitmaps
TApdFaxViewer Component     663

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

OnDropFile event

property OnDropFile : TViewerFileDropEvent

TViewerFileDropEvent = procedure(
Sender : TObject; FileName : string) of object;

Defines an event handler that is called when a file is dropped on the viewer. 

When a file is dropped onto a TApdFaxViewer and AcceptDragged is True, the file is loaded 
into the viewer and the OnDropFile event is called. This notification is useful for updating 
status displays or for viewing sessions in which the bitmaps for each page are being 
manually processed and you need notification of changes in the viewer.

The following example demonstrates the use of the OnDropFile event:

procedure Form1.ApdFaxViewer1DropFile(
Sender : TObject; FileName : string);

var
I : Integer;
Bmp : TBitmap;

begin
Label1.Caption := Format('Now viewing %s, page 1 of %d',

[FileName, ApdFaxViewer1.NumPages]);
{process bitmaps}
for I := 1 to ApdFaxViewer1.NumPages do begin

Bmp := ApdFaxViewer1.PageBitmaps[I];
...process bitmap for new fax...
Bmp.Free;

end;
end;

See also: AcceptDragged
64     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnPageChange event

property OnPageChange : TNotifyEvent

Defines an event handler that is called when the active page changes.

The user of the TApdFaxViewer component can change pages by pressing the PgUp and 
PgDn keys. When that happens, the TApdFaxViewer component notifies you that the active 
page is changing by calling the OnPageChange event.

The following example updates a label on a form to display information about the current 
page:

procedure TMainForm.ApdFaxViewer1PageChange(Sender : TObject);
begin

if (ApdFaxViewer1.FileName <> '') then
StatusPanel.Caption :=
Format(' Viewing page %d of %d in %s',
[ApdFaxViewer1.ActivePage, ApdFaxViewer1.NumPages,
ApdFaxViewer1.FileName])

else
StatusPanel.Caption := ' No file loaded';

end;

OnViewerError event

property OnViewerError : TViewerErrorEvent

TViewerErrorEvent = procedure(
Sender : TObject; ErrorCode : Integer) of object;

Defines an event handler that reports fax viewer errors.

If LoadWholeFax is False, the TApdFaxViewer is sometimes forced to load faxes in the 
background. When this happens, the component cannot raise exceptions, so the 
OnViewerError event is called to notify you of an error.

ErrorCode contains the number of the error that occurred. It can be any of the ecXxx error 
codes.

See also: LoadWholeFax
TApdFaxViewer Component     665

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

PageBitmaps read-only, run-time property

property PageBitmaps [const Index : Integer] : TBitmap

An indexed property containing TBitmap representations of the pages in a viewed fax. 

PageBitmaps is used to obtain a bitmap representation of the fax loaded by the viewer. Each 
element of the PageBitmaps indexed property represents a page in the fax. The first element 
of the property is a representation of the first page of the fax. If an attempt is made to access 
an invalid page (a page number less than or equal to zero, or greater than the number of 
pages in the fax), an EInvalidPageNumber exception is raised.

When an element of the PageBitmaps property is accessed, a copy of the bitmap for the 
specified page is made and that copy is the value of the property. You must free bitmaps that 
you get from the PageBitmaps property when you are finished with them.

If LoadWholeFax is False, referencing any element of the PageBitmaps array (other than the 
current page) causes the referenced page to be loaded into memory. This operation can take 
some time, depending on the size of the page.

The following example obtains bitmaps for all pages in a fax and processes them:

var
I : Integer;
Bmp : TBitmap;

...
for I := 1 to ApdFaxViewer1.NumPages do begin

Bmp := ApdFaxViewer1.PageBitmaps[I];
...process the bitmap
Bmp.Free;

end;

See also: LoadWholeFax
66     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

PageHeight read-only, run-time property

property PageHeight : Cardinal

The height (in pixels) of the currently viewed page. 

When selecting regions of faxes and processing page bitmaps, it is useful to know the 
dimensions of the page currently being viewed. PageHeight is the height (in pixels) of the 
current page. If no fax is currently loaded into the viewer, the value of PageHeight is 0.

The following example uses the PageHeight property to select the top half of a fax page:

var
R : TRect;
...
R.Top := 0;
R.Left := 0;
R.Bottom := (ApdFaxViewer1.PageHeight div 2) - 1;
R.Right := ApdFaxViewer1.PageWidth - 1;
ApdFaxViewer1.SelectRegion(R);

See also: PageBitmaps, PageWidth

PageWidth read-only, run-time property

property PageWidth : Cardinal

The width (in pixels) of the currently viewed page. 

When selecting regions of faxes and processing page bitmaps, it is useful to know the 
dimensions of the page currently being viewed. PageWidth is the width (in pixels) of the 
current page. If no fax is currently loaded into the viewer, the value of PageWidth is 0.

See also: PageHeight

PrevPage method

procedure PrevPage;

Displays the previous page in the fax. 

The TApdFaxViewer displays one page of the fax at a time. Calling PrevPage changes the 
display to the previous page in the fax. If the current page is the first page in the fax, calling 
PrevPage has no effect.

If LoadWholeFax is False, calling this method causes the current page to be discarded and 
the new page to be loaded into memory. This operation can take some time, depending on 
the size of the page.
TApdFaxViewer Component     667

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The following example demonstrates the use of PrevPage:

procedure Form1.ShowPreviousBtnClick(Sender : TObject);
begin

{show previous page}
ApdFaxViewer1.PrevPage;

end;

See also: ActivePage, FirstPage, LastPage, LoadWholeFax, NextPage

Rotation property

property Rotation : TViewerRotation

TViewerRotation = (vr0, vr90, vr180, vr270);

Default: vr0

The angle at which a fax is viewed. 

When you set Rotation, the bitmap image of the fax is rotated in memory and the rotated 
image is displayed on the screen. Rotation is performed in 90 degree increments. The 
possible values for Rotation are:

By default, faxes are displayed as they were received (0 degree rotation, or vr0).

For more information see “Rotation” on page 651.

See also: Scaling

Value Result

vr0 The fax is displayed as it was converted or received.

vr90 The fax is rotated 90 degrees to the right.

vr180 The fax is rotated 180 degrees to the right (i.e., turned upside
down).

vr270 The fax is rotated 270 degrees to the right (or 90 degrees to the
left, depending on your viewpoint).
68     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Scaling property

property Scaling : Boolean

Default: False

Specifies whether image scaling is performed on viewed faxes. 

If Scaling is True, faxes viewed in a TApdFaxViewer are scaled to a new size determined by 
the values of four properties. HorizMult and HorizDiv are combined to form a fraction 
(HorizMult/HorizDiv) that is then multiplied by the width of the fax to determine its new 
width. VertMult and VertDiv are combined to form a fraction (VertMult/VertDiv) that is 
multiplied by the height of the fax to determine its new height.

For example, assume that a fax is 1728 pixels wide and 2200 pixels tall. If HorizMult equals 1, 
HorizDiv equals 2, VertMult equals 4, and VertDiv equals 3, the fax would be scaled to 864 
pixels wide (1728 * 1 / 2) and 2933 pixels high (2200 * 4 / 3 = 2933).

When Scaling is changed, the display is changed immediately to reflect the new settings. If 
you need to prevent this, the BeginUpdate and EndUpdate methods can be called to allow 
all scaling settings to be set before the display is updated.

See “Scaling” on page 649 for more information.

See also: BeginUpdate, EndUpdate, HorizDiv, HorizMult, VertDiv, VertMult

SelectImage method

procedure SelectImage;

Selects the entire current page. 

SelectImage selects the entire page that is currently being viewed. When SelectImage is 
called, the screen is immediately updated to reflect the selection, causing the entire page to 
be shown in reverse video. The selection can be copied to the Windows clipboard by calling 
CopyToClipboard. See “Copying a fax to the clipboard” on page 653 for more information.

The following example demonstrates the use of SelectImage:

procedure Form1.CopyBtnClick(Sender : TObject);
begin

ApdFaxViewer1.SelectImage;
ApdFaxViewer1.CopyToClipBoard;

end;

See also: CopyToClipboard, SelectRegion
TApdFaxViewer Component     669

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

SelectRegion method

procedure SelectRegion(const R : TRect);

Selects the image bounded by the specified rectangle. 

SelectRegion selects a portion of the page being viewed. R specifies the rectangle that is to be 
selected. When SelectRegion is called, the screen is immediately updated to reflect the 
selection, causing the rectangle specified by R to be displayed in reverse video. The selection 
can be copied to the Windows clipboard by calling CopyToClipboard. See “Copying a fax to 
the clipboard” on page 653 for more information.

The following example selects a rectangle of 10 pixels by 10 pixels in the upper left corner of 
the page:

var
R : TRect;

...
R.Top := 0;
R.Left := 0;
R.Bottom := 9;
R.Right := 9;
ApdFaxViewer1.SelectRegion(R);

See also: CopyToClipboard, SelectImage

VertDiv property

property VertDiv : Cardinal

Default: 1

Determines the vertical divisor component for scaling. 

Attempts to set the value of VertDiv to 0 are ignored.

For a detailed explanation of scaling, see “Scaling” on page 626.

See also: BeginUpdate, EndUpdate, HorizDiv, HorizMult, Scaling, VertMult
70     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

VertMult property

property VertMult : Cardinal

Default: 1

Determines the vertical multiplier component for scaling. 

Attempts to set the value of VertMult to 0 are ignored.

For a detailed explanation of scaling, see “Scaling” on page 626.

See also: BeginUpdate, EndUpdate, HorizDiv, HorizMult, Scaling, VertDiv

VertScroll property

property VertScroll : Cardinal

Default: 8

Determines the number of pixels that are scrolled during vertical scrolling. 

When the up or down arrow keys are pressed or the up or down arrows on the vertical 
scrollbar are clicked, the TApdFaxViewer scrolls the display up or down. VertScroll 
determines the number of pixels that are scrolled. The default VertScroll is 8 pixels.

See also: HorizScroll

WhitespaceCompression property

property WhitespaceCompression : Boolean

Default: False

Determines whether vertical white space is compressed. 

When WhitespaceCompression is True, large blocks of vertical white space are replaced 
with smaller blocks of vertical white space.

If the viewer encounters WhitespaceFrom or more blank raster lines, they are replaced with 
WhitespaceTo blank lines. For example, if WhitespaceFrom is 20 and WhitespaceTo is 5 and 
the viewer encounters 100 blank lines, only 5 blank lines are displayed. The same thing 
happens if only 20 blank lines are encountered. If, however, the viewer encounters 19 blank 
lines, those lines are all displayed.

By default, compression of vertical white space is not enabled.

Compression of white space takes place only when a fax is loaded. If you need to change the 
white space compression settings, you must change the appropriate properties and then 
reload the fax from the file. 
TApdFaxViewer Component     671

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

You can force the reload of a fax using the following code:

procedure Form1.ReloadFax;
var

SavePage : Cardinal;
SaveFile : string;

begin
SavePage := ApdFaxViewer1.ActivePage;
SaveFile := ApdFaxViewer1.FileName;

{discard the current fax}
ApdFaxViewer1.FileName := '';

{reload the fax}
ApdFaxViewer1.FileName := SaveFile;
ApdFaxViewer1.ActivePage := SavePage;

end;

See also: WhitespaceFrom, WhitespaceTo

WhitespaceFrom property

property WhitespaceFrom : Cardinal

Default: 0

Specifies the number of consecutive blank lines that are compressed if white space 
compression is enabled. 

When WhitespaceCompression is True, WhitespaceFrom is used to determine the number 
of consecutive lines of vertical white space that are compressed.

The value of WhitespaceFrom must be greater than the value of WhitespaceTo. If it is not, an 
EBadArgument exception is raised when an attempt is made to load a fax file into the viewer.

See also: WhitespaceCompression, WhitespaceTo
72     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

WhitespaceTo property

property WhitespaceTo : Cardinal

Default: 0

Specifies the number of blank lines that are substituted for every occurrence of 
WhitespaceFrom or more consecutive blank lines. 

When WhitespaceCompression is True, WhitespaceTo is used to determine the number of 
blank lines that should be displayed for occurrences of WhitespaceFrom consecutive blank 
lines.

The value of WhitespaceTo must be less than the value of WhitespaceFrom. If it is not, an 
EBadArgument exception is raised when an attempt is made to load a fax file into the viewer.

See also: WhitespaceCompression, WhitespaceFrom
TApdFaxViewer Component     673

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdFaxPrinter Component
The TApdFaxPrinter provides services for printing fax files to any Windows printer. Header 
and Footer properties allow you to put text at the top or bottom of each page. You can scale 
each fax page to fit on the requested paper size and you can print multiple fax pages on a 
single sheet of paper.

The TApdFaxPrinterStatus component provides a standard display for monitoring the print 
progress, or you can use a status event handler to notify your program of status events. The 
TApdFaxPrinterLog component provides automatic logging of the success or failure of a 
print job, or you can intercept the log events with an event handler to provide your own 
logging.

Headers and footers
The TApdFaxPrinter can add headers and footers to each printed fax. This can be useful 
when the information on the received fax is not enough. For example, not all faxes provide 
the time sent/received or the station ID of the caller.

The headers and footers are configured separately, so you can use one, both, or neither. You 
can separately select the font for headers and footers. A class called TApdFaxPrintMargin 
publishes three properties of the header or footer: Caption, Enabled, and Font. Caption 
specifies the text to be printed. For example, to print “This is my fax header” at the top of 
each page, use:

ApdFaxPrinter1.FaxHeader.Caption := 'This is my fax header';

The Caption property supports replacement tags. A replacement tag is one of several 
characters prefixed with ‘$’. When the header or footer is printed, the tags are replaced with 
appropriate text. A header or footer can consist of any mix of tags and normal text (be 
careful that your normal text doesn’t happen to contain tags, though). The available 
replacement tags are shown in Table 15.9.

Table 15.9: Replacement tags

Tag Description

$D Today’s date in MM/DD/YY format, always 8 characters.

$N Total number of pages, variable length.

$P Current page number, variable length.

$F Fax file name, variable length.

$T Current time in HH:MMpm format, always 7 characters.
74     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Note that some of the tags vary in length. For example, $P would be replaced by ‘1’ for the 
first page and “10” for the tenth page.

The default footer caption is:

DefFaxFooterCaption = 'PAGE: $P of $N';

This prints a footer on the first page of a six page fax as:

PAGE: 1 of 6

The Enabled property of headers and footers simply turns printing on or off. Enabled is 
checked for each page printed to see if a header or footer should be printed. You can use the 
OnNextPage event to turn the printing of headers and footers on and off on a page-by-page 
basis. For example, you could print headers only on even-numbered pages and footers only 
on odd-numbered pages.

The Font property is a TFont class and allows you to change the selected font. The default 
font is MS Sans Serif.

No size adjustments are made in the header or footer for captions that are larger than the 
page width. The header and footer text is printed exactly as specified in the Caption 
property.

Scaling
When a fax is received or created, it is usually stored in the same size as the original 
document. If you receive a fax that was originally on legal-sized paper, printing it on letter-
sized paper causes three inches of each page to overflow to the next page. If you set the 
PrintScale property to psFitToPage, each page is scaled to fit on the requested paper size.

Fax printer events
The fax printer component generates these events.

OnFaxPrintLog
procedure(Sender: TObject; FaxPLCode: TFaxPLCode) of object;

Generated at the start and end of each printed fax. This provides an opportunity to log the 
status of each fax printed.

OnFaxPrintStatus
procedure(

Sender: TObject; StatusCode: TFaxPrintProgress) of object;

Generated at semi-regular intervals so that a program can display the progress of the 
printing fax.
TApdFaxPrinter Component     675

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
OnNextPage
procedure(Sender: TObject; CP, LP: Word) of object;

Generated at the start of each page. Programs can intercept this event to change the settings 
of certain options on a per page basis.

Fax printer status
Printing a fax file can take from several seconds to several minutes, depending on numerous 
factors, including the size of the fax file and the number of pages to print. To allow you to 
give the user an indication of the progress of the print session, the fax printer frequently 
generates an OnFaxPrintStatus event.

The following example handles the OnFaxPrintStatus event:

TForm1 = class(TForm)
....
File : TLabel;
Page : TLabel;
Status: TLabel;
FP : TApdFaxPrinter;
...

end;

procedure TForm1.ApdFaxPrintStatus(
Sender : TObject; StatusCode : TFaxPrintProgress);

const
ProgressSt: array[TFaxPrintProgress] of string[10] =

('Idle', 'Converting', 'Composing',
'Rendering', 'Submitting');

begin
File.Caption := FP.FileName;
Status.Caption := ProgressSt[StatusCode];
Page.Caption := IntToStr(FP.CurrentPrintingPage);

end;

The method named TApdFaxPrinterStatus handles the OnFaxPrintStatus event by updating 
a form at each call. StatusCode specifies the current state of the print job.
76     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Fax printer logging
It is often desirable to automate the printing of faxes. For example, a fax server might send 
and receive faxes during the night and automatically print received faxes at designated 
times. In this case it would be nice to keep a record of the faxes that were successfully printed 
and those that weren’t. The printer logging feature provides the opportunity to log 
information about each printed fax.

To support logging, the fax printer generates an OnFaxPrintLog event at the start and end of 
each fax printed. The event passes a parameter that identifies the current log action. The 
following is an example of a simple log event:

procedure TForm1.ApdFaxPrintLog(
Sender : TObject; FaxPLCode : TFaxPLCode);

begin
case FaxPLCode of

lcStart :
CurrentFile.Caption := ApdFaxPrinter1.FileName;

lcFinish:
PrintOK.Items.Add(ApdFaxPrinter1.FileName);

lcAborted:
PrintAborted.Items.Add(ApdFaxPrinter1.FileName);

lcFailed:
PrintFailed.Items.Add(ApdFaxPrinter1.FileName);

end;
end;

This example shows every possible log value. It uses a TLabel component named 
CurrentFile to display the current file being printed and updates one of three TListBox 
components with the final status of the print session.

The printer logging routine is not limited to just writing status information. It can also be 
used to take care of cleanup duties after a fax is printed. For example, you could conserve 
disk space by automatically archiving a received fax after it is printed.

A supplied component can do automatic print logging for you. If you create an instance of a 
TApdFaxPrinterLog and assign it to FaxPrinterLog, logging is done automatically. For each 
OnFaxPrintLog event, the fax printer calls the UpdateLog method of TApdFaxPrinterLog to 
write the information to the log file. It then calls the OnFaxPrintLog event.
TApdFaxPrinter Component     677

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Example
This example shows how to construct and use a fax printer component. Create a new 
project, add the following components, and set the property values as indicated in Table 
15.10.

Double click on the FileNameEdit’s OnChange event handler within the Object Inspector 
and modify the generated method to match the following code:

procedure TForm1.FileNameEditChange(Sender : TObject);
begin

ApdFaxPrinter1.FileName := FileNameEdit.Text;
end;

This event handler updates the name of the file to be printed whenever the text in the edit 
control changes.

Double click on the FileNameButton’s OnClick event handler and modify the generated 
method to match the following code:

procedure TForm1.FileNameButtonClick(Sender : TObject);
begin

OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
if OpenDialog1.Execute then

FileNameEdit.Text := OpenDialog1.FileName;
end;

Table 15.10: Fax printer component example 

Component Property Value

TApdFaxPrinter

TApdFaxPrinterStatus

TOpenDialog

TButton Caption Select File

Name FileNameButton

TButton Caption Print

Name PrintButton

TLabel Caption File Name

Name fnLabel

TEdit Name FileNameEdit
78     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
This event handler updates the file name edit box with the selected file from the OpenDialog 
call.

Double click on the PrintButton’s OnClick event handler and change the generated method 
to match the following code:

procedure TForm1.PrintButtonClick(Sender : TObject);
begin

ApdFaxPrinter1.PrintFax;
end;

This tells the TApdFaxPrinter to begin printing the fax file specified by the FileName.

Compile and run the example. Click Select File to select the fax file to print.

This example is in the EXFPRN1 project in the \ASYNCPRO\EXAMPLES directory.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomFaxPrinter (AdFaxPrn)

TApdFaxPrinter (AdFaxPrn)

Properties
Caption

CurrentPrintingPage

FaxFooter

FaxHeader

FaxPrinterLog

FaxResolution

FaxWidth

FileName

FirstPageToPrint

LastPageToPrint

MultiPage

PrintProgress

PrintScale

StatusDisplay

TotalFaxPages

! Version

Methods
PrintAbort PrintFax PrintSetup

Events
OnFaxPrintLog OnFaxPrintStatus OnNextPage
TApdFaxPrinter Component     679

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference Section

Caption property

property Caption : string

Default: “APro Fax Printer”

Used by Windows in the Print Manager and for network title pages. 

Each document submitted to the Windows Print Manager has an associated name to 
identify it in the print queue. Caption allows you to specify the name.

CurrentPrintingPage read-only, run-time property

property CurrentPrintingPage : Word

The number of the pages currently being printed. 

As each page is printed, CurrentPrintingPage is updated to reflect the current page number 
in the fax.

FaxFooter property

property FaxFooter : TApdFaxPrinterMargin

TApdFaxPrinterMargin = class(TApdCustomFaxPrinterMargin)
published

property Caption;
property Enabled;
property Font;

end;

Default: Caption: “PAGE: $P of $N”, Enabled: True

Specifies the options for the fax page footer. 

Caption specifies the text of the footer. It can consist of normal text and replacement tags. A 
replacement tag is one of several characters prefixed with ‘$’. When the footer is printed, the 
tags are replaced with appropriate text. The available replacement tags are listed in “Headers 
and footers” on page 674.

Enabled indicates whether footers should be printed. Font is the font for the footer.

See “Headers and footers” on page 674 for more information.

See also: FaxHeader
80     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

FaxHeader property

property FaxHeader : TApdFaxPrinterMargin

TApdFaxPrinterMargin = class(TApdCustomFaxPrinterMargin)
published

property Caption;
property Enabled;
property Font;

end;

Default: Caption: “FILE: $F”, Enabled: True

Specifies the options for the fax page header. 

Caption specifies the text of the header. It can consist of normal text and replacement tags. A 
replacement tag is one of several characters prefixed with ‘$’. When the header is printed, 
the tags are replaced with appropriate text. The available replacement tags are listed in 
“Headers and footers” on page 674.

Enabled indicates whether headers should be printed. Font is the font for the header.

See “Headers and footers” on page 674 for more information.

See also: FaxFooter

FaxPrinterLog property

property FaxPrinterLog : TApdFaxPrinterLog

An instance of a printer logging component. 

If FaxPrinterLog is nil (the default), the fax printer does not perform automatic logging. You 
can install an OnFaxPrintLog event handler to perform logging in this case.

If you create an instance of (or a descendant of) a TApdFaxPrinterLog (see page 695) and 
assign it to FaxPrinterLog, logging is done automatically.

See “Fax printer logging” on page 677 for more information.

See also: OnFaxPrintLog
TApdFaxPrinter Component     681

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

FaxResolution read-only, run-time property

property FaxResolution : TFaxResolution

TFaxResolution = (frNormal, frHigh);

Default: frNormal

Specifies the resolution of the fax. 

FaxResolution is the resolution of the fax specified by FileName. The resolution of the fax is 
used internally to scale the fax for printing. If FaxResolution is frNormal, the resolution of 
the fax is 200x100. If FaxResolution is frHigh, the resolution of the fax is 200x200.

FaxWidth read-only, run-time property

property FaxWidth : TFaxWidth

TFaxWidth = (fwNormal, fwWide);

Default: fwNormal

Specifies the width of the fax. 

FaxWidth is the width (in pixels) of the fax specified by FileName. It is used internally to 
scale the fax for printing. If FaxWidth is fwNormal, the width of the fax is 1728 pixels. If 
FaxWidth is fwWide, the width of the fax is 2048 pixels.

FileName property

property FileName : string

The name of the fax file to print. 

The FileName property must be set to a valid APF file name before PrintSetup or PrintFax 
are called. If no FileName is specified and PrintFax is called, no printing occurs. If no 
FileName is specified and PrintSetup is called, you can select the printer device, but the page 
numbers to print will be invalid.

See also: PrintFax, PrintSetup
82     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

FirstPageToPrint run-time property

property FirstPageToPrint : Word

Specifies the first page to be printed in the fax. 

FirstPageToPrint specifies the first page to print in the fax specified by FileName. This is 
usually set by the PrintSetup method by selecting the starting and ending pages to print.

See also: PrintSetup

LastPageToPrint run-time property

property LastPageToPrint : Word

Specifies the last page to be printed in the fax. 

LastPageToPrint specifies the last page to print in the fax specified by FileName. This is 
usually set by the PrintSetup method by selecting the starting and ending pages to print.

MultiPage property

property MultiPage : Boolean

Default: False

Determines the number of fax pages that are printed on each printed page. 

If MultiPage is False (the default), each fax page is printed on one printed page.

If MultiPage is True, multiple fax pages are printed on each printed page. If printing is in 
Portrait mode, 4 fax pages are printed on each printed page. If printing is in Landscape 
mode, 2 fax pages are printed on each printed page.

Any value of PrintScale can be used with MultiPage.

See also: PrintScale
TApdFaxPrinter Component     683

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnFaxPrintLog event

property OnFaxPrintLog : TFaxPLEvent

TFaxPLEvent = procedure(
Sender : TObject; FaxPLCode : TFaxPLCode) of object;

TFaxPLCode = (lcStart, lcFinish, lcAborted, lcFailed);

Defines an event handler that is called at designated points during a fax printing session. 

The primary purpose of OnFaxPrintLog is to give applications a chance to log statistical 
information about a fax print session.

Sender is the fax printer component to be logged. FaxPLCode indicates the state of the print 
job. The possible states are:

No other information is passed with the event. You can use fax printer status properties such 
as FileName and CurrentPrintingPage to get additional information about the print job.

See “Fax printer logging” on page 677 for more information.

See also: FaxPrinterLog

OnFaxPrintStatus event

property OnFaxPrintStatus : TFaxPrintStatusEvent

TFaxPrintStatusEvent = procedure(
Sender : TObject; StatusCode : TFaxPrintProgress) of object;

TFaxPrintProgress = (
ppIdle, ppConverting, ppComposing, ppRendering, ppSubmitting);

Defines an event handler that is called regularly during a printing session. 

This event is generated for each action that the print component performs. You can use it to 
update a status display that informs the user about the fax printing progress.

State Meaning

lcStart Printing started.

lcFinish Printing finished successfully.

lcAborted Printing aborted before completion.

lcFailed Printing failed.
84     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Sender is the fax printer component that is in progress. StatusCode indicates the status of the 
print job. The possible values are:

No other information is passed with the event. You can use fax printer status properties such 
as FileName and CurrentPrintingPage to get additional information about the print job.

See also: StatusDisplay

OnNextPage event

property OnNextPage : TFaxPrnNextPageEvent

TFaxPrnNextPageEvent = procedure(
Sender : TObject; CP, TP : Word) of object;

Defines an event handler that is called before each page is printed. 

This event is generated for each page in the fax before it is printed. You can use OnNextPage, 
for example, to abort the printing of a fax by calling PrintAbort.

CP is the current page number of the fax that is printing. TP is the total number of pages to 
be printed.

See also: PrintAbort

PrintAbort method

procedure PrintAbort;

Cancels printing of a fax. 

PrintAbort can be called whenever a fax is in the process of being rendered or submitted to 
the printer. It halts the sending of data to Print Manager. Any data already sent to Print 
Manager will still be printed.

Calls to PrintAbort during other states are ignored.

See also: PrintFax

Value Meaning

ppIdle Nothing is happening.

ppConverting The current page is being converted from APF format.

ppComposing The current page is being composed for printing.

ppRendering The current page is being rendered.

ppSubmitting The current page is being submitted to the printer.
TApdFaxPrinter Component     685

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

PrintFax method

procedure PrintFax;

Prints the fax. 

PrintFax prints the fax specified by FileName. It is usually called after PrintSetup is called to 
select the printer and the range of pages to print. Printing can be aborted by calling 
PrintAbort.

See also: PrintAbort, PrintSetup

PrintProgress read-only, run-time property

property PrintProgress : TFaxPrintProgress

TFaxPrintProgress = (
ppIdle, ppConverting, ppComposing, ppRendering, ppSubmitting);

Indicates the progress of the print job. 

PrintProgress contains the current state of the TApdFaxPrinter during a print job. You can 
use this property to track the fax progress in your status routines. The possible values for 
PrintProgress are:

Value Meaning

ppIdle Nothing is happening.

ppConverting The current page is being converted from APF format.

ppComposing The current page is being composed for printing.

ppRendering The current page is being rendered.

ppSubmitting The current page is being submitted to the printer.
86     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

PrintScale property

property PrintScale : TFaxPrintScale

TFaxPrintScale = (psNone, psFitToPage);

Default: psFitToPage

Specifies how each page of the fax is scaled for printing. 

If PrintScale equals psFitToPage (the default), the fax is scaled so that each fax page fits on a 
single printed page. If PrintScale equals psNone, no scaling is done. The fax is printed as it 
appears in the fax document.

To print multiple fax pages on each printed page, use MultiPage.

See also: MultiPage

PrintSetup method

procedure PrintSetup;

Sets the options for the printer. 

When PrintSetup is called, the Windows common printer setup dialog is displayed. You can 
then specify options such as the printer to use, the page range, and so on.

See also: PrintFax

StatusDisplay property

property StatusDisplay : TApdAbstractFaxPrinterStatus

An instance of a fax printer status window. 

If StatusDisplay is nil (the default), the fax printer does not provide an automatic status 
window. You can install an OnFaxPrintStatus event handler to display the status in this case.

If you create an instance of a class derived from TApdAbstractFaxPrinterStatus or use the 
supplied TApdFaxPrinterStatus component (see page 693) and assign it to StatusDisplay, the 
status window is displayed and updated automatically.

See also: OnFaxPrintStatus
TApdFaxPrinter Component     687

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

TotalFaxPages read-only, run-time property

property TotalFaxPages : Word

The total number of pages in the fax file. 

TotalFaxPages is the total number of pages in the fax file specified by FileName. It is not the 
number of pages to be printed, since that is controlled by FirstPageToPrint and 
LastPageToPrint. The number of pages to print is calculated by:

PagesToPrint := (LastPageToPrint - FirstPageToPrint) + 1
88     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdAbstractFaxPrinterStatus Class
TApdAbstractFaxPrinterStatus is an abstract class that defines the methods and properties 
needed by a component that automatically displays status while a TApdFaxPrinter 
component is printing a fax. You generally won’t need to create a descendent class of your 
own, since Async Professional supplies one, the TApdFaxPrinterStatus component 
described on page 693.

However, TApdFaxPrinterStatus shows a particular set of information about a print job in a 
predefined format. If this format is not suitable for your needs, you can create your own 
descendant of TApdAbstractFaxPrinterStatus. The best way to start is to study the source 
code of TApdFaxPrinterStatus (in the AdFPStat unit) and its associated form, 
TStandardFaxPrinterStatusDisplay.

The TApdAbstractFaxPrinterStatus class contains an instance of a TForm that holds 
controls used to display the printing status. You design this form, create an instance, and 
assign the instance to the Display property of TApdAbstractFaxPrinterStatus.

TApdAbstractFaxPrinterStatus replaces the standard VCL properties Caption, Ctl3D, 
Position, and Visible and the standard VCL method Show. When these routines are used in 
the status component, the overridden versions perform the same actions on the associated 
Display form. Thus you can display the status form by calling Show, erase it by setting 
Visible to False, adjust its position by assigning to Position, and use 3D effects by setting 
Ctl3D to True.

Once you create an instance of your TApdAbstractFaxPrinterStatus descendant, you must 
assign it to the StatusDisplay property of your TApdFaxPrinter component. When the fax 
printer needs to update the status display, it calls the UpdateDisplay method of 
TApdAbstractFaxPrinterStatus, which you must override to update your status window.
TApdAbstractFaxPrinterStatus Class     689

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdAbstractFaxPrinterStatus (AdFaxPrn)

Properties
Display FaxPrinter ! Version

Methods
CreateDisplay DestroyDisplay UpdateDisplay
90     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

Reference Section

CreateDisplay virtual abstract method

procedure CreateDisplay; virtual; abstract;

An abstract method that creates a form to display fax printing status. 

A descendant of TApdAbstractFaxPrinterStatus must override this method with a routine 
that creates a TForm component that contains various controls (typically of type TLabel) for 
displaying the fax printing status. The TForm should also contain a TButton control and 
associated AbortClick event handler that allows the user to abort the fax printing.

CreateDisplay must then assign the instance of this form to the Display property.

See also: DestroyDisplay, Display

DestroyDisplay virtual abstract method

procedure DestroyDisplay; virtual; abstract;

An abstract method that destroys the display form. 

A descendant of TApdAbstractFaxPrinterStatus must override this method to destroy the 
TForm instance created by CreateDisplay.

See also: CreateDisplay, Display

Display run-time property

property Display : TForm

A reference to the form created by CreateDisplay. 

CreateDisplay must assign a properly initialized instance of a TForm to this property. 
UpdateDisplay can refer to this property to update the status window.

See also: CreateDisplay, UpdateDisplay

FaxPrinter read-only, run-time property

property FaxPrinter : TApdCustomFaxPrinter

The fax printer component that is using the status component. 

When you derive components from TApdAbstractFaxPrinterStatus, you will probably 
reference TApdFaxPrinter properties to display information about the progress of the print 
session. Use this property to do so. It is automatically initialized when you assign the status 
component to the StatusDisplay property of TApdFaxPrinter.
TApdAbstractFaxPrinterStatus Class     691

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

UpdateDisplay method

procedure UpdateDisplay(First, Last : Boolean); virtual; abstract;

An abstract method that writes the contents of the status window. 

A descendant of TApdAbstractFaxPrinterStatus must override this method to update the 
display form. The TApdFaxPrinter component calls this method regularly from its 
OnFaxPrintStatus event handler.

On the first call to UpdateDisplay, First equals True and UpdateDisplay should call the Show 
method of Display to draw the outline and background of the status form. On the last call to 
UpdateDisplay, Last equals True and UpdateDisplay should set the Visible property of 
Display to False to erase the status window.

For all other calls to UpdateDisplay, First and Last both equal False. During these calls, 
UpdateDisplay must update the various labels in the Display form. To get information about 
the fax printing status, read the values of the various fax printer properties (use FaxPrinter 
to find the fax printer) such as FileName and CurrentPrintingPage.

The AbortClick event handler, if provided, should call the PrintAbort method of 
TApdFaxPrinter to terminate fax printing.
92     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdFaxPrinterStatus Component
TApdFaxPrinterStatus is a descendant of TApdAbstractFaxPrinterStatus that implements a 
standard printer status display. To use it, just create an instance and assign it to the 
StatusDisplay property of your TApdFaxPrinter component. TApdFaxPrinterStatus includes 
all of the most frequently used information about a print job and it provides an Abort button 
so that the user can stop the printing at any time.

TApdFaxPrinterStatus overrides all the abstract methods of TApdAbstractFaxPrinterStatus. 
TApdFaxPrinterStatus has no methods that you must call or properties that you must adjust. 
You might want to change the settings of the Ctl3D and Position properties to modify the 
appearance and placement of the window.

Figure 15.1 shows the TStandardFaxPrintStatusDisplay form that is associated with a 
TApdFaxPrinterStatus component.

For an example of using a TApdFaxPrinterStatus component, see the TApdFaxPrinter 
example on page 674.

 Figure 15.1: TStandardFaxPrintStatusDisplay form.
TApdFaxPrinterStatus Component     693

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TComponent (VCL)

TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomFaxPrinterStatus (AdFaxPrn)

TApdFaxPrinterStatus (AdFaxPrn)
94     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdFaxPrinterLog Component
TApdFaxPrinterLog is a small component that can be associated with a TApdFaxPrinter 
component to provide automatic printer logging services. Just create an instance of 
TApdFaxPrinterLog and assign it to the FaxPrinterLog property of the TApdFaxPrinter 
component.

TApdFaxPrinterLog creates or appends to a text file whose name is given by the 
LogFileName property. Each time the OnFaxPrintLog event is generated, the associated 
TApdFaxPrinterLog instance opens the file, writes a new line to it, and closes the file.

Following is a sample of the text file created by TApdFaxPrinterLog:

Printing d:\changes.apf started at 4/17/96 3:38:58 PM
Printing d:\changes.apf finished at 4/17/96 3:39:24 PM

Printing d:\changes.apf started at 4/17/96 3:53:35 PM
Printing d:\changes.apf aborted at 4/17/96 3:53:41 PM

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomFaxPrinterLog (AdFaxPrn)

TApdFaxPrinterLog (AdFaxPrn)

Properties
FaxPrinter LogFileName ! Version

Methods
UpdateLog
TApdFaxPrinterLog Component     695

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference Section
FaxPrinter property

property FaxPrinter : TApdCustomFaxPrinter

The fax component that is using the logging component. 

When you derive components from TApdFaxPrinterLog, you will probably reference 
TApdFaxPrinter properties to display information about the progress of the print session. 
Use this property to do so. It is automatically initialized when you assign the status 
component to the StatusDisplay property of TApdFaxPrinter.

LogFileName property

property LogFileName : string

Default: “FAXPRINT.LOG”

Determines the name of the file used to store the fax printer log. 

You should set the value of LogFileName before calling the PrintFax method of 
TApdFaxPrinter. However, because the log file is opened and closed for each update, you 
can change LogFileName at any time. If you set LogFileName to an empty string, automatic 
logging is disabled until you assign a non-empty string.

See also: TApdFaxPrinter.PrintFax

UpdateLog method

procedure UpdateLog(const LogCode : TFaxPLCode); virtual;

TFaxPLCode = (lcStart, lcFinish, lcAborted, lcFailed);

Called for each fax printer logging event. 
96     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
UpdateLog creates or appends to the log file, builds and writes a text string for each event, 
and closes the log file. LogCode can have the following values:

TApdFaxPrinterLog contains a field named FaxPrinter that UpdateLog uses to obtain 
additional information (i.e., FileName, CurrentPrintingPage) about the print job.

See also: TApdFaxPrinter.OnFaxPrintLog

Value Meaning

lcStart Printing started.

lcFinish Printing finished successfully.

lcAborted Printing aborted before completion.

lcFailed Printing failed.
TApdFaxPrinterLog Component     697

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Sending and Receiving Faxes
Async Professional provides components that support send and receive services for Class 1, 
Class 1.0, Class 2, and Class 2.0 faxmodems. These faxmodems all provide similar 
capabilities. All can connect to any other Group 3 fax device, they use the same image 
transmission format, and all are capable of transferring data at the same speeds. The 
differences between them are in the area of how the PC fax software interacts with the 
faxmodem. When using a Class 1 or Class 1.0 faxmodem, the communication between the 
PC and the modem is at a fairly low level. They exchange information and commands 
through HDLC (High-level Data Link Control) packets instead of Hayes-type ‘AT’ 
sequences. The fax software is also responsible for negotiating the faxmodem-to-faxmodem 
data transfer rate by sending and receiving training sequences.

When using a Class 2 or Class 2.0 faxmodem, the communication between the PC and the 
modem is based on an extended set of Hayes-type “AT” commands and text responses. The 
faxmodem itself negotiates the faxmodem-to-faxmodem data transfer rate and reports the 
results back to the PC.

Because all faxmodems are used in such a similar fashion, they are supported with a single 
set of components. In general, you don’t need to be concerned with the class of the 
faxmodem is attached to the systems that your software supports. You call the same 
functions in either case.

The fax transfer process
This section describes the anatomy of a fax transfer in some detail. You don’t need to know 
all of this to use the Async Professional fax components. However, it may be helpful for you 
to understand the detailed differences between Class 1, Class 1.0, Class 2, and Class 2.0 and 
to know some of the limitations of Group 3 faxmodems in general. The discussion also 
specifies exactly when the various fax events are generated. The explanation is organized 
according to the fax transfer phases associated with these events. A list of these phases is 
described in Table 15.11.

Table 15.11: Fax transfer phases

Phase Description

Phase A Dial

Phase B Pre-message

Phase C Message

Phase D Post-message

Phase E Hang-up
98     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The “phase name” is the term used by the TIA/EIA specification for each activity. Phase A is 
associated with dialing the phone number or preparing the modem to receive a call. The 
sender and receiver negotiate the parameters of the fax connection during Phase B. The 
actual fax image (the “message”) is transferred during Phase C. During Phase D, the sender 
and receiver decide whether a page must be resent, or whether more pages follow. During 
Phase E, the modem disconnects from the phone line in preparation for the next call.

All phases from A through E are processed in order unless an error occurs. An OnFaxError 
event can be generated in any phase. If a fax session is in progress, the OnFaxError event is 
followed by an OnFaxLog event.

Class 1/1.0 and Class 2/2.0 modems differ only in their processing of Phase B and Phase D. 
With Class 1/1.0 modems, the terminal software handles these two phases by transmitting 
and receiving HDLC packets. With Class 2/2.0 modems, the terminal sends an ‘AT’ 
sequence and waits for the modem to return a text response.

Phase A: Dial
The first step in Phase A is to initialize the modem for sending or receiving faxes. 
TApdSendFax continues Phase A by generating an OnFaxNext event to get the phone 
number and fax file name. If a fax is queued for sending, it dials the fax recipient’s phone 
number.

Phase B: Pre-message
Phase B starts as soon as the call is answered. The major task of Phase B is for the modems to 
agree on a set of capabilities to use while transferring the fax. The modems exchange their 
capabilities, then perform an iterative training procedure to find the fastest transmission 
parameters that are reliable.

During training, the sender starts at the fastest modulation rate that the receiver supports. It 
sends a known sequence of bytes, which the receiver attempts to read. If the receiver gets the 
right pattern, it informs the sender and the transfer moves on to Phase C. If the pattern is 
incorrect, the receiver informs the sender and the sender determines whether to retry at the 
same rate or to step down to the next lower modulation rate. The process is then repeated. 
Generally a reduction in transfer rate is required because the telephone line is too noisy. If 
no available modulation rate succeeds, the connection is terminated.

After a modulation rate is successfully negotiated, various events are generated. 
TApdReceiveFax generates an OnFaxAccept event to accept or reject this fax. If the fax is 
rejected, an OnFaxLog event is generated to log the rejection. If the fax is accepted, an 
OnFaxName event is generated to get a name for the received file, and an OnFaxLog event is 
generated to log the start of the receive. TApdSendFax generates an OnFaxLog event to log 
the start of the transmit session.
Sending and Receiving Faxes     699

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Phase C: Message
During Phase C, TApdSendFax sends page image data to the faxmodem, which transmits it 
to the receiving faxmodem. The receiving faxmodem sends it on to the receiver software. 
During this process, the sender must honor flow control, because the transmitting 
faxmodem could impose flow control to temporarily stop the data flow. The faxmodem 
releases flow control when it wants to resume.

Software or hardware flow control must also be enabled at the modem. When you use TAPI 
or the AWMODEM.INI database, the appropriate type of flow control is automatically 
enabled. Otherwise, you must ensure that flow control is enabled at the modem.

While in Phase C, the TApdSendFax component must continuously send data to the 
faxmodem, except when it is blocked by flow control. Any break in the stream generates a 
“data underflow” error. What happens after a data underflow depends on the faxmodem, 
but in most cases the fax session cannot be continued.

To avoid data underflow, the TApdComPort component must use a port baud rate that is 
higher than (not just equal to) the fax bit per second transfer rate. In almost all cases this 
should be 19200 baud. There’s no benefit to using higher baud rates and at least one of the 
modems we tested works only at 19200.

Another possible cause of data underflow is an ill-behaved Windows 3.X program that 
doesn’t yield CPU time or thread starvation caused by a Win32 program that raises its 
thread priority too high for too long. The best way to avoid this is to use a relatively large 
TApdComPort output buffer (for example, 16384 bytes).

OnFaxStatus events are generated regularly during Phase C. By default they are generated 
once every second (you can change the frequency by setting the StatusInterval property).

Phase D: Post-message
At the end of Phase C the transmitter sends an end-of-page sequence, which marks the start 
of Phase D. The receiver then tells the transmitter whether or not the page was received 
successfully. If it was not, the two modems can negotiate a retransfer. If it was, the 
transmitter tells the receiver whether any additional pages are coming.

If there are more pages, the process can loop back to either the middle of Phase B (to retrain 
the connection) or the beginning of Phase C (to keep the existing connection parameters). 
The receiving modem decides which approach to use. Async Professional’s receive routines 
loop to the beginning of Phase C. Other software packages and fax machines can choose 
either approach.
00     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Phase E: Hang-up
Phase E disconnects or hangs up the modem, terminating the fax call. When transmitting 
faxes, the input file is closed and an OnFaxLog event is generated to indicate the end of this 
fax. TApdSendFax then loops back to Phase A to see whether another fax should be sent.

When receiving faxes, the output file is closed and an OnFaxLog event is generated. 
TApdReceiveFax then waits for another incoming call unless the OneFax property is True. If 
there are no more faxes to send or receive, an OnFaxFinish event is generated.

Fax send/receive events
The fax send/receive session takes place in the background and communicates with your 
application via four events:

OnFaxStatus
procedure(CP : TObject; First, Last : Boolean) of object;

Generated approximately once per second during the entire fax session so that programs 
can display the progress of the session. See “OnFaxStatus” on page 729. Also see “Fax 
status” on page 707.

OnFaxLog
procedure(CP : TObject; LogCode : TFaxLogCode) of object;

Generated at the start and end of each fax call. This provides the opportunity to log the 
status of the fax transfer. See “OnFaxLog” on page 729. Also see “Fax logging” on page 712.

OnFaxError
procedure(CP : TObject; ErrorCode : Integer) of object;

Generated when an unrecoverable error occurs. Recoverable errors do not generate this 
message because they are an expected part of fax transfers and, when possible, the failed 
operation is retried automatically. See the OnFaxError event on page 728. Also see “Error 
handling” on page 705.

OnFaxFinish
procedure(CP : TObject; ErrorCode : Integer) of object;

Generated after all faxes have been transmitted or received or after the fax session terminates 
due to an unrecoverable error. This event also sends the final result code of the fax session. 
See the OnFaxFinish event on page 728.
Sending and Receiving Faxes     701

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Fax sessions and the TApdComPort
Fax sessions require the following values for critical TApdComPort properties:

ApdComPort1.DataBits := 8;
ApdComPort1.StopBits := 1;
ApdComPort1.Parity := pNone;
ApdComPort1.Baud := 19200;
ApdComPort1.InSize := 8192;
ApdComPort1.OutSize := 8192;
ApdComPort1.HWFlowOptions := [hwfUseRTS, hwfRequireCTS];

When TApdSendFax and TApdReceiveFax first link to a TApdComPort component (i.e., 
when their ComPort properties are set) they immediately force the above properties to these 
values. You are then free to change these properties; the fax components won’t try to change 
them back again. However, improper changes to these critical properties can result in 
unreliable fax operation.

Databits, Stopbits, and Parity must be set to 8,1,none since that is the proper setting for 
binary data transfer. Fax devices don’t use parity checking.

Baud must be set to 19200 for a couple of reasons. First, the fax software must continuously 
transmit data to the faxmodem, so that it can continuously transmit data to the receiving fax 
device. A pause in a fax data stream is considered by the fax device to be a fatal error and 
usually results in an immediate abort of the fax session, or an abort at the end of the current 
page.

Because the highest fax bps rate is 14400 bits per second, a comport baud rate slightly higher 
than that, 19200, is sufficient to assure that short pauses in the data stream from the software 
do not result in pauses between the fax devices.

A baud rate higher than 19200 isn’t necessary since the fax bps rate will never be greater than 
14400. Selecting a baud rate higher that 19200 does little to improve pause tolerance but 
increases the possibility of line errors.

The second reason for forcing the baud rate to 19200 is that a few older faxmodems require 
that baud rate and won’t operate at any other baud rate.

InSize is the size, in bytes, of the comport component’s communication input buffer. It’s 
forced to 8192 from the default 4096 to increase the fax software’s tolerance of ill-behaved 
programs that don’t yield often or that increase their thread priority for too long.
02     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
OutSize is the size, in bytes, of the comport component’s communication output buffer. It’s 
forced to 8192 from the default 4096 to better protect against data underflows. The fax 
component keeps the output buffer as full as possible. If the fax application is kept from 
running due to an ill-behaved program, the Windows communication driver continues to 
transmit the buffered data. As long as the fax application is allowed to run again before the 
output buffer drains, no data underflows occur.

HWFlowOptions is one of the TApdComPort properties (the other is SWFlowOptions) that 
determines what type of flow control, if any, is used by the comport component. The 
faxmodem specifications dictate that all faxmodems support software flow control. 
Faxmodems can optionally support hardware flow control, and most do. Because hardware 
flow control is more reliable than software flow control, and because both the Async 
Professional modem database and the Win32 TAPI modem database force hardware flow 
control on by default, hardware flow control is forced on in the TApdComPort.

Flow control is a critical issue for fax sessions and it must be properly enabled, both in fax 
application software and in the faxmodem, for reliable fax operation. Assuring hardware 
flow control is enabled in the software is only half the battle—you must also assure that 
hardware flow control is enabled at the faxmodem.

Fortunately, this is easy to do, although it isn’t as automatic as the enabling of flow control 
within the TApdComPort component. Fax applications must do one of the following:

1.  Use TAPI to initialize the modem.

2.  Use the TAdModem and modemcap database components to initialize the modem.

3.  Manually send the appropriate modem commands to enable hardware flow control.

Number 1 is the preferred choice if it is available. The TAPI modem database is far more 
extensive than the Async Professional database. 32-bit Windows users expect your program 
to use TAPI rather than direct serial port access.

Number 2 is the preferred choice when TAPI isn’t available. Although it’s possible that the 
exact modem model isn’t in the modemcap database, choosing the closest match from the 
same manufacturer is usually sufficient to assure that the modem is properly configured.

Number 3 is the most difficult approach since you must figure out the appropriate modem 
commands to send to the modem to enable hardware flow control. Use it only when neither 
TAPI or modemcap are available.
Sending and Receiving Faxes     703

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TAPI/Fax Integration
TAPI provides several features that supplement faxing. The most obvious is that TAPI 
permits selection of the modem by name instead of by port number. TAPI also pre-
configures the modem to a state where APRO can re-initialize it for faxing. When sending a 
fax, TAPI can apply the dialing options to the phone number, for example to automatically 
add a ‘9’ for an outside line. When receiving a fax, TAPI can passively monitor the line for 
incoming calls, which allows other processes to access the port. 

TAPI integration with the faxing components is determined by the TapiDevice property of 
the TApdAbstractFax component (and the TApdSendFax and TApdReceiveFax 
descendents). If TapiDevice is not assigned, TAPI integration will not be used. If TapiDevice 
is assigned, that device will be used to select and configure the modem, provide phone 
number translations, and passively answer calls.

The level of TAPI integration depends on whether a fax is being sent or received. When the 
StartTransmit method of the TApdSendFax component is called, and the TapiDevice 
property is assigned, the ConfigAndOpen method of the TapiDevice will be called. Internal 
OnTapiXxx event handlers will be assigned to monitor the progress of the TapiDevice. 
When TAPI configures the modem and opens the port, the PhoneNumber property will be 
translated using the TranslateAddress method of the TapiDevice, and that translated 
number will be dialed. From there, the fax will be sent in the usual manner. Once the 
OnFaxFinish event is generated, the CancelCall method of the TapiDevice will be called to 
close the port.

When the StartReceive method of the TApdReceiveFax component is called, and the 
TapiDevice property is assigned, the AnswerOnRings property of the TapiDevice will be set 
to 100 to prevent TAPI from answering the call, and the AutoAnswer method of TapiDevice 
will be called. When TAPI detects AnswerOnRings ring signals, the TapiDevice will cancel 
itself, and the TApdReceiveFax will answer the call. When the OnFaxFinish event is 
generated, the CancelCall method of the TapiDevice will be called to close the port.

When the TapiDevice property is assigned, the event handlers of the TApdTapiDevice will 
be generated as usual. These events will be generated from within the internal OnTapiXxx 
event handler that the faxing components will assign. Any additional processing that your 
project does within these events must be complete before your project’s OnTapiXxx events 
return.

To maintain backwards compatibility with previous versions of APRO that did not provide 
TAPI and fax integration, set the TapiDevice property to nil.

One benefit of TAPI integration is that you can now send a fax with the TApdSendFax 
component while a TApdReceiveFax component is waiting for faxes. To implement this, the 
TApdSendFax component must have a TApdComPort and TApdTapiDevice component 
04     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
assigned, and the TApdReceiveFax component must have a different TApdComPort and 
TApdTapiDevice component assigned. The SelectedDevice property of both 
TApdTapiDevice components can point to the same TAPI device. Call the StartReceive 
method of the TApdReceiveFax component to begin passively answering calls. When ready 
to transmit a fax, check the InProgress property of the TApdReceiveFax to make sure a fax is 
not being actively received. If InProgress is False, then it is safe to call the StartTransmit 
method of the TApdSendFax. When the fax has been sent, the TApdReceiveFax will still be 
in passive answer mode.

Aborting a fax session
There will be times when you need to cancel a fax transfer while it is still in progress. This 
may be necessary if something goes wrong at the remote fax machine or if the user simply 
decides not to continue the transfer. The CancelFax method gives your program an 
opportunity to inform the fax routines that you want to stop the transfer.

Typically, a program checks for the user entering characters such as <Esc> or <CtrlX> to 
signal cancellation of the transfer. Because all fax transfers are made through modem 
connections, you might be able to use the modem’s DCD (Data Carrier Detect) signal. You 
could check it within the abort function and abort the transfer quickly if the connection is 
broken, without waiting for the timeouts built into the fax transfer routines.

Unfortunately, a low DCD signal is not always a reliable indication of a broken connection. 
Faxmodems constantly drop and raise the physical carrier signal during initial handshaking 
and after each page. If the modem’s DCD signal follows the physical carrier then you should 
not assume a low DCD indicates a broken connection. For modems that set DCD high 
during the entire fax session, you can assume that a low DCD indicates a broken connection 
and abort the fax session. Given the uncertainty of the behavior of the DCD signal, unless 
you are certain that the modem’s DCD signal has the latter behavior, you should not use 
DCD, but wait for the modem to timeout at the end of the current page.

Error handling
All fax transfers are subject to errors like line errors, file not found errors, and other file I/O 
errors. The fax components handle errors internally by retrying the operation or requesting 
the remote fax device to retry. If, however, the situation is unrecoverable, an OnFaxError 
event is generated. Your application should include an handler for this event. Following is a 
simple example:

procedure Form1.ApdSendFax1FaxError(
CP : TObject; ErrorCode : Integer);

begin
ShowMessage('Fatal fax error: ' + ErrorMsg(ErrorCode));

end;
TAPI/Fax Integration     705

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
This event handler’s sole task is to display a message about the error. ErrorMsg is a function 
from the AdExcept unit that returns an English string for any Async Professional error code. 
See “Error Handling and Exception Classes” on page 900 for additional information about 
errors. Table 15.12 contains an annotated list of error codes that apply to fax calls.

Table 15.12: Fax call error codes 

Error Code Meaning

ecFaxBadMachine The called fax device doesn’t support the
resolution or the width of the document to send.

ecFaxBadModemResult The faxmodem sent an unexpected response string; no
recovery is possible.

ecFaxBusy The called fax device is busy. The call is
automatically retried DialAttempts times. If the
line is still busy, the fax session ends with the
ecFaxBusy error code.

ecFaxDataCall One end of the connection is a data call, not a fax
call.

ecFaxInitError An error occurred in the initialization process.
Usually means that the modem returned “ERROR”. This
can occur if the local modem is not a Class 1,
Class 1.0, Class 2, or Class 2.0 faxmodem.

ecFaxNoCarrier An incoming call was not successfully answered.
Usually means that the modems could not agree on a
modulation rate.

ecFaxNoDialTone The faxmodem returned a NO DIALTONE error message
after a dial attempt.

ecFaxNoFontFile The external font file APFAX.FNT could not be
found. This file is used for converting header
lines and cover pages to fax format.

ecFaxPageError An unexpected response was received while waiting
for an acknowledgement to the last transmitted
page; no recovery is possible.
06     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Fax status
A fax session can last a few seconds or several hours, depending on the size and speed of the 
transfer. The fax session proceeds in the background without intervention from your 
program. To inform you of what’s happening as the transfer progresses, Async Professional 
provides an event for regular notification of the progress.

During a fax session, an OnFaxStatus event is generated regularly (the default is once per 
second). This gives your application the opportunity to monitor and display the progress of 
the transfer. The following code fragments show how to monitor the progress.

TForm = class(TForm)
...
FN : TLabel;
PG : TLabel;
BT : TLabel;
...

end;

ecFaxSessionError The fax session failed. This error occurs when the
remote fax device doesn’t respond to handshaking
requests or specifically requests an abort.
Possible causes of this error are lack of flow
control, very poor line quality, or an operator-
requested abort at the remote fax device. For Class
2 and Class 2.0 modems, you can get a more exact
error code by calling GetHangupResult.
Unfortunately these codes are not usually helpful,
because they describe activities controlled by the
modem itself.

ecFaxTrainError The training procedure used to select a modulation
rate for a Class 1/1.0 faxmodem did not succeed for
any of the possible rates.

ecFaxVoiceCall One end of the connection is a voice call, not a
fax call.

Table 15.12: Fax call error codes  (continued)

Error Code Meaning
TAPI/Fax Integration     707

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
procedure TForm1.ApdSendFax1FaxStatus(
CP : TObject; First, Last : Boolean);

begin
if First then

...do setup stuff
else if Last then

...do cleanup stuff
else begin

{Show status}
FN.Caption := ApdSendFax1.FaxFile;
PG.Caption := ApdSendFax1.CurrentPage;
BT.Caption := ApdSendFax1.BytesTransferred;

end;
end;

The ApdSendFax1FaxStatus method handles the OnFaxStatus event by updating a form at 
each call. The First and Last flags passed to this routine indicate whether this is the first call 
to this event or the last call to this event. When transmitting faxes, it is clear when 
OnFaxStatus events should be generated—the first event should be generated just after 
StartTransmit is called, events should be generated regularly while sending faxes, and the 
last event should be generated when there are no more faxes to send.

It is less clear when OnFaxStatus events should be generated when receiving faxes. They 
could be started as soon as StartReceive is called and continued until the user cancels the 
receive session. This behavior is appropriate for a dedicated fax server application that is 
constantly receiving and printing faxes. Other applications, however, might prefer not to 
receive OnFaxStatus events until an incoming call is detected.

TApdFaxReceive provides for both situations by providing the ConstantStatus property. Set 
ConstantStatus to False (the default) to receive OnFaxStatus events only for the duration of a 
fax call. Set ConstantStatus to True to receive OnFaxStatus events from the time StartReceive 
is called until the user cancels the fax session.

Information about the progress of the fax session is obtained by reading the values of 
various TApdAbstractFax, TApdSendFax and TApdReceiveFax properties, including:

BytesTransferred: The number of bytes transmitted or received so far for the current page.

CurrentPage: The number of the current page. CurrentPage is zero when transmitting a 
cover page, one for the first page, two for the second page, and so on.

ElapsedTime: The elapsed time (in milliseconds) since the remote station ID was received. 
An indicator of the elapsed time for the current fax call.
08     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
FaxProgress: A code indicating the current state of the fax call. The Table 15.3 shows all of 
the possible values. The usual states are fpSendPage and fpGetPage, which mean the fax 
session is sending or receiving page data. Other status values indicate various start-up and 
handshaking states. Fatal errors are not represented by fax states because they are first 
reported via the OnFaxError event. However, it is possible that a final status message might 
be sent after a fatal error occurs.

Table 15.13: Possible FaxProgress values 

Status Code Transmit
/Receive

Value Explanation

fpInitModem T 1 The faxmodem is being
initialized for fax use. For
Class 1 and 1.0 modems, this is
nearly instantaneous; for Class
2 and 2.0 modems, it takes a
couple of seconds.

fpDialing T 2 The faxmodem is dialing and
waiting for a response from the
remote fax device.

fpBusyWait T 3 The called number was busy.
Another dial attempt will be
made after DialRetryWait
seconds.

fpSendPage T 4 Page data is being transmitted.
The status event handler can
interrogate the CurrentPage and
BytesTransferred properties to
track the progress of
sending/receiving this page.

fpSendPageStatus T 5 All data for the current page
has been transmitted. The remote
fax device is being told whether
there are more pages to follow.

fpPageError T 6 The remote fax device did not
successfully receive the page
data and it should be sent
again.

fpPageOK T 7 The remote fax device received
the page data successfully.

fpWaiting R 20 The faxmodem is waiting for
incoming fax calls.
TAPI/Fax Integration     709

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
fpNoConnect R 21 The incoming call was not a fax
call.

fpAnswer R 22 The faxmodem is answering an
incoming call.

fpIncoming R 23 The incoming call has been
validated as a fax call.

fpGetPage R 24 Page data is currently being
received. The status event
handler can interrogate
CurrentPage and BytesTransferred
to find out which page is being
received and how many bytes have
been received so far.

fpGetPageResult R 25 The faxmodem just reported
whether it received a page
successfully. The status
procedure can interrogate
LastPageStatus to find out the
result.

fpCheckMorePages R 26 The faxmodem is waiting for the
remote fax device to indicate
whether it has more pages to
send.

fpGetHangup R 27 The faxmodem is waiting for a
response to a disconnect or
hangup command.

fpGotHangup R 28 The faxmodem has disconnected or
hung up.

fpSessionParams T/R 40 The local and remote fax devices
completed negotiation of session
parameters. The status event
handler can interrogate the
SessionBPS, SessionResolution,
and SessionWidth properties for
the negotiated parameters of the
current session.

Table 15.13: Possible FaxProgress values  (continued)

Status Code Transmit
/Receive

Value Explanation
10     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
FaxError: The code of the fatal error encountered in the fax session. See the error codes in 
“Error handling” on page 705 for more information.

HangupCode: The hangup code returned by a class 2 or class 2.0 faxmodem. The hangup 
code can sometimes provide additional error information for failed fax sessions.

ModemModel: The modem model identification string returned by the faxmodem.

ModemRevision: The modem revision identification string returned by the faxmodem.

ModemChip: The modem chip identification string returned by the faxmodem.

ModemBPS: The highest bps rate supported by the modem.

ModemECM: Indicates whether the modem supports error control mode.

PageLength: The length in bytes of the page currently being transmitted. When a fax is 
being received, PageLength is zero.

RemoteID: The 20 character identification string returned by the remote fax device.

SessionBPS: The negotiated bps rate (bytes per second) for the current fax session.

SessionResolution: The negotiated resolution (standard or high) for the current fax session.

SessionWidth: The negotiated width (1728 or 2048 pixels) for the current fax session.

SessionECM: Indicates whether the current fax session is using error control.

TotalPages: The total number of pages to be transmitted. When a fax is being received, 
TotalPages is zero.

fpGotRemoteID T/R 41 A fax connection was established
and the remote fax has reported
its station ID. The status event
handler can now interrogate
RemoteID to get the ID string.

fpCancel T/R 42 The session was cancelled by the
user or by the remote device.

fpFinished T 43 The fax session is over.

Table 15.13: Possible FaxProgress values  (continued)

Status Code Transmit
/Receive

Value Explanation
TAPI/Fax Integration     711

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Automatic fax status display
Async Professional includes a mechanism for providing an automatic fax status display 
without programming, through the TApdAbstractFax StatusDisplay property:

property StatusDisplay : TApdAbstractFaxStatus

The TApdAbstractFaxStatus class is described in more detail beginning on page 822. If 
StatusDisplay is assigned, its UpdateDisplay method is called to update the display. Then the 
OnFaxStatus event handler is called, if one is implemented.

When a fax component is created, either dynamically or when dropped on a form, it 
searches the form for an TApdAbstractFaxStatus instance and updates the StatusDisplay 
property with the first one it finds. StatusDisplay is also filled in if a TApdAbstractFaxStatus 
component is added to the form later. You can also change StatusDisplay at design time or 
run time to point to a different TApdAbstractFaxStatus component.

Async Professional also provides an non-abstract implementation of 
TApdAbstractFaxStatus called the TApdFaxStatus component. If you drop one of these on 
your form, it automatically displays full status information during all fax sessions. See page 
826 for more information.

Fax logging
It’s often important to have a log of all incoming and outgoing activity on a particular fax 
machine. You can use the log for billing purposes, to recover the station ID or image of a fax 
whose printout was lost, or to determine which faxes were not successfully sent during an 
automated transfer.

The fax logging event provides a mechanism for your program to keep an activity log. 
Although the logging event is similar to the status event, it is not generated as frequently. The 
status event is generated for at least 20 different send and receive states, and it is also 
generated once per second during the transfer of page data. The logging event is generated 
once at the beginning and once at the end of each transfer.
12     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The LogCode parameter is of an enumerated type that indicates the condition at the time 
the logging routine is called. The TLogFaxCode values are described in Table 15.14.

When LogCode is lfaxReceiveSkip, RemoteID contains the identification string of the 
remote station but FaxFile is an empty string because the fax session never progressed to the 
point of generating a fax file name.

Following is an example OnFaxLog event handler:

procedure TForm1.ApdReceiveFax1FaxLog(
CP : TObject; LogCode : TFaxLogCode);

begin
case LogCode of

lfaxReceiveStart :
CurrentFile.Caption := ApdReceiveFax1.FaxFile;

lfaxReceiveOK :
GoodList.Items.Add(ApdReceiveFax1.FaxFile);

lfaxReceiveFail :
BadList.Items.Add(ApdReceiveFax1.FaxFile);

lfaxReceiveSkip :
SkipList.Items.Add(ApdReceiveFax1.RemoteID);

end;
end;

This example shows the logging values that could be received during a fax receive session. 
The example uses a TLabel control named CurrentFile to display the name of the current fax 
file. As faxes are received this method updates three TListBox components: GoodList for all 
successful transfers, BadList for all failed transfers, and a SkipList of RemoteIDs for all 
skipped files.

Table 15.14: TLogFaxCode values

Value Explanation

lfaxTransmitStart A fax transmission is starting.

lfaxTransmitOk The fax was transmitted successfully.

lfaxTransmitFail The fax was not transmitted successfully.

lfaxReceiveStart Fax reception is starting.

lfaxReceiveOk The fax was received successfully.

lfaxReceiveSkip The incoming fax was rejected.

lfaxReceiveFail The fax was not received successfully.
TAPI/Fax Integration     713

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The logging routine isn’t limited to just writing logging information. It can also take care of 
file-related startup and cleanup activities. One example of this might be to delete outgoing 
fax files (if successfully transmitted, of course) or moving them from the current directory 
to a “has been sent” directory.

Automatic fax logging
Async Professional includes a mechanism for providing automatic fax logging without 
programming, through the FaxLog property of TApdAbstractFax:

property FaxLog : TApdFaxLog

The TApdFaxLog class is described in more detail on page 828. For each OnFaxLog event, 
the fax component checks whether FaxLog is assigned. If it is, the fax calls the UpdateLog 
method of TApdFaxLog to write information to the log file. It then calls the OnFaxLog 
event, if one is implemented.

When a fax component is created, either dynamically or when dropped on a form, it 
searches the form for a TApdFaxLog component and updates the FaxLog property with the 
first one it finds. FaxLog is also filled in if a TApdFaxLog component is added to the form 
later. You can also change FaxLog at design time or run time to point to a different 
TApdFaxLog.
14     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdAbstractFax Component
The fax send and receive components (TApdSendFax and TApdReceiveFax) are derived 
from TApdAbstractFax.This abstract fax component provides the set of properties, 
methods, and events that are common to both sending and receiving, such as the Station ID 
of the sender or receiver, and the status of the current fax session. TApdAbstractFax also 
defines the events that allow you to log fax calls, generate files names for incoming faxes, and 
report status during transmission.

If you already know how to use file transfer protocols within the Async Professional 
architecture, fax transfers will seem very familiar. Just like a file transfer, a fax transfer 
involves a initializing a comport component, initializing a fax component, and calling a 
method to start the background fax session. The events for fax transfer are quite similar, and 
in some cases identical, to those for file transfer.

There are a few differences, though, and these differences are inherent to the nature of faxes. 
Unlike most file transfer protocols, where the name and size of the file are transmitted 
before the file’s contents are sent, a fax receiver isn’t given a filename in which to store an 
incoming fax, and it doesn’t know the size of the fax until the transmission terminates. The 
fax protocol also provides no means for the receiver to detect errors in the incoming data, or 
to request retransmission in the event of bad data. Fortunately, the compression technique 
used for fax data is relatively tolerant of errors. Because of these differences, your program 
must take on certain responsibilities that are not required when using file transfer protocols, 
such as providing names for incoming faxes and being prepared for out-of-disk-space 
errors when receiving faxes.

Note that certain properties that are described in the following reference section are specific 
to either sending or receiving faxes, or behave differently when sending or receiving faxes. 
These differences are described in the reference section of affected properties.
TApdAbstractFax Component     715

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomAbstractFax (AdFax)

TApdAbstractFax (AdFax)

Properties
AbortNoConnect

BytesTransferred

ComPort

CurrentPage

DesiredBPS

DesiredECM

ElapsedTime

ExitOnError

FaxClass

FaxFile

FaxFileExt

FaxLog

FaxProgress

HangupCode

InitBaud

InProgress

ModemBPS

ModemChip

ModemECM

ModemInit

ModemModel

ModemRevision

NormalBaud

PageLength

RemoteID

SessionBPS

SessionECM

SessionResolution

SessionWidth

SoftwareFlow

StationID

StatusDisplay

StatusInterval

SupportedFaxClasses

TapiDevice

TotalPages

! Version

Methods
CancelFax

ConvertToHighRes

ConvertToLowRes

StatusMsg

Events
OnFaxError

OnFaxFinish

OnFaxLog

OnFaxStatus
16     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

AbortNoConnect property

property AbortNoConnect : Boolean

Default: False

Defines what happens when the connection to a fax number cannot be made after the 
default number of retries. 

If AbortNoConnect is True, the background fax process ends and generates an OnFaxFinish 
event, even if additional faxes are queued to be sent. If AbortNoConnect is False, the 
background fax process moves on to the next fax to be sent, as specified by the OnFaxNext 
event handler.

BytesTransferred read-only, run-time property

property BytesTransferred : Boolean

The number of bytes received or transmitted so far for the current page. 

BytesTransferred can be used by an OnFaxStatus event handler to get the number of bytes 
received or transferred so far. The appropriate time to check BytesTransferred is when 
FaxProgress equals fpSendPage or fpGetPage. At other times, it is either zero or a value 
associated with the previous page.

See also: CurrentPage, PageLength, TotalPages

CancelFax method

procedure CancelFax;

Cancels the current fax session. 

CancelFax cancels the fax session, regardless of its current state. When appropriate, a cancel 
command is sent to the local modem or the remote fax device. The fax component generates 
an OnFaxFinish event with the error code ecCancelRequested, then cleans up and 
terminates. It also attempts to put the faxmodem back “onhook” (i.e., ready for the next 
call).
TApdAbstractFax Component     717

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

The following example shows how to cancel a fax from a fax status dialog:

procedure TStandardDisplay.CancelClick(Sender : TObject);
begin

ApdSendFax1.CancelFax;
end;

See also: OnFaxError, OnFaxFinish

ComPort property

property ComPort : TApdCustomComPort

Determines the serial port used by the fax component. 

A properly initialized comport component must be assigned to this property before sending 
or receiving faxes.

When a TApdComPort is assigned to the ComPort property, the fax component forces the 
ComPort to the property values shown below:

ApdComPort1.DataBits := 8;
ApdComPort1.StopBits := 1;
ApdComPort1.Parity := pNone;
ApdComPort1.Baud := 19200;
ApdComPort1.InSize := 8192;
ApdComPort1.OutSize := 8192;
ApdComPort1.HWFlowOptions := [hwfUseRTS, hwfRequireCTS];

These values are essential for proper and reliable fax operation and should be changed only 
if you are certain of the impact of your changes. See “Fax sessions and the TApdComPort” 
on page 702 for more information.

ConvertToHighRes method

procedure ConvertToHighRes(const FileName : string);

Converts a fax file to high resolution.

ConvertToHighRes converts an existing APF fax file into high resolution. If the APF 
contains multiple pages, ConvertToHighRes converts all pages to high resolution. Each fax 
page is converted to a bitmap, converted back to a single-high resolution page APF in the 
Windows temp folder, and then all pages are concatenated to recreate the original APF. If the 
page is already high resolution, an exception is not raised.

See also: ConvertToLowRes
18     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ConvertToLowRes method

procedure ConvertToLowRes(const FileName : string);

Converts a fax file to low resolution.

ConvertToLowRes converts an existing APF fax file into low resolution. If the APF contains 
multiple pages, ConvertToLowRes converts all pages to low resolution. Each fax page is 
converted to a bitmap, converted back to a single low resolution pages APF in the Windows 
temp folder, and then all pages are concatenated to recreate the original APF. If the page is 
already low resolution, and exception is not raised.

See also: ConvertToHighRes

CurrentPage read-only, run-time property

property CurrentPage : Word

The page number of the page currently being received or transmitted. 

CurrentPage can be used by an OnFaxStatus event handler to get the number of the page 
currently being received or transmitted. The appropriate time to check CurrentPage is when 
FaxProgress equals fpSendPage or fpGetPage. At other times, it is either zero or a value 
associated with the previous page.

See also: BytesTransferred, PageLength, TotalPages

DesiredBPS property

property DesiredBPS : Word

Default: 9600

Determines the highest fax bps rate to negotiate for the next fax session. 

DesiredBPS limits the fax bps rate for subsequent fax sessions. Although many faxmodems 
support higher bps rates (12000 and 14400), DesiredBPS defaults to 9600 for more reliable 
fax sessions and higher quality faxes because the slightly lower baud rate makes lines errors 
less likely.

Changing DesiredBPS during a fax session has no effect on the current session.

See also: ModemBPS, SessionBPS
TApdAbstractFax Component     719

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

DesiredECM property

property DesiredECM : Boolean

Default: False

Determines whether fax sessions attempt to use error control. 

The fax protocol contains an optional error control facility that allows modems to detect 
and correct some transmission errors. Since very few faxmodems support fax error control, 
DesiredECM defaults to False, meaning the faxmodems do not attempt to negotiate error 
control.

See also: ModemECM, SessionECM

ElapsedTime read-only, run-time property

property ElapsedTime : DWORD

Indicates the elapsed time for the fax call.

ElapsedTime is the number of milliseconds that have elapsed since fax call has started. The 
fax call, in this context, is considered started when the remote station ID has been received. 
This will usually be less than a second or two after the call is actually answered.

ExitOnError property

property ExitOnError : Boolean

Default: False

Determines what happens when an error occurs during a fax transmit or receive. 

If ExitOnError is True, no more faxes are transmitted or received. If ExitOnError is False 
(the default), the background fax process continues on with the next fax in the transmit 
queue, or resets the modem and waits for a new incoming fax.

See also: AbortNoConnect
20     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

FaxClass property

property FaxClass : TFaxClass

TFaxClass = (
fcUnknown, fcDetect, fcClass1, fcClass1_0, fcClass2, fcClass2_0);

Default: fcDetect

Indicates whether the faxmodem is used as Class 1, Class 1_0, Class 2, or Class 2.0. 

If FaxClass is fcDetect (the default), TApdAbstractFax determines what classes the modem 
supports and enables the highest class. If you set FaxClass to a specific class, no attempt is 
made to determine if the class you request is supported by the faxmodem.

See also: SupportedFaxClasses

FaxFile property

property FaxFile : string

The name of the fax file currently being transmitted or received. 

If you are sending a single fax, set FaxFile to the name of the file. If you are sending multiple 
fax files, you must implement an OnFaxNext event handler. FaxFile is automatically set to 
the fax file returned by your event handler.

FaxFile can be used with status and logging routines to return the name of the fax file 
currently being transmitted or received.

See also: TApdSendFax.CoverFile, TApdSendFax.OnFaxNext, 
TApdSendFax.PhoneNumber

FaxFileExt property

property FaxFileExt : string

Default: “APF”

The default extension assigned to incoming fax files. 

By default, all incoming fax files created by the two built-in methods of naming faxes use a 
file extension of APF. You can change the extension assigned to incoming files by setting 
FaxFileExt to the new desired extension.

See “Naming incoming fax files” on page 754 for more information.

See also : TApdReceiveFax.FaxNameMode
TApdAbstractFax Component     721

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

FaxLog property

property FaxLog : TApdFaxLog

An instance of a fax logging component. 

If FaxLog is nil (the default), the fax component does not perform automatic logging. You 
can install an OnFaxLog event handler to perform logging in this case.

If you create an instance of (or a descendant of) a TApdFaxLog class (see page 828), and 
assign it to FaxLog, the fax component will call the log component’s UpdateLog method 
automatically.

FaxProgress read-only, run-time property

property FaxProgress : Word

Returns a code that indicates the current state of the fax session. 

This property is most useful within an OnFaxStatus event handler. See “Fax status” on 
page 707 for more information.

See also: OnFaxError, OnFaxStatus

HangupCode read-only, run-time property

property HangupCode : Word

The hangup code for a Class 2 or 2.0 fax transfer. 

When a Class 2 or 2.0 faxmodem session terminates abnormally, it returns a “hangup code” 
to help explain what went wrong. Although these codes refer to low-level portions of the 
faxmodem link over which you have no control, sometimes they can point out a 
programming error that you can correct.

The following table shows the codes that can be returned (in hexadecimal), with a brief 
description of each one. The codes are grouped according to the transfer phase in which 
they can occur. Some of the terms in the table are defined only in the Class 2 and 2.0 
specification. Refer to that specification for more information.

Hangup Code Description

Call placement and termination

00 Normal end of connection

01 Ring detect without successful handshake

02 Call aborted from +FKS or <Can>

03 No loop current
22     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
04 Ringback detected, no answer timeout

05 Ringback detected, answer without CED

Transmit phase A

10 Unspecified phase A error

11 No answer

Transmit phase B

20 Unspecified phase B error

21 Remote cannot receive or send

22 COMREC error in transmit phase B

23 COMREC invalid command received

24 RSPREC error

25 DCS sent three times without response

26 DIS/DTC received three times; DCS not recognized

27 Failure to train at 2400 bps or +FMS error

28 RSPREC invalid response received

Transmit phase C

40 Unspecified transmit phase C error

41 Unspecified image format error

42 Image conversion error

43 DTE to DCE data underflow

44 Unrecognized transparent data command

45 Image error, line length wrong

46 Image error, page length wrong

47 Image error, wrong compression code

Transmit phase D

50 Unspecified transmit phase D error

51 RSPREC error

52 MPS sent three times without response

53 Invalid response to MPS

54 EOP sent three times without response

55 Invalid response to EOP

56 EOM sent three times without response

57 Invalid response to EOM

Hangup Code Description
TApdAbstractFax Component     723

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

InitBaud property

property InitBaud : Integer

Default: 0

Determines the initialization baud rate for modems that require different baud rates for 
initialization and fax operations. 

Some older 24/96 faxmodems (2400 data, 9600 fax), require that the initialization 
commands be sent at 2400 baud, but that all fax commands and fax data be sent and 
received at 19200. The fax software must constantly adjust the current baud rate depending 
on the operation it is performing.

Since most faxmodems do not require a special initialization baud rate, InitBaud defaults to 
zero, which means that no baud rate switches are performed. If you encounter an older 
modem that requires this behavior, set InitBaud to 2400.

58 Unable to continue after PIN or PIP

Receive phase B

70 Unspecified receive phase B error

71 RSPREC error

72 COMREC error

73 T.30 T2 timeout, expected page not received

74 T.30 T1 timeout after EOM received

Receive phase C

90 Unspecified receive phase C error

91 Missing EOL after 5 seconds

92 Bad CRC or frame (ECM mode)

93 DCE to DTE buffer overflow

Receive phase D

100 Unspecified receive phase D error

101 RSPREC invalid response received

102 COMREC invalid response received

103 Unable to continue after PIN or PIP

Hangup Code Description
24     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

NormalBaud is a companion property to InitBaud. When InitBaud is non-zero, the fax 
components switch to the specified baud rate when sending initialization commands and 
switch back to the normal baud rate, 19200, when sending fax commands or fax data. If you 
encounter a case where the normal baud rate should be something other than 19200, you 
must change NormalBaud.

See also: NormalBaud

InProgress read-only, run-time property

property InProgress : Boolean

Indicates whether a fax is actively being transmitted or received.

InProgress will be True immediately after StartTransmit is called, and when a fax is being 
received following a call to StartReceive. Use this property to determine whether the fax 
component is actively transferring a fax or not.

ModemBPS read-only, run-time property

property ModemBPS : LongInt

Returns the highest bps rate supported by the faxmodem. 

When you reference ModemBPS, commands are sent to the modem to determine its highest 
bps rate. This works only for Class 2 and 2.0 modems; a Class 1 modem cannot report this 
information until a fax connection has been established.

ModemBPS works by attempting to enable the most capable modem features and stepping 
down if the modem returns “ERROR.” It starts at a 14400 bps transfer rate, then tries 12000, 
9600, 7200, 4800, and 2400.

The technique used by ModemBPS works on most Class 2 and 2.0 faxmodems. One 
low-cost, no-name-clone faxmodem tested wouldn’t return “ERROR” no matter what it was 
asked to do, even though it supported only 9600 bps with no error correction.

See also: ModemECM
TApdAbstractFax Component     725

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

ModemChip read-only, run-time property

property ModemChip : string

Returns the type of chip for a Class 2 or 2.0 faxmodem. 

When you reference ModemChip, commands are sent to the modem to determine the type 
of chip. This works only for Class 2 and 2.0 modems. ModemChip is an empty string for a 
Class 1/1.0 modem.

See also: ModemModel, ModemRevision

ModemECM read-only, run-time property

property ModemECM : Boolean

Indicates whether the faxmodem supports error correction. 

When you reference ModemECM, commands are sent to the modem to determine whether 
it supports error correction. This works only for Class 2 and 2.0 modems; a Class 1/1.0 
modem cannot report this information until a fax connection has been established.

The technique used by ModemECM works on most Class 2 and 2.0 faxmodems. One 
low-cost, no-name-clone faxmodem that was tested wouldn’t return “ERROR” no matter 
what was tried, even though it supported only 9600 bps with no error correction.

See also: ModemBPS

ModemInit property

property ModemInit : TModemString

TModemString = string[40];

A custom modem initialization string. 

If a custom modem initialization string is assigned to ModemInit, Async Professional 
always sends this string to the modem just before it sends its own DefInit string 
(“ATE0Q0V1X4S0=0”). This occurs whenever StartTransmit, StartReceive, or 
InitModemForFaxReceive is called.

Note that the DefInit string may override certain actions of the ModemInit string. This is 
necessary for proper operation of the Async Professional fax routines.

The string should not contain an “AT” prefix or a trailing carriage return.
26     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ModemModel read-only, run-time property

property ModemModel : string

Returns the model for a Class 2 or 2.0 faxmodem. 

When ModemModel is referenced, commands are sent to the modem to determine the 
model. This works only for Class 2 and 2.0 modems. ModemModel is an empty string for a 
Class 1 modem.

See also: ModemChip, ModemRevision

ModemRevision read-only, run-time property

property ModemRevision : string

Returns the revision for a Class 2 or 2.0 faxmodem. 

When ModemRevision is referenced, commands are sent to the modem to determine the 
revision. This works only for Class 2 and 2.0 modems. ModemRevision is an empty string 
for a Class 1/1.0 modem.

See also: ModemChip, ModemModel

NormalBaud property

property NormalBaud : Integer

Default: 0

Determines the normal baud to use for modems that require different baud rates for 
initialization and fax operations. 

NormalBaud isn’t needed unless the faxmodem requires separate baud rates for 
initialization commands and the baud rate required for normal fax operations is not 19200. 
See InitBaud for a complete description of the operation of InitBaud and NormalBaud.

See also: InitBaud
TApdAbstractFax Component     727

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnFaxError event

property OnFaxError : TFaxErrorEvent

TFaxErrorEvent = procedure(
CP : TObject; ErrorCode : Integer) of object;

Defines an event handler that is called when an unrecoverable fax error occurs. 

This event is generated only for unrecoverable errors. Most fax errors caused by line noise 
are handled automatically by the fax devices and are not reported to this event handler.

CP is the fax component that generated the error. ErrorCode is a number indicating the type 
of error. See “Error handling” on page 705” for a list of the error codes.

The OnFaxFinish event is generated soon after the OnFaxError event and passes the same 
error code. The OnFaxFinish event is generated for both successful and failed transfers, so 
you may want to use it instead of an OnFaxError handler.

See also: OnFaxFinish

OnFaxFinish event

property OnFaxFinish : TFaxFinishEvent

TFaxFinishEvent = procedure(
CP : TObject; ErrorCode : Integer) of object;

Defines an event handler that is called when a fax session ends. 

This event is generated at the end of each fax session, successful or not. If the session ends 
successfully, ErrorCode is zero. Otherwise, ErrorCode is a number indicating the type of 
error. For a list of the error codes, see “Error handling” on page 705. CP is the fax 
component whose session just finished.

It’s important to note that a fax session may consist of more than one fax call. For example, if 
you implement an OnFaxNext event to send several faxes with one call to StartTransmit, all 
of those faxes are considered to be in the same fax session.

This handler could be used to display a completion dialog box (needed only if a fax status 
event handler is not used) or to allow scheduling another fax transfer.

The following example displays a message when a fax session finishes:

procedure TForm1.ApdSendFax1FaxFinish(
CP : TObject; ErrorCode : Integer);

begin
ShowMessage('Fax finished: ' + ErrorMsg(ErrorCode));

end;
28     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnFaxLog event

property OnFaxLog : TFaxLogEvent

TFaxLogEvent = procedure(
CP : TObject; LogCode : TFaxLogCode) of object;

TFaxLogCode = (lfaxNone, lfaxTransmitStart, lfaxTransmitOk,
lfaxTransmitFail, lfaxReceiveStart, lfaxReceiveOk,
lfaxReceiveSkip, lfaxReceiveFail);

Defines an event handler that is called at designated points during a fax transfer. 

The primary purpose of this event is to allow the logging of statistical information about fax 
transfers. For example, the transfer time and whether the transfer succeeded or failed could 
be logged. This event could also be used for startup and cleanup activities.

CP is the fax component to be logged. LogCode is a code that indicates the state of the fax 
transfer. The possible states are listed in “Fax logging” on page 712. No other information is 
passed with this event, but the fax status properties, such as FaxFile and PhoneNumber, can 
be used to get additional information about the fax session.

See also: FaxLog

OnFaxStatus event

property OnFaxStatus : TFaxStatusEvent

TFaxStatusEvent = procedure(
CP : TObject; First, Last : Boolean) of object;

Defines an event handler that is called regularly during a file transfer. 

This event is generated once per second during the entire fax session and after the 
completion of each major operation (e.g., incoming ring detected, remote station ID 
received). It can be used to update a status display that informs the user about the fax 
progress.

CP is the fax component that is in progress. A number of the properties of this component 
can be read to establish the status of the session. For a list of the properties, see “Fax status” 
on page 707. First is True on the first call to the handler, False otherwise. Last is True on the 
last call to the handler, False otherwise.

A predefined status component called TApdFaxStatus is supplied with Async Professional. If 
you don’t want to write an OnFaxStatus event handler, you can use this standard fax status 
window. Just create an instance of TApdFaxStatus and assign it to the StatusDisplay property 
of the TApdSendFax or TApdReceiveFax component.

See also: StatusDisplay
TApdAbstractFax Component     729

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

PageLength read-only, run-time property

property PageLength : LongInt

The total number of bytes in the current page. 

PageLength is valid only when you are sending a fax. When receiving a fax, the total size of 
the page is not known in advance, so PageLength is zero.

PageLength can be used by an OnFaxStatus event handler to get the total number of bytes in 
the current page. The appropriate time to check PageLength is when FaxProgress equals 
fpSendPage or fpGetPage. At other times, it is either zero or a value associated with the 
previous page.

See also: BytesTransferred, CurrentPage, TotalPages

RemoteID read-only, run-time property

property RemoteID : TStationID

TStationID = string[20];

The station ID of the remote fax machine. 

RemoteID can be used by an OnFaxStatus event handler to get the station ID of the remote 
fax machine. The appropriate time to check RemoteID is when FaxProgress equals 
fpGotRemoteID. Before that, it returns an empty string.

See also: StationID

SessionBPS read-only, run-time property

property SessionBPS : Word

The negotiated transfer rate in bits per second. 

SessionBPS can take on the values 14400, 12000, 9600, 7200, 4800, and 2400. Most 
faxmodems now support 9600 or higher. The fax connection process attempts to negotiate 
the highest possible rate unless you have set DesiredBPS to limit the highest rate.

SessionBPS can be used by an OnFaxStatus event handler to get the negotiated transfer rate. 
The appropriate time to check SessionBPS is when FaxProgress equals fpSessionParams. 
Before that, it is undefined.

Session parameters can change more than once during a single session. Be sure that your 
OnFaxStatus event handler updates its parameter display each time FaxProgress returns the 
value fpSessionParams.

See also: DesiredBPS, SessionECM, SessionResolution, SessionWidth
30     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

SessionECM read-only, run-time property

property SessionECM : Boolean

Indicates whether automatic error correction is enabled. 

SessionECM is True if automatic error correction is enabled for this transfer, or False if it 
isn’t. Error correction is enabled if both modems support it and DesiredECM is True.

SessionECM can be used by an OnFaxStatus event handler to check for automatic error 
correction. The appropriate time to check SessionECM is when FaxProgress equals 
fpSessionParams. Before that, it is undefined.

Session parameters can change more than once during a single session. Be sure that your 
OnFaxStatus event handler updates its parameter display each time FaxProgress returns the 
value fpSessionParams.

See also: DesiredECM, SessionBPS, SessionResolution, SessionWidth

SessionResolution read-only, run-time property

property SessionResolution : Boolean

Indicates whether the fax is high resolution or standard resolution. 

SessionResolution is True for a high resolution fax transfer, or False for a standard 
resolution transfer. Async Professional automatically enables high resolution if it is sending 
an APF file that contains high resolution data, or if it is receiving a high resolution fax from a 
remote partner.

SessionResolution can be used by an OnFaxStatus event handler to check for the fax 
resolution. The appropriate time to check SessionResolution is when FaxProgress equals 
fpSessionParams. Before that, it is undefined.

Session parameters can change more than once during a single session. Be sure that your 
OnFaxStatus event handler updates its parameter display each time FaxProgress returns the 
value fpSessionParams.

See also: SessionBPS, SessionECM, SessionWidth
TApdAbstractFax Component     731

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

SessionWidth read-only, run-time property

property SessionWidth : Boolean

Default: True

Indicates whether the fax is normal or wide width. 

If SessionWidth is True (the default), the fax is a standard width of 1728 pixels (about 8.5 
inches). If SessionWidth is False, the fax width is 2048 pixels (about 10 inches).

SessionWidth can be used by an OnFaxStatus event handler to check the fax width. The 
appropriate time to check SessionWidth is when FaxProgress equals fpSessionParams. 
Before that, it is undefined.

Session parameters can change more than once during a single session. Be sure that your 
OnFaxStatus event handler updates its parameter display each time FaxProgress returns the 
value fpSessionParams.

See also: SessionBPS, SessionECM, SessionResolution

SoftwareFlow property

property SoftwareFlow : Boolean

Default: False

Determines whether the fax components enable or disable software flow control during the 
fax session. 

When using software flow control during a fax session, the flow control must be enabled and 
disabled at various points in the session. Because hardware flow control is more reliable, it is 
used by default and the fax components do not enable or disable software flow control. If 
you need to use software flow control, you must set SoftwareFlow to True.

For more information regarding flow control see ““Fax sessions and the TApdComPort” on 
page 702”.
32     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

StationID property

property StationID : TStationID

TStationID = string[20];

The station ID of the faxmodem. 

A fax device can identify itself to another fax device with a 20 character name, called the 
station ID. The Class 1/1.0, Class 2, and Class 2.0 specifications indicate that the station ID 
should contain just a phone number; therefore, they limit it to just the digits 0 through 9 and 
space. However, the station ID is frequently used to store an alphabetic name. Most 
faxmodems support this convention by allowing upper and lower case letters, as well as 
other special characters in the station ID. This can cause problems for some fax machines, 
though, since they cannot print these characters.

Async Professional does not filter the characters stored in the station ID. If your software 
must be compatible with the broadest possible range of fax hardware, you might want to 
limit the characters stored in StationID.

This station ID is used on both incoming and outgoing calls.

A fax file stored in APF format also contains a station ID in the file header. This station ID is 
stored when a document is converted to APF format. For more information, see 
“TApdFaxConverter Component” on page 594.

See also: TApdFaxConverter.StationID

StatusDisplay property

property StatusDisplay : TApdAbstractFaxStatus

An instance of a fax status window. 

If StatusDisplay is nil (the default), the fax does not provide an automatic status window. An 
OnFaxStatus event handler can be installed to display status in this case.

If you create an instance of a class derived from TApdAbstractFaxStatus or use the supplied 
TApdFaxStatus component (see page 826) and assign it to StatusDisplay, the status window 
is displayed and updated automatically.

See also: OnFaxStatus
TApdAbstractFax Component     733

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

StatusInterval property

property StatusInterval : Word

Default: 1

The maximum number of seconds between OnFaxStatus events. 

The OnFaxStatus event is generated for each major fax session event (connected, got station 
ID, and so on) and at intervals of StatusInterval seconds.

This property also determines how frequently the StatusDisplay window is updated.

See also: OnFaxStatus, StatusDisplay

StatusMsg method

function StatusMsg(const Status : Word) : string;

Returns an English string for a fax status code. 

This routine is intended primarily for use in fax status routines. It returns a status string 
from the string table resource linked into your EXE. The string ID numbers correspond to 
the values of the fpXxx constants (see “Fax status” on page 707). If the string table doesn’t 
contain a string resource with the requested ID, an empty string is returned.

The returned string is never longer than MaxMessageLen (80) characters.

SupportedFaxClasses read-only, run-time property

property SupportedFaxClasses : TFaxClassSet

TFaxClassSet = set of TFaxClass;

TFaxClass = (
fcUnknown, fcDetect, fcClass1, fcClass1_0, fcClass2, fcClass2_0);

The set of fax classes supported by the faxmodem. 

SupportedFaxClasses is available only at run time because it sends commands to the 
faxmodem to determine what baud rates are supported (when it equals fcDetect).

Initially FaxClass is fcDetect, so that the first reference to it causes the faxmodem 
interrogation. Thereafter, references to SupportedFaxClasses return the known set of 
supported fax classes. The re-interrogation of the faxmodem can be forced by setting 
FaxClass to fcDetect.

Generally, applications should use the highest supported class: fcClass2_0, then fcClass2, 
and finally fcClass1.

See also: FaxClass
34     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

TapiDevice property

property TapiDevice : TApdCustomTapiDevice

Determines an instance of a TAPI device.

This refers to a TAPI device that we may create internally when sending or receiving faxes. 
We check for an Assigned TapiDevice and will use it if there is an ApdTapiDevice on the 
form. EnableVoice property should be false by default and left that way.

See also: ComPort

TotalPages read-only, run-time property

property TotalPages : Word

The total number of pages in the current fax. 

TotalPages is valid only when you are sending a fax. When receiving a fax, the total number 
of pages is not known in advance, so TotalPages is zero.

TotalPages can be used by an OnFaxStatus event handler to get the total number of bytes 
in the current page. The appropriate time to check TotalPages is when FaxProgress equals 
fpSendPage or fpGetPage. Before that, it is either zero or a value associated with the 
previous page.

See also: BytesTransferred, CurrentPage, PageLength
TApdAbstractFax Component     735

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdSendFax Component
The TApdSendFax component is used to send faxes. It builds on the services of 
TApdAbstractFax and implements the properties, events, and methods required to transmit 
faxes.

Specifying a fax to send
A fax to send consists of three items: an APF file (or list of APF files), a phone number, and 
an optional cover file. TApdSendFax provides a few mechanisms for specifying this 
information. When sending only one fax the simplest approach is to set the FaxFile, 
PhoneNumber, and CoverFile properties, then call StartTransmit. TApdSendFax dials the 
specified number, transmits the fax, and generates an OnFaxFinish event to indicate that it is 
finished.

When you need to send multiple fax files to the same location, you can fill the FaxFileList 
property (a stringlist) with the names of the files, set the PhoneNumber and CoverFile 
properties, then call StartTransmit. TApdSendFax concatenates the APF files into a single 
temporary APF, dials the specified number, transmits the fax, deletes the temporary APF, 
and generates an OnFaxFinish event to indicate that it is finished.

If you need to send a single fax file to multiple locations, you can use the OnFaxNext event to 
specify the files and phone numbers. If an OnFaxNext event handler is specified, 
TApdSendFax calls it instead of using FaxFile/FaxFileList, PhoneNumber, and CoverFile. 
The event handler is expected to return the fax file, phone number, and cover file of the next 
fax to send. If there are no more fax files to send, the event handler should return empty 
strings. The following code fragments illustrate how:

TForm1 = class(TForm)
...

private
FaxList : TStringList;
FaxIndex : Word;

end;

...
36     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
procedure TForm1.AddFilesClick(Sender : TObject);
begin

FaxList.Add('260-7151^FILE1.APF');
FaxList.Add('555-1212^FILE2.APF');
FaxIndex := 0;

end;

procedure TForm1.ApdSendFax1FaxNext(
CP : TObject; var APhoneNumber, AFaxFile,
AcoverFile : OpenString);

var
S : string;
CaretPos : Byte;

begin
try

S := FaxList[FaxIndex];
CaretPos := Pos('^', S);
APhoneNumber := Copy(S, 1, CaretPos-1);
AFaxFile := Copy(S, CaretPos+1, 255);
ACoverFile := '';
Inc(FaxIndex);

except
APhoneNumber := '';
AFaxFile := '';
ACoverFile := '';

end;
end;

This example sends two fax files to two different locations: it sends FILE1.APF to the fax 
device at 260-7151 and sends FILE2.APF to 555-1212. No cover files are used.

When AddFilesClick is called (presumably from clicking the Add Files button), the two fax 
files and phone numbers are added to a TStringList named FaxList. FaxIndex, which is used 
to keep track of which fax file to send, is initialized to zero.

When TApdSendFax generates the OnFaxNext event, ApdSendFax1NextFax uses the next 
string from FaxList to extract the fax file name and phone number, returning them in the 
APhoneNumber and AFaxFile parameters. When there are no more faxes to send, FaxList 
generates an EListError exception. The except block then sets the passed parameters to 
empty strings, which tells TApdSendFax that there are no more faxes to send. An 
OnFaxFinish event is fired at the end of the fax session (after all faxes have been sent).
TApdSendFax Component     737

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Cover pages
Fax transmissions often include a cover page, which provides basic information about the 
fax, usually consisting of the sender’s name, the recipient’s name, the total number of pages, 
and perhaps the date and time. Async Professional provides several options for sending this 
information. First, you can avoid a cover page altogether and put the same information on a 
fax page header. See the HeaderLine property on page 748 for details.

If you want to send a cover page, you have three options. First, you can build the cover page 
right into the main APF file for the document. This option applies to text documents only. 
Simply store the cover page text at the beginning of the document, insert a form feed 
character, and continue with the document itself. Then use the TApdFaxConverter 
component to generate the APF file.

Second, you can create a separate APF file that contains the cover page. Take this approach if 
the cover page contains special graphics or text that doesn’t change between fax 
transmissions. Create the APF file and set the CoverFile property of TApdSendFax to the 
fully qualified name of the file or return the fully qualified file name in the ACoverFile 
parameter of the OnFaxNext event.

The third and most flexible approach is to put the cover page in a separate text file. If the 
cover file name does not have an extension of APF, it is assumed to be a text file. 
TApdSendFax automatically converts this to fax format (using either the built-in standard 
font or a Windows font) and transmits it to the remote machine.

What makes this approach more flexible is the fact that the text file can use replacement tags. 
A replacement tag is one of several characters prefixed with ‘$’. As each line of the cover file 
is converted, the tags are replaced with appropriate text. A line in the cover file can consist of 
any mix of tags and normal text (be careful that your normal text doesn’t happen to contain 
tags, though). Blank lines and spaces can be used to format the cover page. The available 
replacement tags are shown in Table 15.15.

Table 15.15: Available Replacement Tags 

Tag Description

$D Today’s date in MM/DD/YY format, always 8 characters

$I Station ID, variable length

$N Total number of pages, variable length

$P Current page number, variable length

$R Recipient’s name as contained in HeaderRecipient, variable length
38     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Note that some of the tags vary in length. For example, $P would be replaced by ‘1’ for the 
first page and “10” for the tenth page.

By taking advantage of replacement tags, you can create a single cover page file that is used 
for every fax transfer. Below is a sample cover file and sample code that sets the replacement 
tags:

COVER.TXT:

Olympic Training Center
Colorado Springs, Colorado

DATE : $D
TIME : $T
FROM : $F

TO : $R

(form feed)

Program:

ApdSendFax.HeaderSender := 'Picabo';
ApdSendFax.HeaderRecipient := 'Elizabeth';
ApdSendFax.FaxFile := 'FILE1.APF';
ApdSendFax.CoverFile := 'COVER.TXT');
ApdSendFax.PhoneNumber := '260-7151';
ApdSendFax.StartTransmit;

The file FILE1.APF is sent to 260-7151 using the cover page file COVER.TXT. The date and 
time tags are replaced with the current date and time. The sender’s name is set to “Picabo” 
and the recipient’s name is set to “Elizabeth.”

$F Sender’s name as contained in HeaderSender, variable length

$S Title as contained in HeaderTitle, variable length

$T Current time in HH:MMpm format, always 7 characters

Table 15.15: Available Replacement Tags  (continued)

Tag Description
TApdSendFax Component     739

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

"

Send fax events
OnFaxNext

procedure(
CP : TObject; var APhoneNumber : string; var AFaxFile : string;
var ACoverFile : string) of object;

Generated when it is time to transmit a fax (just after StartTransmit is called and after each 
fax is sent). When transmitting multiple faxes, your program must implement an 
OnFaxNext event handler to return, in sequence, each fax file to send. See EXFAXL for an 
example that shows how to use a TStringList component to maintain a list of fax file names 
and phone numbers.

Caution: An OnFaxFinish event will not be fired until after empty strings are returned in 
your OnFaxNext event to signal the end of the fax session (all faxes have been sent).

Example
This example shows how to construct and use a fax send component. This example includes 
a TApdFaxStatus component (see page 826) so that you can see the progress of the fax 
session.

Create a new project, add the following components, and set the property values as 
indicated in Table 15.16.

The output buffer size of the comport component (the OutSize property of TApdComPort) 
is raised from its default value of 4096 to 8192. TApdSendFax requires an output buffer of at 
least 8192 bytes to ensure there is always enough room to add the next raster line to send, 
plus keep the output buffer full enough to avoid data underflow errors.

Table 15.16: Example components and property values

Component Property Value

TApdComPort ComNumber <set as needed for your PC>

OutSize 8192

TApdSendFax FaxFile <name of the APF file to send>

PhoneNumber <fax number to dial>

TApdFaxStatus

TButton Name Send
40     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Double-click on the Send button’s OnClick event handler within the Object Inspector and 
modify the generated method to match this:

procedure TForm1.SendClick(Sender : TObject);
begin

ApdSendFax1.StartTransmit;
end;

This method starts a background fax transmit session, which dials the specified fax phone 
number and attempts to send the specified fax file.

The form includes a TApdFaxStatus component, which is automatically displayed by the fax 
and periodically updated to show the progress of the fax transfer.

This example is in the EXFAXS project in the \ASYNCPRO\EXAMPLES directory.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomAbstractFax (AdFax)

" TApdAbstractFax (AdFax) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

TApdCustomSendFax (AdFax)

TApdSendFax (AdFax)

Properties
" AbortNoConnect

BlindDial

BufferMinimum

" BytesTransferred 

" ComPort

CoverFile

" CurrentPage

" DesiredBPS

" DesiredECM

Detect Busy

DialAttempt

DialAttempts

DialPrefix

DialRetryWait

DialWait

" ElapsedTime

EnhFont

EnhHeaderFont

EnhTextEnabled

" ExitOnError

" FaxClass

" FaxFile

" FaxFileExt

FaxFileList

" FaxLog

" FaxProgress

" HangupCode

HeaderLine

HeaderRecipient

HeaderSender

HeaderTitle

" InitBaud

MaxSendCount

" ModemBPS 

" ModemChip

" ModemECM

" ModemInit

" ModemModel

" ModemRevision 
TApdSendFax Component     741

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
" NormalBaud

NoSoftwareFlow

" PageLength 

PhoneNumber

" RemoteID 

SafeMode

" SessionBPS 

" SessionECM

" SessionResolution

" SessionWidth

" SoftwareFlow

" StationID

" StatusDisplay

" StatusInterval

" StatusMsg

" SupportedFaxClasses

ToneDial

" TotalPages

! Version

Methods
" CancelFax

ConcatFaxes

ConvertCover

StartManualTransmit

StartTransmit

" StatusMsg

Events
" OnFaxError

" OnFaxFinish

" OnFaxLog

OnFaxNext

" OnFaxStatus
42     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

BlindDial property

property BlindDial : Boolean

Default: False

Allows a fax to be sent regardless of whether the modem detects a dial tone. 

If BlindDial is True, a different initialization sequence is sent to the modem before a fax is 
sent (ATX3 is sent instead of ATX4). This initialization sequence allows the modem to use a 
phone line, even if it can’t detect a dial tone.

BufferMinimum property

property BufferMinimum : Word

Default: 1000

Defines the minimum number of bytes that must be in the output buffer before 
TApdSendFax yields control. 

Once started, a fax transmit session must have a constant supply of data to transmit. Lack of 
data to transmit is referred to as a data underflow condition and usually results in a failed fax 
session. Because Windows is a multi-tasking environment, TApdSendFax tries to fill the 
output buffer as full as possible before yielding control. BufferMinimum is the minimum 
number of output bytes that must be in the output buffer before TApdSendFax yields.

If your program is operating among ill-behaved programs or other conditions that might 
result in long periods where it isn’t given a chance to run, increasing BufferMinimum 
decreases the chance of a data underflow error.

An attempt to set BufferMinimum to more than the OutSize property of TApdComPort 
is ignored.

See also: MaxSendCount, SafeMode
TApdSendFax Component     743

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

ConcatFaxes method

procedure ConcatFaxes(FileName : ShortString);

Combines multiple APF files into a single APF file. 

This method can be used in conjunction with the FaxFileList property to combine multiple 
APF files into a single APF file. Simply the APF files you wish to combine to the FaxFileList 
property, and call ConcatFaxes with FileName set to the desired output filename. If 
FileName exists prior to calling ConcatFaxes, it will be overwritten without warning.

Note that this method is not required to send a list of files to a single destination, since APF 
files in the FaxFileList property will automatically be combined when StartTransmit is called 
(assuming OnFaxNext is not implemented).

This method can be useful if you need to send a concatenated fax to multiple phone 
numbers (using the OnFaxNext event) or if you want to retain the concatenated fax 
following the transmission.

See also: FaxFileList, OnFaxNext

ConvertCover method

procedure ConvertCover(const InCover, OutCover : string);

Converts a cover file to APF using replaceable tags.

The ConvertCover method converts an ASCII text file into an APF file suitable for faxing. 
This method supports the replaceable tags supported by the TApdFaxConverter. See “Cover 
pages” on page 738for a description of the replaceable tags.

InCover is the pathname of the cover file to convert, OutCover is the pathname of the APF to 
create.

CoverFile property

property CoverFile : string

The name of the cover file to send. 

If you are sending a single fax with a cover sheet, set CoverFile to the name of the text or APF 
file to be used as the cover sheet. If you are sending multiple fax files, you must implement an 
OnFaxNext event handler. CoverFile is automatically set to the cover file name returned by 
your event handler.
44     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

If the extension of the cover file is “APF”, the file is assumed to be an APF file and is 
transmitted as-is, before FaxFile is transmitted. Otherwise the cover file is assumed to be a 
text file. Each text line is read from the file, replacement tags are replaced with appropriate 
text, and the line is converted to a series of raster lines and transmitted to the remote fax. 
After the cover file is converted and transmitted, the FaxFile is transmitted.

CoverFile can be used by status and logging routines to return the name of the current 
cover file.

See “Cover pages” on page 738 for more information.

See also: OnFaxNext, PhoneNumber, TApdAbstractFax.FaxFile

DetectBusy property

property DetectBusy : Boolean

Default: DefDetectBusy (True)

Enables or disables busy signal detection.

If DetectOnBusy is True, the busy signal is detected if the receiving fax is already off hook. 
An ErrorCode of ecFaxBusy will be passed in the OnFaxError event. If False, a different 
initialization sequence is sent to the modem before a fax is sent (ATX2 is sent instead of 
ATX4). This initialization sequence disables the modem’s capability to detect a busy signal.

See also: OnFaxError

DialAttempt read-only, run-time property

property DialAttempt : Word

Indicates the number of times the current fax number has been dialed. 

If the dialed fax number is busy, TApdSendFax waits briefly and calls the number again. It 
tries up to DialAttempts times. The DialAttempt property returns the number of the current 
attempt. DialAttempt is incremented immediately upon encountering a busy line.

See also: DialAttempts, DialRetryWait
TApdSendFax Component     745

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

DialAttempts property

property DialAttempts : Word

Default: 3

Determines the number of times TApdSendFax automatically dials a fax number. 

This is the number of times a fax session is attempted, it is not the number of retries. When 
DialAttempts is one, for example, the fax number is dialed only once. If the line is busy, it is 
not tried again. When DialAttempts is three, the fax number is dialed a maximum of three 
times.

See also: DialAttempt, DialRetryWait

DialPrefix property

property DialPrefix : TModemString

TModemString = string[40];

The optional dial prefix. 

DialPrefix specifies an optional dial prefix that is inserted in the dial command between 
“ATDT” and the number to dial. If your telephone system requires special numbers or codes 
when dialing out, you can specify them once here rather than in every fax number.

Do not include “ATD” or a ‘T’ or ‘P’ tone/pulse modifier in the dial prefix. “ATD” is 
automatically prefixed by StartTransmit and the ‘T’ or ‘P’ is controlled by ToneDial.

See also: ToneDial

DialRetryWait property

property DialRetryWait : Word

Default: 60

The number of seconds to wait after a busy signal before trying the number again. 

After encountering a busy signal, TApdSendFax checks to see if it should try this number 
again by comparing DialAttempts to DialAttempt. If more attempts are required, it first 
waits DialRetryWait seconds before dialing again to give the dialed fax machine time to 
complete the current session.

If no more dialing attempts are required, TApdSendFax does not wait, but immediately 
progresses to the next state, which is logging the current fax session as failed.

See also: DialAttempt, DialAttempts
46     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

DialWait property

property DialWait : Word

Default: 60

The number of seconds to wait for a connection after dialing the number. 

This property determines how many seconds to wait after dialing the receiver’s phone 
number. If the receiver does not answer within this time, the OnFaxFinish event will fire and 
return an error code of ecFaxNoAnswer.

See also: OnFaxServerFinish

EnhFont property

property EnhFont : TFont

Determines the font used to convert cover pages. 

If EnhTextEnabled is True, the font specified by EnhFont is used by TApdSendFax to convert 
the cover page. Any font available to Windows can be used (double click on the property to 
invoke the font dialog and see a list of the fonts). Only one font can be used for a document 
(i.e., font sizes and types cannot be mixed within a single cover page).

There is an upper limit on the size of the font, but this limit is not typically reached unless a 
very large font is used (e.g., greater than 72 pt). If the limit is exceeded, an ecEnhFontTooBig 
error occurs during the conversion process.

See also: EnhTextEnabled

EnhHeaderFont property

property EnhHeaderFont : TFont

Determines the font used to convert the fax header. 

If EnhTextEnabled is True, the font specified by EnhHeaderFont is used by TApdSendFax to 
convert the fax header. Any font available to Windows can be used (double click on the 
property to invoke the font dialog and see a list of the fonts).

There is an upper limit on the size of the font, but this limit is not typically reached unless a 
very large font is used (e.g., greater than 72 pt). If the limit is exceeded, an ecEnhFontTooBig 
error occurs during the conversion process.

See also: EnhTextEnabled
TApdSendFax Component     747

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

EnhTextEnabled property

property EnhTextEnabled : Boolean

Default: False

Determines whether TApdSendFax uses the default font. 

If EnhTextEnabled is True, the enhanced text-to-fax converter is used by ApdSendFax when 
converting fax headers and text cover pages. This means that the font specified by EnhFont 
is used to convert the cover page and the font specified by EnhHeaderFont is used to convert 
the fax header.

The converter makes no attempt to keep all text on the page when the size of the font is 
changed. You must ensure that the cover page line length and document length fit on the 
page in the desired font.

See also: EnhFont, EnhHeaderFont

FaxFileList property

property FaxFileList : TStringList

Defines a list of APF files to concatenate into a single APF file. 

If there is more than one APF file in FaxFileList when StartTransmit is called, the files in the 
list will be combined together into a single, temporary file for transmission. The temporary 
APF is deleted when the fax session is completed—whether the session was successful or 
not.

As with the FaxFile property, this property is ignored if an OnFaxNext event is 
implemented.

See also: ConcatFaxes, OnFaxFinish, StartTransmit

HeaderLine property

property HeaderLine : string

The optional line of text that is sent at the top of each fax page. 

A header line consists of normal text and replacement tags. A replacement tag is one of 
several characters prefixed with ‘$’. When the header line is transmitted, the tags are 
replaced with appropriate text. The available replacement tags are listed in “Cover pages” on 
page 738.
48     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

"

!

!

No check is made to make sure your header line fits on a page. If your header line does not 
fit, it is truncated when it is transmitted. Using the default fonts, you can fit approximately 
144 characters on a standard width page. If EnhTextEnabled is True, you will have to 
experiment to see how many characters fit on the width of the page.

Caution: Recently passed United States legislation makes it unlawful to send faxes within the 
United States without showing certain sender information on the fax. The new requirement 
states, in part: “It shall be unlawful for any person within the United States to use any 
computer or other electronic device to send any message via facsimile machine unless such 
message clearly contains, in a margin at the top or bottom of each transmitted page or on the 
first page of the transmission, the date and time it is sent and an identification of the 
business, other entity, or individual sending the message and the telephone number of the 
sending machine of such business, other entity, or individual.”

See also: EnhHeaderFont, EnhTextEnabled, HeaderRecipient, HeaderSender, HeaderTitle

HeaderRecipient property

property HeaderRecipient : string

The fax recipient’s name. 

This string replaces the $R replacement tag in a cover page text file or a header line.

See “Cover pages” on page 738 for more information and examples.

See also: HeaderLine, HeaderSender, HeaderTitle

HeaderSender property

property HeaderSender : string

The fax sender’s name. 

This string replaces the $F replacement tag in a cover page text file or a header line.

See “Cover pages” on page 738 for more information and examples.

See also: HeaderLine, HeaderRecipient, HeaderTitle
TApdSendFax Component     749

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

HeaderTitle property

property HeaderTitle : string

The fax title. 

This string replaces the $S replacement tag in a cover page text file or a header line.

See “Cover pages” on page 738 for more information and examples.

See also: HeaderLine, HeaderRecipient, HeaderSender

MaxSendCount property

property MaxSendCount : Word

Default: 50

Determines the maximum number of raster lines TApdSendFax sends before 
yielding control. 

MaxSendCount prevents TApdSendFax from completely taking over the CPU. It provides a 
balance to BufferMinimum back towards sharing the CPU among all tasks. MaxSendCount 
overrides BufferMinimum and forces TApdSendFax to yield after sending MaxSendCount 
raster lines, even if the output buffer contains less than BufferMinimum bytes. The risk, of 
course, is that yielding too soon may result in a data underflow error.

The default values for BufferMinimum and MaxSendCount provide the best combination of 
cooperative multitasking and avoidance of data underflow. You should not alter these values 
unless fax sessions are failing due to data underflow errors.

See also: BufferMinimum, SafeMode
50     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

OnFaxNext event

property OnFaxNext : TFaxNextEvent

TFaxNextEvent = procedure(CP : TObject;
var APhoneNumber : TPassString; var AFaxFile : TPassString;
var ACoverFile : TPassString) of object;

TPassString = string[255];

Defines an event handler that returns the phone number, fax file, and cover file for the 
next fax. 

If no handler is installed for this event, TApdSendFax dials the number specified by 
the PhoneNumber property and sends the fax(es) specified in the FaxFile or 
FaxFileList property. If the OnFaxNext event handler is installed, that event will be 
generated once the faxmodem has been initialized. The PhoneNumber, FaxFile and 
FaxFileList properties are ignored.

CP is the fax component that is transmitting. The event handler should return the next 
number to dial in APhoneNumber, the next fax file to send in AFaxFile, and an optional 
cover file name in ACoverFile. If a cover file isn’t used, ACoverFile should be set to an 
empty string.

The event handler should return empty strings for APhoneNumber, AFaxFile, and 
ACoverFile when there are no more faxes to send.

An OnFaxFinish event will be fired at the end of the fax session (all faxes have been sent—
and you have returned empty strings in your OnFaxNext handler to signal the end of the 
session).

See “Specifying a fax to send” on page 736 for more information.
TApdSendFax Component     751

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

PhoneNumber property

property PhoneNumber : string

Specifies the number to dial. 

If you are sending a single fax, set PhoneNumber to the number to dial. If you are sending 
multiple fax files, you must implement an OnFaxNext event handler. PhoneNumber is 
automatically set to the phone number returned by your event handler.

If the phone system requires prefix codes (like ‘9’), the codes must be specified in 
PhoneNumber or in DialPrefix.

PhoneNumber can be used with status and logging routines to return the phone number 
dialed for the current fax session.

See also: CoverFile, DialPrefix, OnFaxNext, TApdAbstractFax.FaxFile

SafeMode property

property SafeMode : Boolean

Default: True

Determines whether TApdSendFax should yield during time-critical handshaking periods. 

At the beginning and end of every fax page, TApdSendFax performs time-critical 
handshaking with the receiving fax device, where tolerance for delays is very low. Delays as 
small as a few hundred milliseconds can cause the receiver to believe the page transfer failed.

When SafeMode is True (the default), TApdSendFax does not yield during these periods. 
While this is the safest possible mode of operation for TApdSendFax, it will result in 
apparent brief periods of unresponsiveness to the user. That is, they won’t be able to switch 
to another application or cancel the fax transfer until the critical handshaking is over. 
Fortunately, the time-critical period lasts only 1-3 seconds, so this should rarely be a 
problem.

StartManualTransmit method

procedure TApdSendFax.StartManualTransmit;

Begins transmitting a fax over an existing call.

StartManualTransmit is called during an existing call to send a fax.

See ExFaxOD and ExFoDs for examples.

See also: StartTransmit
52     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

StartTransmit method

procedure StartTransmit;

Starts transmitting faxes in the background. 

The steps leading up to calling StartTransmit are:

1.  Create a port component.

2.  Create a fax component.

3.  Set PhoneNumber and FaxFile or provide an OnFaxNext event handler to return this 
information.

4.  Write other event handlers for fax events.

5.  Call StartTransmit.

StartTransmit returns immediately and transmits fax files in the background, occasionally 
generating events to keep you apprised of the progress. When the fax is finished, either 
successfully or with a fatal error, it generates an OnFaxFinish event.

The TAPI/Fax integration with receiving faxes will wait for incoming faxes using a passive 
answering mode. If TapiDevice is assigned, the associated TApdTapiDevice will be placed in 
AutoAnswer mode. When AnswerOnRing ring signals are detected, the TApdReceiveFax 
will answer the call. What this means for you is that you can be waiting for incoming faxes 
then go ahead and send a fax over the same device. After the fax is finished sending, TAPI 
will go back to passively waiting for an incoming fax.

See also: OnFaxNext, TApdAbstractFax.TapiDevice, TApdAbstractFax.OnFaxFinish

ToneDial property

property ToneDial : Boolean

Default: True

Determines whether tone or pulse dialing is used for fax transmissions. 

If ToneDial is True (the default), tone dialing is used. Otherwise, pulse dialing is used. 
Setting ToneDial does not immediately issue a modem command, but determines whether 
‘T’ or ‘P’ is added to the dial command later.
TApdSendFax Component     753

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdReceiveFax Component
The TApdReceiveFax component is used to receive faxes. It builds on the services of 
TApdAbstractFax and implements the properties, events and methods required to receive 
faxes.

Accepting fax files
The OnFaxAccept event gives your program the opportunity to accept or reject an incoming 
fax. The OnFaxAccept event is generated as soon as TApdReceiveFax establishes a fax 
session and determines the station ID of the sender.

There aren’t many reasons to refuse an incoming fax, but there might be some that are 
important to your application. For example, if your automated fax receive system knows that 
there is not enough disk space to hold even a small incoming fax, you can save the sender’s 
money by refusing the fax instead of accepting part of it and failing later.

Another possibility is to reject junk faxes automatically. You could maintain a list of 
known-good station IDs whose faxes you always accept, or a list of known-bad station IDs 
whose faxes you always reject.

If you don’t implement an OnFaxAccept event then all faxes are accepted.

The following event handler accepts faxes only from station ID “719-260-7151”:

procedure TForm1.ApdReceiveFax1FaxAccept(
CP : TObject; var Accept : Boolean);

begin
Accept := ApdReceiveFax1.RemoteID = '719-260-7151';

end;

Naming incoming fax files
When a fax is received, a file name must be chosen for storing the incoming image. Unlike a 
file transfer protocol, the fax sender does not provide any name.

TApdReceiveFax provides two methods for generating fax file names. The FaxNameMode 
property specifies how the name should be automatically generated. The OnFaxName event 
gives your program the opportunity to return a file name.

FaxNameMode provides the following choices shown in Table 15.17.
54     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
For both fnMonthDay and fnCount, the time required to find a usable file name depends on 
the number of existing files with the same name format. The time is probably not an issue as 
long as there are fewer than 100 matching files. If more than 9999 files are received, the name 
“NONAME.APF” is used.

To avoid the delay of finding the next available file name or if to use a different algorithm for 
naming the fax files, write an event handler for the OnFaxName event. This event is 
generated by TApdReceiveFax during a fax session as soon as the incoming fax is accepted in 
the OnFaxAccept event.

The following event handler generates sequence numbers internally rather than scanning 
the output directory to obtain a sequence number:

const
LastNumber : Word = 0;

procedure TForm1.ApdReceiveFax1FaxName(
CP : TObject; var Name : OpenString);

begin
if LastNumber < 10000 then begin

Inc(LastNumber);
Str(LastNumber, Name);
while Length(Name) < 4 do
Name := '0'+Name;

Name := 'FAX'+Name+'.'+ApdReceiveFax1.FaxFileExt;
end else

Name := 'NONAME.APF';
end;

This example keeps track of sequence numbers internally, using the typed constant 
LastNumber. Of course, this overwrites existing files each time the program is restarted. 
FaxFileExt is used to change the file extension from the default of “APF”. See page 736 for 
more information.

Table 15.17: FaxNameMode options

Option Result

fnNone Names the file “NONAME.APF”.

fnMonthDay Names the file mmddnnnn.APF, where mm is the current
month, dd is the current day, and nnnn is a sequential
number (starting at 0001) for the number of files received
this day.

fnCount Names the file FAXnnnn.APF, where nnnn is a sequential
number (starting at 0001) that is the first free number for
the current directory.
TApdReceiveFax Component     755

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Example
This example shows how to construct and use a fax receive component. This example 
includes a TApdFaxStatus component (see on page 826) so that you can see the progress of 
the fax session.

Create a new project, add the following components, and set the property values as 
indicated in Table 15.18.

The input buffer size of the comport component (the InSize property of TApdComPort) is 
raised from its default value of 4096 to 8192. Although this is not essential, it provides a 
buffer against programs that don’t yield frequently.

Double-click on the Receive button’s OnClick event handler within the Object Inspector and 
modify the generated method to match this:

procedure TForm1.ReceiveClick(Sender : TObject);
begin

ApdReceiveFax1.InitModemForFaxReceive;
ApdReceiveFax1.StartReceive;

end;

This method starts a background fax receive session, which initializes the modem and 
prepares it to receive faxes, then calls StartReceive to start waiting for incoming faxes.

When a fax call arrives, TApdReceiveFax answers the phone, validates the call as a fax call, 
and then begins receiving the fax data. The form includes a TApdFaxStatus component, 
which is automatically displayed by the background fax process and periodically updated to 
show the progress of the fax transfer.

This example is in the EXFAXR project in the \ASYNCPRO\EXAMPLES directory.

Table 15.18: Fax receive component example

Component Property Value

TApdComPort ComNumber <set as needed for your PC>

InSize 8192

TApdReceiveFax

TApdFaxStatus

TButton Name Receive
56     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomAbstractFax (AdFax)

" TApdAbstractFax (AdFax) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

TApdCustomReceiveFax (AdFax)

TApdReceiveFax (AdFax)

Properties
" AbortNoConnect

AnswerOnRing

" BytesTransferred

" ComPort

ConstantStatus

" CurrentPage

" DesiredBPS

" DesiredECM

DestinationDir

" ElapsedTime

" ExitOnError

FaxAndData

" FaxClass

" FaxFile

" FaxFileExt

" FaxLog

FaxNameMode

" FaxProgress

" HangupCode

" InitBaud

" ModemBPS

" ModemChip

" ModemECM

" ModemInit

" ModemModel

" ModemRevision

" NormalBaud

OneFax

" PageLength

" RemoteID

" SessionBPS

" SessionECM

" SessionResolution

" SessionWidth

" SoftwareFlow

" StationID

" StatusDisplay

" StatusInterval

" SupportedFaxClasses

" TotalPages

Methods
" CancelFax

InitModemForFaxReceive

PrepareConnectInProgress

StartManualReceive

StartReceive

" StatusMsg

Events
OnFaxAccept

" OnFaxError

" OnFaxFinish

" OnFaxLog

OnFaxName

" OnFaxStatus
TApdReceiveFax Component     757

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

AnswerOnRing property

property AnswerOnRing : Word

Default: 1

Determines the number of rings before a call is answered. 

AnswerOnRing is the number of “RING” responses allowed before the incoming call is 
answered. The default is one ring. Values less than or equal to zero are treated the same as 
one ring.

ConstantStatus property

property ConstantStatus : Boolean

Default: False

Determines whether status events are generated as soon as StartReceive is called. 

When transmitting faxes, the time to display status events is clear. While there are faxes to 
transmit, status should be displayed; when there are no more faxes to transmit, the fax 
session is over. The issue is less clear when receiving faxes because TApdReceiveFax is often 
waiting for faxes with no real status information to display.

If ConstantStatus is False (the default), the first status event is generated when an incoming 
ring is detected. The last status event is generated at the conclusion of the receipt of the fax. 
While TApdReceiveFax is waiting for the next incoming call, no status events are generated. 
Status events are generated again when the next incoming ring is detected. This continues 
until CancelFax is called or a fatal error occurs.

If ConstantStatus is True, the first status event is generated as soon as StartReceive is called. 
The last status event is generated only after CancelFax is called or a fatal error occurs.

See also: StartReceive, TApdAbstractFax.OnFaxStatus
58     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

DestinationDir property

property DestinationDir : string

Default: Empty string

Determines the directory for incoming fax files. 

There are two ways to indicate the directory for storing incoming fax files. If an OnFaxName 
event handler is used, it can return the fully qualified name (i.e., including drive and 
directory). If an OnFaxName event handler does not return the fully qualified name, or one 
of the automatic fax naming methods is used, DestinationDir can be set to the name of the 
desired directory.

If DestinationDir is empty and the OnFaxName event handler doesn’t return a fully 
qualified file name, incoming files are stored in the current directory.

See also: OnFaxName

FaxAndData property

property FaxAndData : Boolean

Default: False

Specify whether a compatible faxmodem will answer data calls. 

If FaxAndData is True, the faxmodem is configured to answer both fax and data calls. If it is 
False, only fax calls are answered.

Not all faxmodems support this feature and there is no broad standard for enabling it. It is 
available only in Class 2 and 2.0 faxmodems. The modem must claim “adaptive answer” or a 
similar term in its list of features. It must accept the “AT+FAA=1” sequence that Async 
Professional sends to enable the feature.

To use this feature, you should first set FaxAndData to True. Then call 
InitModemForFaxReceive to initialize the modem for receiving either fax or data calls. Do 
not call StartReceive. Instead, wait for incoming calls in your program. When a call arrives 
and you issue the “ATA” command, the faxmodem will detect whether the call is data or fax.

If the call is data, the modem responds with “CONNECT.” If you detect this string, your 
program should proceed as it normally does for a data call.
TApdReceiveFax Component     759

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

If the call is fax, the modem responds with “CED”, “FAX”, or “+FCON”. If you detect any of 
these strings, call PrepareConnectInProgress to tell TApdReceiveFax that the call has already 
been answered, then call StartReceive.

This area of faxmodem behavior is not standardized. You will need to experiment with your 
brand of faxmodem to find a method that works for you.

See the EXADAPT example program for an example.

See also: PrepareConnectInProgress

FaxNameMode property

property FaxNameMode : TFaxNameMode

TFaxNameMode = (fnNone, fnCount, fnMonthDay);

Default: fnCount

Determines how an incoming fax is named if you don’t assign an OnFaxName event 
handler. 

TApdReceiveFax must assign a file name to an incoming fax. If you do not assign an 
OnFaxName event handler, TApdReceiveFax generates a name based on the value of 
FaxNameMode. The modes are described in “Naming incoming fax files” on page 754.

InitModemForFaxReceive method

procedure InitModemForFaxReceive;

Initializes a faxmodem for receiving faxes. 

This method sends appropriate “AT” commands to the faxmodem to prepare it for receiving 
faxes. It first sends any string you have specified using ModemInit. Next it sends the DefInit 
string (“ATE0Q0V1X4S0=0”). Then it enables Class 1, Class 1.0, Class 2, or Class 2.0 
operation, either by autodetecting the highest class supported by the modem or using the 
last class specified by FaxClass.

For Class 2 and 2.0 modems InitModemForFaxReceive also sends strings for setting the 
station ID (see the StationID property on page 621), transfer rate (see the DesiredBPS 
property on page 719), error correction options (see the DesiredECM property on page 
720), and “fax and data” option (see the FaxAndData property on page 759). Hence, these 
properties must be set before calling InitModemForFaxReceive. For Class 1 and Class 1.0 
modems, these features are set while negotiating the connection, so you can set the relevant 
properties any time before calling StartReceive.
60     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

The critical portions of InitModemForFaxReceive are performed automatically whenever 
you call StartReceive, so you don’t need to call it yourself in most situations. However, it 
must be called again whenever the modem has been used for any purpose besides faxing. 
For example, you should call it whenever the modem has been used as a data modem.

InitModemForFaxReceive is also necessary when you are answering both data and fax calls 
on the same line. See FaxAndData for details.

See also: FaxAndData, TApdAbstractFax.DesiredBPS, TApdAbstractFax.DesiredECM, 
TApdAbstractFax.FaxClass, TApdAbstractFax.ModemInit, 
TApdAbstractFax.StationID

OneFax property

property OneFax : Boolean

Default: False

Enables or disables “one fax” receive behavior. 

If OneFax is True, the background fax process stops after receiving one fax. If OneFax is 
False (the default), the background fax process waits for faxes until a fatal error occurs or 
CancelFax is called.

The most likely use of “one fax” behavior is in conjunction with FaxAndData and 
PrepareConnectInProgress. These are used when your program handles incoming calls 
itself and passes control to the fax routines only after a fax call is detected.

See also: FaxAndData, PrepareConnectInProgress, TApdAbstractFax.CancelFax

OnFaxAccept property

property OnFaxAccept : TFaxAcceptEvent

TFaxAcceptEvent = procedure(
CP : TObject; var Accept : Boolean) of object;

Defines an event handler that is called at the beginning of the receive fax session after the 
station ID of the caller is received. 

This event provides an opportunity to accept or reject an incoming fax. If an OnFaxAccept 
event handler is not provided, all faxes are accepted.

When this event is generated, the only information known about the incoming fax is the 
station ID. So, the typical application for this event is to accept or reject faxes based on the 
station ID. For example, you can avoid receiving junk faxes by accepting only faxes coming 
from known station IDs.

See “Accepting fax files” on page 754 for more information.
TApdReceiveFax Component     761

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

OnFaxName property

property OnFaxName : TFaxNameEvent

TFaxNameEvent = procedure(
CP : TObject; var Name : TPassString) of object;

TPassString = string[255];

Defines an event handler that is called to return a file name for a fax. 

The fax protocol doesn’t include file name information, so the receiving software must 
generate file names (see FaxNameMode) or you can generate the file name in an 
OnFaxName event handler.

See “Naming incoming fax files” on page 754 for more information.

PrepareConnectInProgress method

procedure PrepareConnectInProgress;

Forces TApdReceiveFax to pick up a connection in progress. 

PrepareConnectInProgress is intended to be used when your program answers calls that can 
be either fax or data. When your program detects an incoming fax, it should call 
PrepareConnectInProgress and then call StartReceive, which will start processing at the 
point where an incoming call has already been answered. This approach can be used only if 
your faxmodem supports “adaptive answer.” This term is used by modem manufacturers to 
indicate the ability to discriminate between fax and data calls.

See also: FaxAndData

StartManualReceive method

procedure TApdCustomReceiveFax.StartManualReceive(
SendATAToModem : Boolean);

Begins receiving a fax immediately.

StartManualReceive is called to begin receiving a fax over an existing call or over a new call 
that has not been answered.

SendATAToModem determines if the “ATA” answer command is sent to the modem to 
begin receiving the file. If SendATAToModem is True, a fax will be received over a call that 
has not yet been answered. If SendATAToModem is False, a fax will be received over an 
existing call.

Refer to ExFasOD for an example.

See also: StartReceive
62     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

StartReceive method

procedure StartReceive;

Starts waiting for and receiving faxes in the background. 

The steps leading up to calling StartReceive look something like this:

1.  Create a port component.

2.  Create a fax component.

3.  Write appropriate event handles for fax events.

4.  Call InitModemForFaxReceive.

5.  Call StartReceive.

StartReceive returns immediately. TApdReceiveFax waits for and receives faxes in the 
background, occasionally generating the various OnFaxXxx events. When the receive fax 
session is finished, either successfully or with a fatal error, it generates an OnFaxFinish 
event.

The TAPI/Fax integration with receiving faxes will wait for incoming faxes using a passive 
answering mode. If TapiDevice is assigned, the associated TApdTapiDevice will be placed in 
AutoAnswer mode. When AnswerOnRing ring signals are detected, the TApdReceiveFax 
will answer the call. What this means for you is that you can be waiting for incoming faxes 
then go ahead and send a fax over the same device. After the fax is finished sending, TAPI 
will go back to passively waiting for an incoming fax.

See also: TapiDevice, TApdAbstractFax.OnFaxXxx
TApdReceiveFax Component     763

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Fax Server Components
The purpose of the Fax Server Components is to provide flexible, integrated fax reception, 
transmission, and queuing functionality. 

The TApdFaxServer component provides the faxing engine and interfaces with the fax 
modem. This component can be used by itself to receive faxes, or with a 
TApdFaxServerManager to send faxes. The TApdFaxServer reproduces much of the 
functionality of the TApdSendFax and TApdReceiveFax components, so many of the 
properties are similar. 

The TApdFaxServerManager component provides the TApdFaxServer component with fax 
jobs when requested. This component manages the fax jobs submitted by a TApdFaxServer 
or TApdFaxClient component by monitoring a specified directory for new fax jobs. This 
component also handles scheduling of fax jobs by inspecting the scheduled time of each fax 
job when a job is requested by the TApdFaxServer component.

The TApdFaxClient component provides the TApdFaxServerManager component with fax 
jobs. This component creates a fax job by creating a job file. The job file contains a header, 
entries for a single recipient or multiple recipients, cover page text, and the actual 
APF-formatted image data. The TApdFaxClient can be installed on a remote station to 
create fax jobs, then the job file just needs to be placed in the directory being monitored by 
the TApdFaxServerManager to enter the fax queue.

The fax server process
A fax server is a process that can receive and send faxes, often with the ability to schedule 
outbound faxes so they can be sent at specific times. Fax servers  also provide a way to create 
fax jobs to be submitted to the faxing engine. The Async Professional Fax Server 
Components are divided into four components to handle these steps in a fax server:

• The TApdFaxJobHandler component handles fax job files.

• The TApdFaxServer component physically send and receives faxes.

• The TApdFaxServerManager component schedules fax jobs and manages the 
fax queue.

• The TApdFaxClient component creates fax jobs.
64     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
A TApdFaxServer component is required for each faxmodem that is to be used. A 
TApdFaxServerManager is required for each directory that is to be monitored for fax jobs. A 
TApdFaxClient is used for each station that submits fax jobs to the TApdFaxServerManager. 
Figure 15.2 illustrates one possible configuration (the dotted boxes represent optional 
components).

In this scenario, there is one TApdFaxServer component for each modem to be used, one 
TApdFaxServerManager component monitoring a single directory, and several 
TApdFaxClient components feeding fax jobs to the monitored directory. The 
TApdFaxClients will create fax jobs, and copy them to the monitored directory. The 
TApdFaxServer will query the TApdFaxServerManager for fax jobs, the 
TApdFaxServerManager will find the jobs submitted by the TApdFaxClients, and will pass 
them to the TApdFaxServer. The TApdFaxServer will then process that job.

This scenario can be expanded upon in several ways to provide more flexible processing. 
The only limitation is that a directory can only be monitored by a single 
TApdFaxServerManager component. 

 Figure 15.2: TApdFaxServerManger configuration.

TApdFaxServer

Modem

TApdFaxServerManager

Monitored Directory TApdFaxClientTApdFaxClient

TApdFaxClient

TApdFaxServer

Modem

TApdFaxServer

Modem

TApdFaxClient TApdFaxClient
Fax Server Components     765

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Async Professional Job File format
The Fax Server Components cannot use the normal Async Professional Fax (APF) file 
format because APF does not provide enough flexibility for queuing or scheduling of 
multiple recipients. In order to support multiple recipients, scheduling, and ease of 
submission, the Fax Server Components use the Async Professional Job (APJ) file format. 
The APJ format contains a TFaxJobHeaderRec record, a TFaxRecipientRec record for each 
recipient, cover page text, and the APF data.

An APJ file is formatted as shown in Table 15.19.

The details of this format are most likely not needed for most applications, but the format is 
documented here in case you need to write APJ manipulation routines that are not provided 
with Async Professional.

The APJ file begins with a fax job header, which contains information that applies to the fax 
job as a whole. The TFaxJobHeaderRec adds 128 bytes to the size of the fax job file. Table 
15.20 shows the fields of the TFaxJobHeaderRec.

Table 15.19: APJ file format

Fax job header

Recipient info

...

Recipient info

Cover page text

Regular APF format

Table 15.20: TFaxJobHeaderRec fields 

Field Purpose

ID APRO fax job signature.

Status Status of the fax job file.

JobName Friendly name of the fax job.

Sender Name of the sender.

SchedDT TDateTime of the next scheduled job.

NumJobs Number of recipient jobs in the APJ file.

NextJob The index of the next job to send.
66     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The TFaxRecipientRec record follows the TFaxJobHeaderRec in the APJ file. Since there can 
be one, or several, recipients for a given APJ file, the space used will vary. 256 bytes are 
added to the size of the APJ for each recipient. Table 15.21 shows the fields of the 
TFaxRecipientRec.

Following the TFaxRecipientRec structures in the APJ file is the cover page text data. 
Replaceable tags are supported, and are defined by the respective fields in the 
TFaxJobHeaderRec and TFaxRecipientRec records. Cover pages in APF format are not 
directly supported, but you can add an APF formatted cover page to the beginning of the fax 
file to have the same effect.

The APF file to be sent follows the cover page text.

CoverOfs The offset, in bytes, of the cover page text.

FaxHdrOfs The offset, in bytes, of the TFaxHeaderRec.

Padding 42 bytes of extra data, leaving room for future expansion and
forcing the size of the fax job header to 128 bytes.

Table 15.21: TFaxRecipientRec fields

Field Purpose

Status Status of this recipient info.

JobID Unique ID for this job (usually the index number).

SchedDT TDateTime this job is scheduled for.

AttemptNum Number of times this fax has been attempted.

LastResult The ErrorCode from the last attempt.

PhoneNumber Phone number to dial for this fax job.

HeaderLine Optional line of text sent at the top of each page.

HeaderRecipient Recipient’s name ($R replaceable tag).

HeaderTitle Fax title ($S replaceable tag).

Padding 28 bytes of extra data, leaving room for future
expansion and forcing the size of the fax job info to
256 bytes.

Table 15.20: TFaxJobHeaderRec fields  (continued)

Field Purpose
Fax Server Components     767

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Integration with other components
The ApdFaxViewer, ApdSendFax, ApdReceiveFax, ApdFaxPrinter, and other Async 
Professional fax components do not understand the APJ format, so the information must be 
extracted. The TApdFaxServerManager and TApdFaxClient descend from the 
TApdFaxJobHandler class, which contains methods to extract the APF data and cover file 
data from the APJ file. Use the ExtractAPF method to extract the APF fax data to a file, and 
the ExtractCoverFile method to extract the cover file data. The following example 
demonstrates how to use these two methods to display the APF data in a TApdFaxViewer 
and the cover text in a TMemo:

var
FaxJobHandler : TApdFaxJobHandler;

begin
FaxJobHandler := TApdFaxJobHandler.Create(nil);
FaxJobHandler..ExtractAPF('C:\TEST.APJ', 'C:\TESTFAX.APF');
ApdFaxViewer1.FileName := 'C:\TESTFAX.APF';
if FaxJobHandler.ExtractCoverFile('C:\TEST.APJ',

'C:\TESTCOVR.TXT') then
Memo1.Lines.LoadFromFile('C:\TESTCOVR.TXT');

FaxJobHandler.Free;
end;
68     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdFaxJobHandler Component
The TApdFaxJobHandler component is the ancestor of the TApdFaxServerManager and 
TApdFaxClient components. This component provides methods to manipulate the Async 
Professional Job file format. 

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdFaxJobHandler (AdFaxSrv)

Properties
! Version

Methods
AddRecipient

CancelRecipient

ConcatFaxes

ExtractAPF

ExtractCoverFile

GetJobHeader

GetRecipient

GetRecipientStatus

MakeJob

ResetAPJPartials

ResetAPJStatus

ResetRecipientStatus

RescheduleJob

ShowFaxJobInfoDialog
TApdFaxJobHandler Component     769

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Reference Section

AddRecipient method

procedure AddRecipient(
JobFileName : ShortString; RecipientInfo : TFaxRecipientRec);

TFaxRecipientRec = packed record
Status : Byte;
JobID : Byte;
SchedDT : TDateTime;
AttemptNum : Byte;
LastResult : Word;
PhoneNumber : String[50];
HeaderLine : String[100];
HeaderRecipient : String[30];
HeaderTitle : String[30];
Padding : Array[228..256] of Byte;

end;

Adds new recipient information to an existing job file.

AddRecipient is used to add another recipient to an existing fax job file. JobFileName is the 
path and filename of the existing fax job file. RecipientInfo is the TFaxRecipientRec 
containing the information about this recipient. The following example will add a new 
recipient to an existing fax job file:

var
Recipient : TFaxRecipientRec;
FaxJobHandler : TApdFaxJobHandler;

begin
Recipient.SchedDT := Now;
Recipient.PhoneNumber := '1 719 260 7151';
Recipient.HeaderLine := 'Fax to $R $D $T';
Recipient.HeaderRecipient := 'TurboPower';
Recipient.HeaderTitle := 'Info to TurboPower';
FaxJobHandler := TApdFaxJobHandler.Create(Self);
FaxJobHandler.AddRecipient('C:\FAXES\MyFax.APJ', Recipient);
FaxJobHandler.Free;

end;
70     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

CancelRecipient method

procedure CancelRecipient(JobFileName: ShortString; JobNum : Byte);

CancelRecipient cancels a single recipient in a fax job file.

Use CancelRecipient to cancel a specific recipient in the fax job file. JobFileName is the name 
of the fax job file to modify. JobNum is the index of the recipient to cancel.

ConcatFaxes method

procedure ConcatFaxes(
DestFaxFile: ShortString; FaxFiles: array of ShortString);

Combines two APF files into a single APF file.

This method is used to concatenate multiple APF files into a single APF file. DestFaxFile is 
the file name that will contain the concatenated fax files. FaxFiles is an array containing the 
fax file names of the APF files to concatenate. The first fax file in the array will be at the 
beginning of the concatenated file, the second fax file in the array will follow the first, etc. If 
DestFileName already exists, it will be overwritten without warning.

The following example demonstrates how to use ConcatFaxes to concatenate several faxes (a 
cover page in APF format, DOC1..DOC5) into a new file (FAXFILE.APF):

var
ApdFaxJobHandler : TApdFaxJobHandler;

begin
ApdFaxJobHandler := TApdFaxJobHandler.Create(Self);
try

ApdFaxJobHandler.ConcatFaxes(
'C:\FAXFILE.APF', ['C:\COVER.APF', 'C:\DOC1.APF',
'C:\DOC2.APF', 'C:\DOC3.APF', 'C:\DOC4.APF',
'C:\DOC5.APF']);

finally
ApdFaxJobHandler.Free;

end;
end;
TApdFaxJobHandler Component     771

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

In C++Builder, the syntax used is usually not apparent, the following example shows how to 
do it:

{
ShortString FaxFiles[6] = {

"C:\\COVER.APF", "C:\\DOC1.APF", "C:\\DOC2.APF",
"C:\\DOC3.APF", "C:\\DOC4.APF", "C:\\DOC5.APF"};

ShortString DestFile = "C:\\FAXFILE.APF";
TApdFaxJobHandler* ApdFaxJobHandler =

new TApdFaxJobHandler(this);
// the array index is 0-based, the array declaration is 1-based
ApdFaxJobHandlerConcatFaxes(DestFile,FaxFiles,5);
delete ApdFaxJobHandler;

}

ExtractAPF method

procedure ExtractAPF(JobFileName, FaxName : ShortString);

Extracts the APF data from an APJ file.

Call the ExtractAPF method to extract the embedded APF data from within an APJ file.   
JobFileName is the file name of the APJ file that contains the APF. FaxName is the filename 
of the extracted APF file. This method is useful when you want to extract the APF data from 
an APJ file for use with another Async Professional fax component, such as the 
ApdFaxPrinter or ApdFaxViewer. The following example demonstrates how to extract the 
APF data and display it in a TApdFaxViewer:

var
ApdFaxJobHandler : TApdFaxJobHandler;

begin
ApdFaxJobHandler:= TApdFaxJobHandler.Create(nil);
ApdFaxJobHandler.ExtractAPF(MyJob, APFFile);
ApdFaxViewer.FileName := APFFile;
ApdFaxJobHandler.Free;

end;
72     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ExtractCoverFile method

function ExtractCoverFile(
JobFileName, CoverName : ShortString) : Boolean;

Extracts the cover file text from an APJ file.

Call the ExtractCoverFile method to extract the embedded cover page text from within an 
APJ file. JobFileName is the file name of the APJ file that contains the cover file text. 
CoverName is the file name of the extracted cover page text. If cover page data is not present 
in the APJ, this method will return False; if the APJ contains cover page text this method will 
return True and a new file (named CoverName) will be created. The following example 
demonstrates how to extract the cover page text and display it in a TMemo:

var
ApdFaxJobHandler : TApdFaxJobHandler;

begin
ApdFaxJobHandler:= TApdFaxJobHandler.Create(nil);
if ApdFaxJobHandler.ExtractCoverFile(MyJob, CoverFile) then

Memo.Lines.LoadFromFile(CoverFile);
ApdFaxJobHandler.Free;

end;

GetJobHeader method

procedure GetJobHeader(
JobFileName : ShortString; var JobHeader : TFaxJobHeaderRec);

Returns the TFaxJobHeaderRec for the specified APJ file.

GetJobHeader returns the fax job header record for the APJ file. JobFileName is the file 
name of the APJ file. JobHeader is the TFaxJobHeaderRec record contained in JobFileName. 
The following example demonstrates how to extract the job header from an APJ file:

var
ApdFaxJobHandler : TApdFaxJobHandler;
JobHeader : TFaxJobHeaderRec;

begin
ApdFaxJobHandler := TApdFaxJobHandler.Create(nil);
ApdFaxJobHandler.GetJobHeader(MyJob, JobHeader);
Label1.Caption := 'There are ' + IntToStr(JobHeader.NumJobs) +

' recipients in this file';
ApdFaxJobHandler.Free;

end;
TApdFaxJobHandler Component     773

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

GetRecipient method

function GetRecipient(JobFileName : ShortString;
Index : Integer; var Recipient : TFaxRecipientRec) : Integer;

Provides a TFaxRecipientRec for the specified APJ file.

Use GetRecipient to retrieve a TFaxRecipientRec record from an APJ file.

Since an APJ file can contain several TFaxRecipientRec records, you must specify the index 
of the record you want. JobFileName is the file name of the APJ file that contains the record 
you want. Index is the index of the recipient information to retrieve. Recipient will contain 
the recipient information. The return value will be ecOK if successful, or a non-zero value if 
unsuccessful. Use the ErrorMsg method in AdExcept.pas to convert the return value to a 
text string describing the error.

The following example will return the next scheduled job in an APJ and write some 
information about the job to a TListBox:

var
ApdFaxJobHandler : TApdFaxJobHandler;
Recipient : TFaxRecipientRec;
JobHeader : TFaxJobHeaderRec;
Count : Integer;

begin
ApdFaxJobHandler := TApdFaxJobHandler.Create(nil);
ApdFaxJobHandler.GetJobHeader(MyJob, JobHeader);
Count := JobHeader.NextJob;
ApdFaxJobHandler.GetRecipient('C:\TEST.APJ', Count, Recipient);
ListBox.Items.Add('Job#' + IntToStr(Count));
ListBox.Items.Add(' Scheduled for ' +

DateTimeToStr(Recipient.SchedDT));
ListBox.Items.Add(' To : ' + Recipient.HeaderRecipient);
ListBox.Items.Add(' Fax# : ' + Recipient.PhoneNumber);
ApdFaxJobHandler.Free;

end;
74     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

GetRecipientStatus method

function GetRecipientStatus(
JobFileName: ShortString; JobNum : Integer) : Integer;

Returns the status flag for a specific recipient.

Use GetRecipientStatus to retrieve the status flag for a specific recipient. JobFileName is the 
name of the APJ to query. JobNum is the index of the recipient. The return value is one of 
the following values:

MakeJob method

procedure MakeJob(FaxFileName, CoverFile, JobName, Sender,
JobFileName : ShortString; RecipientInfo : TFaxRecipientRec);

TFaxRecipientRec = packed record
Status : Byte
JobID : Byte;
SchedDT : TDateTime;
AttemptNum : Byte;
LastResult : Word;
PhoneNumber : String[50];
HeaderLine : String[100];
HeaderRecipient : String[30];
HeaderTitle : String[30];
Padding : Array[228..256] of Byte;

end;

Creates a fax job file containing a single recipient.

Call MakeJob to create a file in the Async Professional Job format. FaxFileName is the name 
of the fax file in APF format. CoverFile is the name of the cover page file in text format. 
JobName is the friendly name of the fax job. Sender is the name of the sender. 

Name Value Description

stNone 0 Fax job not sent

stPartial 1 Fax job being sent

stComplete 2 Fax job sent

stPaused 3 This job is paused
TApdFaxJobHandler Component     775

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

JobFileName is the name of the resulting APJ file. RecipientInfo is the information about the 
recipient for this fax job. The following example demonstrates how to use MakeJob to create 
a fax file ready for submission to a TApdFaxServerManager:

var
ApdFaxJobHandler : TApdFaxJobHandler;
Recipient : TFaxRecipientRec;

begin
FillChar(Recipient, SizeOf(TFaxRecipientRec),#0);
Recipient.SchedDT := Now;
Recipient.PhoneNumber := '1 719 471 9091';
Recipient.HeaderLine := 'Fax to $R $D $T';
Recipient.HeaderRecipient := 'TurboPower';
Recipient.HeaderTitle := 'Info to TurboPower';
ApdFaxJobHandler := TApdFaxJobHandler.Create(nil);
ApdFaxJobHandler.MakeJob(

'C:\DEFAULT.APF','C:\COVER.TXT', 'Info to TurboPower',
'John Doe', 'C:\FAXES\INFO1.APJ', Recipient);

ApdFaxJobHandler.Free;
end;

ResetAPJPartials method

procedure ResetAPJPartials(JobFileName: ShortString);

Resets all stPartial status flags to stNone.

This method is used to reset all recipients that have a status flag of stPartial. All recipient 
flags that are stPartial are changed to stNone. JobFileName is the name of the APJ to modify.

ResetAPJStatus method

procedure ResetAPJStatus(JobFileName: ShortString);

Resets all status flags in an APJ to stNone

This method is used to reset all recipient status flags to stNone, regardless of their current 
value. JobFileName is the name of the APJ to modify.
76     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ResetRecipientStatus method

procedure ResetRecipientStatus(
JobFileName: ShortString; JobNum, NewStatus: Byte);

Resets individual recipient with new status, updates job header

This method is used to reset a specific recipient status flag to a new value. JobFileName is the 
name of the APJ to modify. JobNumb is the index of the recipient whose status flag should 
be changed. NewStatus is the value to which the status flag should be changed. Status flags 
can be one of the following values:

RescheduleJob method

procedure RescheduleJob(JobFileName : ShortString;
JobNum : Integer; NewSchedDT : TDateTime; ResetStatus: Boolean);

Reschedules a recipient and updates the job header

The RescheduleJob method reschedules a specific recipient in an APJ to a new scheduled 
time. JobFileName is the name of the APJ to modify. JobNum is the index of the recipient to 
modify. NewSchedDT is the TDateTime representing the new scheduled date/time. 
ResetStatus determines whether the recipient’s status flag is reset to stNone or not.

Name Value Description

stNone 0 Fax job not sent

stPartial 1 Fax job being sent

stComplete 2 Fax job sent

stPaused 3 This job is paused
TApdFaxJobHandler Component     777

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

ShowFaxJobInfoDialog method

function ShowFaxJobInfoDialog(
JobFileName : ShortString) : TModalResult;

Provides a dialog displaying fax job information.

Call the ShowFaxJobInfoDialog method to display a dialog containing information about 
the specified fax job file. JobFileName is the filename of the APJ file to show. The return 
value will be mrOK if OK was pressed. If the dialog was closed in some other manner, the 
return value will be mrCancel.

The TFaxJobHeaderRec information is displayed at the top of the dialog, and the 
TFaxRecipientRec information is displayed at the bottom. Since several TFaxRecipientRec 
structures can be in a single APJ file, navigation buttons are provided. Changes made to the 
editable controls can be applied without closing the dialog by clicking Apply. Accept the 
changes by clicking the OK, and cancel any changes by clicking Cancel. Note that changes 
that have been applied will be in effect even though the dialog box has been cancelled.
78     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdFaxServer Component
The TApdFaxServer component is the faxing engine for the Fax Server Components. It 
handles the physical communication with the fax modem to send and receive faxes. Since 
this component can both transmit and receive faxes, it shares many properties with the 
ApdSendFax and ApdReceiveFax components. See “Receiving and Sending Faxes with 
TApdFaxServer” in the Developer’s Guide for step-by-step instructions. 

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomAbstractFax (AdFax)

TApdCustomFaxServer (AdFaxSrv)

TApdFaxServer (AdFaxSrv)

Properties
AnswerOnRing

BlindDial

BufferMinimum

BytesTransferred

ComPort

ConstantStatus

CurrentPage

CurrentRecipient

CurrentJobFileName

CurrentJobNumber 

DelayBetweenSends

DesiredBPS

DesiredECM

DestinationDir

DialAttempt

DialAttempts

DialPrefix

DialWait

EnhFont

EnhHeaderFont

EnhTextEnabled

ExitOnError

FaxClass

FaxFile

FaxFileExt

FaxLog

FaxNameMode

FaxPrinter

FaxProgress

HangupCode

InitBaud

MaxSendCount

ModemBPS

ModemChip

ModemECM

ModemInit

ModemModel

ModemRevision

Monitoring

NormalBaud

PageLength

PrintOnReceive

RemoteID

SafeMode

SendQueryInterval

ServerManager

SessionBPS

SessionECM

SessionResolution

SessionWidth

SoftwareFlow

StationID

StatusDisplay

StatusInterval
TApdFaxServer Component     779

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
SupportedFaxClasses

TapiDevice

ToneDial

TotalPages

! Version

Methods
CancelFax ForceSendQuery StatusMsg

Events
OnFaxServerAccept

OnFaxServerFatalError

OnFaxServerFinish

OnFaxServerName

OnFaxServerPortOpenClose

OnFaxServerLog

OnFaxServerStatus
80     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

AnswerOnRing property

property AnswerOnRing : Word

Default: 1

Determines the number of rings before a call is answered. 

AnswerOnRing is the number of “RING” responses allowed before the incoming call is 
answered. The default is one ring. Values less than or equal to zero are treated the same as 
one ring.

BlindDial property

property BlindDial : Boolean

Default: False

Allows a fax to be sent regardless of whether the modem detects a dial tone. 

If BlindDial is True, a different initialization sequence is sent to the modem before a fax is 
sent (ATX3 is sent instead of ATX4). This initialization sequence allows the modem to use a 
phone line, even if it can’t detect a dial tone.

BufferMinimum property

property BufferMinimum : Word

Default: 1000

Defines the minimum number of bytes that must be in the output buffer before 
TApdFaxServer yields control. 

Once started, a fax transmit session must have a constant supply of data to transmit. Lack of 
data to transmit is referred to as a data underflow condition and usually results in a failed fax 
session. Because Windows is a multi-tasking environment, the server tries to fill the output 
buffer as full as possible before yielding control. BufferMinimum is the minimum number of 
output bytes that must be in the output buffer before the server yields.
TApdFaxServer Component     781

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

If your program is operating among programs that aren’t functioning properly or other 
conditions that might result in long periods where it isn’t given a chance to run, increasing 
BufferMinimum decreases the chance of a data underflow error.

An attempt to set BufferMinimum to more than the OutSize property of TApdComPort 
is ignored.

See also: MaxSendCount, SafeMode

BytesTransferred read-only, run-time property

property BytesTransferred : Boolean

The number of bytes received or transmitted so far for the current page. 

BytesTransferred can be used by an OnFaxStatus event handler to get the number of bytes 
received or transferred so far. The appropriate time to check BytesTransferred is when 
FaxProgress equals fpSendPage or fpGetPage. At other times, it is either zero or a value 
associated with the previous page.

See also: CurrentPage, PageLength, TotalPages

CancelFax method

procedure CancelFax;

Cancels the current fax session. 

CancelFax cancels the fax session, regardless of its current state. When appropriate, a cancel 
command is sent to the local modem or the remote fax device. The fax component generates 
an OnFaxFinish event with the error code ecCancelRequested, then cleans up and 
terminates. It also attempts to put the faxmodem back “onhook” (i.e., ready for the next 
call).

The following example shows how to cancel a fax from a fax status dialog:

procedure TStandardDisplay.CancelClick(Sender : TObject);
begin

ApdSendFax1.CancelFax;
end;

See also: OnFaxError, OnFaxFinish
82     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ComPort property

property ComPort : TApdCustomComPort

Determines the port to be used by the fax engine. 

ComPort is the ApdComPort to be used by the fax engine. If the TapiMode property of the 
ApdComPort is tmOn, and a TApdTapiDevice is assigned to the TapiDevice property, TAPI 
will be used to configure and open the modem. If the TapiMode is tmOff, the port will be 
opened directly. See the section titled “Fax sessions and the TApdComPort” on page 702 for 
information regarding TApdComPort property settings required for faxing.

ConstantStatus property

property ConstantStatus : Boolean

Default: False

Determines whether status events are generated as soon as Monitoring is enabled. 

When transmitting faxes, the time to display status events is clear. While there are faxes to 
transmit, status should be displayed; when there are no more faxes to transmit, the fax 
session is over. The issue is less clear when receiving faxes because TApdFaxServer is often 
waiting for faxes with no real status information to display.

If ConstantStatus is False (the default), the first status event is generated when an incoming 
ring is detected. The last status event is generated at the conclusion of the receipt of the fax. 
While TApdFaxServer is waiting for the next incoming call, no status events are generated. 
Status events are generated again when the next incoming ring is detected. This continues 
until CancelFax is called or a fatal error occurs.

If ConstantStatus is True, the first status event is generated as soon as StartReceive is called. 
The last status event is generated only after CancelFax is called or a fatal error occurs.

See also: Monitoring, OnFaxServerStatus

CurrentJobFileName read-only, run-time property

property CurrentJobFileName : ShortString

Contains the file name of the fax job file being sent.

CurrentJobFileName contains the file name of the fax job file currently being sent. You can 
use this value for status or logging purposes. The value of this property will be maintained 
until another fax is sent.
TApdFaxServer Component     783

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

CurrentJobNumber read-only, run-time property

property CurrentJobNumber : Integer

Contains the index into the fax job file of the recipient being processed.

CurrentJobNumber contains the 0-based index into the fax job file (from the 
CurrentJobName property). For single-recipient fax jobs, this value will be 0. You can use 
this value for status or logging purposes. The value of this property will be maintained until 
another fax is sent.

CurrentPage read-only, run-time property

property CurrentPage : Word

The page number of the page currently being received or transmitted. 

CurrentPage can be used by an OnFaxStatus event handler to get the number of the page 
currently being received or transmitted. The appropriate time to check CurrentPage is when 
FaxProgress equals fpSendPage or fpGetPage. At other times, it is either zero or a value 
associated with the previous page.

See also: BytesTransferred, PageLength, TotalPages

CurrentRecipient read-only, run-time property

property CurrentRecipient : TFaxRecipientRec

TFaxRecipientRec = packed record
Status : Byte;
JobID : Byte;
SchedDT : TDateTime;
AttemptNum : Byte;
LastResult : Word;
PhoneNumber : String[50];
HeaderLine : String[100];
HeaderRecipient : String[30];
HeaderTitle : String[30];
Padding : Array[228..256] of Byte;

end;

The TFaxRecipientRec containing recipient information about the current outbound fax. 

CurrentRecipient contains information about the fax currently being sent. You can use the 
fields of this record for status or logging purposes. The TFaxRecipientRec of the last job will 
be maintained in this property until another fax is sent.
84     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

DelayBetweenSends property

property DelayBetweenSends : Word

Allows a minimum delay between fax transmissions.

DelayBetweenSends is the number of clock ticks to delay before beginning another fax 
transmission. If the SendQueryInterval property is non-zero, the ApdFaxServerManager 
will be queried for the next fax job at the end of each fax transmission. Some phone systems 
require several seconds between calls to reset the line. Set this property to the tick-count 
required by your phone system.

DesiredBPS property

property DesiredBPS : Word

Default: 9600

Determines the highest fax bps rate to negotiate for the next fax session. 

DesiredBPS limits the fax bps rate for subsequent fax sessions. Although many faxmodems 
support higher bps rates (12000 and 14400), DesiredBPS defaults to 9600 for more reliable 
fax sessions and higher quality faxes because the slightly lower baud rate makes lines errors 
less likely.

Changing DesiredBPS during a fax session has no effect on the current session.

See also: ModemBPS, SessionBPS

DesiredECM property

property DesiredECM : Boolean

Default: False

Determines whether fax sessions attempt to use error control. 

The fax protocol contains an optional error control facility that allows modems to detect 
and correct some transmission errors. Since very few faxmodems support fax error 
control, DesiredECM defaults to False, meaning the faxmodems do not attempt to negotiate 
error control.

See also: ModemECM, SessionECM
TApdFaxServer Component     785

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

DestinationDir property

property DestinationDir : string

Default: Empty string

Determines the directory for incoming fax files. 

There are two ways to indicate the directory for storing incoming fax files. If an 
OnFaxServerName event handler is used, it can return the fully qualified name (i.e., 
including drive and directory). If an OnFaxServerName event handler does not return the 
fully qualified name, or one of the automatic fax naming methods is used, DestinationDir 
can be set to the name of the desired directory.

If DestinationDir is empty and the OnFaxServerName event handler doesn’t return a fully 
qualified file name, incoming files are stored in the current directory.

See also: OnFaxServerName

DialAttempt read-only, run-time property

property DialAttempt : Word

Indicates the number of times the current fax number has been dialed. 

If the dialed fax number is busy, TApdSendFax waits briefly and calls the number again. It 
tries up to DialAttempts times. The DialAttempt property returns the number of the current 
attempt. DialAttempt is incremented immediately upon encountering a busy line.

See also: DialAttempts, DialRetryWait

DialAttempts property

property DialAttempts : Word

Determines the number of times the fax number is dialed. 

This is the number of times a fax call is attempted; it is not the number of retries. When 
DialAttempts dial operations are attempted without connection or successful fax 
transmission, the fax is considered a failure, and the fax job file is marked as such. The 
OnFaxServerFinish event will fire to provide notification of this, but the OnFaxFatalError 
event will not fire.
86     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

DialPrefix property

property DialPrefix : TModemString

TModemString = string[40];

The optional dial prefix. 

DialPrefix specifies an optional dial prefix that is inserted in the dial command between 
“ATDT” and the number to dial. If your telephone system requires special numbers or codes 
when dialing out, you can specify them once here rather than in every fax number.

Do not include “ATD” or a ‘T’ or ‘P’ tone/pulse modifier in the dial prefix. “ATD” is 
automatically prefixed by StartTransmit and the ‘T’ or ‘P’ is controlled by ToneDial.

See also: ToneDial

DialWait property

property DialWait : Word

Default: 60

The number of seconds to wait for a connection after dialing the number. 

This property determines how many seconds to wait after dialing the receiver’s phone 
number. If the receiver does not answer within this time, the OnFaxServerFinish event will 
fire and return an error code of ecFaxNoAnswer.

See also: OnFaxServerFinish 

EnhFont property

property EnhFont : TFont

Determines the font used to convert cover pages. 

If EnhTextEnabled is True, the font specified by EnhFont is used by TApdFaxServer to 
convert the cover page. Any font available to Windows can be used (double click on the 
property to invoke the font dialog and see a list of the fonts). Only one font can be used for a 
document (i.e., font sizes and types cannot be mixed within a single cover page).

There is an upper limit on the size of the font, but this limit is not typically reached unless a 
very large font is used (e.g., greater than 72 pt). If the limit is exceeded, an ecEnhFontTooBig 
error occurs during the conversion process.

See also: EnhTextEnabled
TApdFaxServer Component     787

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

EnhHeaderFont property

property EnhHeaderFont : TFont

Determines the font used to convert the fax header. 

If EnhTextEnabled is True, the font specified by EnhHeaderFont is used by TApdFaxServer 
to convert the fax header. Any font available to Windows can be used (double click on the 
property to invoke the font dialog and see a list of the fonts).

There is an upper limit on the size of the font, but this limit is not typically reached unless a 
very large font is used (e.g., greater than 72 pt). If the limit is exceeded, an ecEnhFontTooBig 
error occurs during the conversion process.

See also: EnhTextEnabled

EnhTextEnabled property

property EnhTextEnabled : Boolean

Default: False

Determines whether TApdFaxServer uses the default font. 

If EnhTextEnabled is True, the enhanced text-to-fax converter is used by ApdFaxSever when 
converting fax headers and text cover pages. This means that the font specified by EnhFont 
is used to convert the cover page and the font specified by EnhHeaderFont is used to convert 
the fax header.

The converter makes no attempt to keep all text on the page when the size of the font is 
changed. Ensure that the cover page line length and document length fit on the page in the 
desired font.

See also: EnhFont, EnhHeaderFont

ExitOnError property

property ExitOnError : Boolean

Determines what happens when an error occurs during a fax transmit or receive.

If ExitOnError is True, all fax operations are stopped if any error occurs while sending or 
receiving. Monitoring for incoming faxes and automatic querying for faxes to send is halted 
until explicitly re-started. If ExitOnError is False, faxing operations will continue if non-
fatal errors occur. Fatal errors, such as ecBadResponse, will still stop all fax operations and 
cause the OnFaxServerFatalError event to fire.
88     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

FaxClass property

property FaxClass : TFaxClass

TFaxClass = (
fcUnknown, fcDetect, fcClass1, fcClass1_0, fcClass2, fcClass2_0);

Default: fcDetect

Indicates whether the faxmodem is used as Class 1, Class 1.0, Class 2, or Class 2.0. 

If FaxClass is fcDetect (the default), TApdFaxServer determines what classes the modem 
supports and enables the highest class. If you set FaxClass to a specific class, no attempt is 
made to determine if the class you request is supported by the faxmodem.

See also: SupportedFaxClasses

FaxFile read-only, run-time property

property FaxFile : string

The name of the fax file currently being transmitted or received. 

If you are sending a single fax, set FaxFile to the name of the file. If you are sending multiple 
fax files, you must implement an OnFaxNext event handler. FaxFile is automatically set to 
the fax file returned by your event handler.

FaxFile can be used with status and logging routines to return the name of the fax file 
currently being transmitted or received.

See also: TApdSendFax.CoverFile, TApdSendFax.OnFaxNext, 
TApdSendFax.PhoneNumber

FaxFileExt property

property FaxFileExt : string

Default: “APF”

The default extension assigned to incoming fax files. 

By default, all incoming fax files created by the two built-in methods of naming faxes use a 
file extension of APF. You can change the extension assigned to incoming files by setting 
FaxFileExt to the new desired extension.

See “Naming incoming fax files” on page 754 for more information.

See also: FaxNameMode
TApdFaxServer Component     789

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

FaxLog property

property FaxLog : TApdFaxLog

An instance of a fax logging component. 

If FaxLog is nil (the default), the fax component does not perform automatic logging. You 
can install an OnFaxServerLog event handler to perform logging in this case.

If you create an instance of (or a descendant of) a TApdFaxLog class (see page 828), and 
assign it to FaxLog, the fax component will call the log component’s UpdateLog method 
automatically.

FaxNameMode property

property FaxNameMode : TFaxNameMode

TFaxNameMode = (fnNone, fnCount, fnMonthDay);

Default: fnCount

Determines how an incoming fax is named.

TApdFaxServer must assign a file name to incoming fax files. This property differs from the 
TApdReceiveFax component’s property somewhat. If FaxNameMode is fnNone, you must 
supply an OnFaxServerName event to provide a file name for the incoming file; otherwise, 
the incoming fax file will not be saved. If FaxNameMode is fnCount or fnMonthDay, the fax 
name will follow the naming conventions of the TApdReceiveFax. OnFaxServerName event 
will be generated only if FaxNameMode is fmNone.

See also: TApdReceiveFax.FaxNameMode

FaxPrinter property

property FaxPrinter : TApdCustomFaxPrinter

The TApdCustomFaxPrinter to use for automatic fax printing.

If PrintOnReceive is True, this instance of a TApdCustomFaxPrinter will be used to 
automatically print received faxes.

See also: PrintOnReceive
90     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

FaxProgress read-only, run-time property

property FaxProgress : Word

Returns a code that indicates the current state of the fax session. 

This property is most useful within an OnFaxServerStatus event handler. See “Fax status” 
on page 707 for more information.

See also: OnFaxServerStatus

ForceSendQuery method

procedure ForceSendQuery;

Provides a mechanism for manually querying for scheduled fax jobs.

The ForceSendQuery method allows you to manually request fax jobs from the 
TApdFaxServerManager component. The TApdFaxServerManager provides outbound 
faxes automatically every SendQueryInterval seconds, or on demand with the 
ForceSendQuery method. If a fax job is scheduled to be sent when this method is called, it 
will be processed and sent.

See also: SendQueryInterval

HangupCode read-only, run-time property

property HangupCode : Word

The hangup code for a Class 2 or 2.0 fax transfer. 

When a Class 2 or 2.0 faxmodem session terminates abnormally, it returns a hangup code to 
help explain what went wrong. Although these codes refer to low-level portions of the 
faxmodem link over which you have no control, sometimes they can point out a 
programming error that you can correct.

The following table shows the codes that can be returned (in hexadecimal), with a brief 
description of each one. The codes are grouped according to the transfer phase in which 
they can occur. Some of the terms in the table are defined only in the Class 2 and 2.0 
specification. Refer to that specification for more information.

Hangup Code Description

Call placement and termination

00 Normal end of connection

01 Ring detect without successful handshake

02 Call aborted from +FKS or <Can>

03 No loop current
TApdFaxServer Component     791

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
04 Ringback detected, no answer timeout

05 Ringback detected, answer without CED

Transmit phase A

10 Unspecified phase A error

11 No answer

Transmit phase B

20 Unspecified phase B error

21 Remote cannot receive or send

22 COMREC error in transmit phase B

23 COMREC invalid command received

24 RSPREC error

25 DCS sent three times without response

26 DIS/DTC received three times; DCS not recognized

27 Failure to train at 2400 bps or +FMS error

28 RSPREC invalid response received

Transmit phase C

40 Unspecified transmit phase C error

41 Unspecified image format error

42 Image conversion error

43 DTE to DCE data underflow

44 Unrecognized transparent data command

45 Image error, line length wrong

46 Image error, page length wrong

47 Image error, wrong compression code

Transmit phase D

50 Unspecified transmit phase D error

51 RSPREC error

52 MPS sent three times without response

53 Invalid response to MPS

54 EOP sent three times without response

55 Invalid response to EOP

56 EOM sent three times without response

57 Invalid response to EOM

Hangup Code Description
92     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

InitBaud property

property InitBaud : Integer

Default: 0

Determines the initialization baud rate for modems that require different baud rates for 
initialization and fax operations. 

Some older 24/96 faxmodems (2400 data, 9600 fax) require that the initialization 
commands be sent at 2400 baud, but that all fax commands and fax data be sent and 
received at 19200. The fax software must constantly adjust the current baud rate depending 
on the operation it is performing.

58 Unable to continue after PIN or PIP

Receive phase B

70 Unspecified receive phase B error

71 RSPREC error

72 COMREC error

73 T.30 T2 timeout, expected page not received

74 T.30 T1 timeout after EOM received

Receive phase C

90 Unspecified receive phase C error

91 Missing EOL after 5 seconds

92 Bad CRC or frame (ECM mode)

93 DCE to DTE buffer overflow

Receive phase D

100 Unspecified receive phase D error

101 RSPREC invalid response received

102 COMREC invalid response received

103 Unable to continue after PIN or PIP

Hangup Code Description
TApdFaxServer Component     793

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Since most faxmodems do not require a special initialization baud rate, InitBaud defaults to 
zero, which means that no baud rate switches are performed. If you encounter an older 
modem that requires this behavior, set InitBaud to 2400.

NormalBaud is a companion property to InitBaud. When InitBaud is non-zero, the fax 
components switch to the specified baud rate when sending initialization commands and 
switch back to the normal baud rate, 19200, when sending fax commands or fax data. If you 
encounter a case where the normal baud rate should be something other than 19200, you 
must change NormalBaud.

See also: NormalBaud

MaxSendCount property

property MaxSendCount : Word

Default: 50

Determines the maximum number of raster lines TApdFaxServer sends before 
yielding control. 

MaxSendCount prevents TApdFaxServer from completely taking over the CPU. It provides 
a balance to BufferMinimum back towards sharing the CPU among all tasks. 
MaxSendCount overrides BufferMinimum and forces TApdFaxServer to yield after sending 
MaxSendCount raster lines, even if the output buffer contains less than BufferMinimum 
bytes. The risk, of course, is that yielding too soon may result in a data underflow error.

The default values for BufferMinimum and MaxSendCount provide the best combination of 
cooperative multi-tasking and avoidance of data underflow. You should not alter these 
values unless fax sessions are failing due to data underflow errors.

See also: BufferMinimum, SafeMode
94     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ModemBPS read-only, run-time property

property ModemBPS : LongInt

Returns the highest bps rate supported by the faxmodem. 

When you reference ModemBPS, commands are sent to the modem to determine its highest 
bps rate. This works only for Class 2 and 2.0 modems; a Class 1 and Class 1.0 modems 
cannot report this information until a fax connection has been established.

ModemBPS works by attempting to enable the most capable modem features and stepping 
down if the modem returns “ERROR.” It starts at a 14400 bps transfer rate, then tries 12000, 
9600, 7200, 4800, and 2400.

The technique used by ModemBPS works on most Class 2 and 2.0 faxmodems. One 
low-cost, no-name-clone faxmodem we tested wouldn’t return “ERROR” no matter what 
was asked of it, even though it supported only 9600 bps with no error correction.

See also: ModemECM

ModemChip read-only, run-time property

property ModemChip : string

Returns the type of chip for a Class 2 or 2.0 faxmodem. 

When you reference ModemChip, commands are sent to the modem to determine the type 
of chip. This works only for Class 2 and 2.0 modems. ModemChip is an empty string for a 
Class 1 and Class 1.0 modems.

See also: ModemModel, ModemRevision

ModemECM read-only, run-time property

property ModemECM : Boolean

Indicates whether the faxmodem supports error correction. 

When you reference ModemECM, commands are sent to the modem to determine whether 
it supports error correction. This works only for Class 2 and 2.0 modems; a Class 1 and 
Class 1.0 modem cannot report this information until a fax connection has been 
established.

The technique used by ModemECM works on most Class 2 and 2.0 faxmodems. But be 
advised, one low-cost, no-name-clone faxmodem tested wouldn’t return “ERROR” no 
matter what was asked of it, even though it supported only 9600 bps with no 
error correction.

See also: ModemBPS
TApdFaxServer Component     795

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

ModemInit property

property ModemInit : TModemString

TModemString = string[40];

A custom modem initialization string. 

If you assign a custom modem initialization string to ModemInit, Async Professional always 
sends this string to the modem just before it sends its own DefInit string 
(“ATE0Q0V1X4S0=0”). This occurs whenever you call StartTransmit, StartReceive, or 
InitModemForFaxReceive.

Note that the DefInit string may override certain actions of the ModemInit string. This is 
necessary for proper operation of the Async Professional fax routines.

ModemModel read-only, run-time property

property ModemModel : string

Returns the model for a Class 2 or 2.0 faxmodem. 

When you reference ModemModel, commands are sent to the modem to determine the 
model. This works only for Class 2 and 2.0 modems. ModemModel is an empty string for a 
Class 1 and Class 1.0 modems.

See also: ModemChip, ModemRevision

ModemRevision read-only, run-time property

property ModemRevision : string

Returns the revision for a Class 2 or 2.0 faxmodem. 

When you reference ModemRevision, commands are sent to the modem to determine the 
revision. This works only for Class 2 and 2.0 modems. ModemRevision is an empty string 
for a Class 1 and Class 1.0 modems.

See also: ModemChip, ModemModel
96     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Monitoring property

property Monitoring : Boolean

Default: False

Determines whether incoming calls are answered.

Set Monitoring to True to begin listening for incoming fax calls. Set Monitoring to False to 
stop listening for incoming calls. Monitoring will cause the TApdFaxServer to wait for faxes 
in the background, occasionally generating OnFaxServerStatus events. Monitoring will 
remain in effect until Monitoring is set to False, or a fatal error occurs and the 
OnFaxServerFatalError event fires.

NormalBaud property

property NormalBaud : Integer

Default: 0

Determines the normal baud to use for modems that require different baud rates for 
initialization and fax operations. 

NormalBaud isn’t needed unless the faxmodem requires separate baud rates for 
initialization commands and the baud rate required for normal fax operations is not 19200. 
See the InitBaud property on page 724 for a complete description of the operation of 
InitBaud and NormalBaud.

See also: InitBaud

OnFaxServerAccept event

property OnFaxServerAccept : TFaxAcceptEvent

TFaxAcceptEvent = procedure(
CP : TObject; var Accept : Boolean) of object;

Defines an event handler that is called at the beginning of the receive fax session after the 
station ID of the caller is received.
TApdFaxServer Component     797

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

This event provides an opportunity to accept or reject an incoming fax. If an 
OnFaxServerAccept event handler is not provided, all faxes are accepted. CP is the 
TApdFaxServer that is answering the call. Set Accept to True to accept the fax, False to reject 
it. When this event is generated, the only information known about the incoming fax is the 
station ID. So, the typical application for this event is to accept or reject faxes based on the 
station ID. For example, you can filter junk faxes by accepting only faxes coming from 
known station IDs.

See “Accepting fax files” on page 754 for more information.

OnFaxServerFatalError event

property OnFaxServerFatalError : TFaxServerFatalErrorEvent

TFaxServerFatalErrorEvent = procedure(
CP : TObject; FaxMode : TFaxServerMode; ErrorCode,
HangupCode : Integer) of object;

TFaxServerMode = (fsmIdle, fsmSend, fsmReceive);

Defines an event handler that is called when a fatal error occurs during fax transmission or 
reception.

This event is generated only for unrecoverable errors. Most fax errors caused by line noise 
are handled automatically by the fax devices and are not reported through this event 
handler.

CP is the TApdFaxServer that generated the event. FaxMode is the direction of the fax. 
ErrorCode is a number indicating the type of error reported by the component. 
HangupCode is the number indicating the reason for hang-up as reported by a Class2 or 
Class 2.0 faxmodem. Class 1 and Class 1.0 modems will always return 0 for HangupCode.

Non-fatal errors, such as ecOK, ecFaxBusy, or ecCancelRequested will not cause this event 
to be generated.

If ExitOnError is True, Monitoring is set to False suspending further reception, and 
SendQueryInterval is set to 0 suspending further querying for new fax jobs. If this event 
fires, some form of intervention is required, such as re-initializing the modem.
98     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnFaxServerFinish event

property OnFaxServerFinish : TFaxServerFinishEvent

TFaxServerFinishEvent = procedure(
CP : TObject; FaxMode : TFaxServerMode;
ErrorCode : Integer) of object;

TFaxServerMode = (fsmIdle, fsmSend, fsmReceive);

Defines an event handler that is called when a fax call ends.

This event is generated at the end of each successful fax transmission or reception. CP is the 
TApdFaxServer that generated the event. FaxMode is the direction of the fax. ErrorCode is a 
number indicating the result of the fax, which could be ecOK, ecCancelRequested, or 
ecFaxBusy. Further fax send and receive operations will continue based on the values of 
Monitoring and SendQueryInterval.

OnFaxServerLog event

property OnFaxServerLog : TFaxLogEvent

TFaxLogEvent = procedure(
CP : TObject; LogCode : TFaxLogCode) of object;

TFaxLogCode = (lfaxNone, lfaxTransmitStart, lfaxTransmitOK,
lfaxTransmitFail, lfaxReceiveStart, lfaxReceiveOK,
lfaxReceiveSkip, lfaxReceiveFail);

Defines an event handler that is called at designated points during a fax transfer. 

The primary purpose of this event is to allow you to log statistical information about fax 
transfers. For example, you could log the transfer time and whether the transfer succeeded 
or failed. You can also use this event for start-up and cleanup activities.

CP is the fax component to be logged. LogCode is a code that indicates the state of the fax 
transfer. The possible states are listed in “Fax logging” on page 712. No other information is 
passed with this event, but you can use the fax status properties such as CurrentRecipient to 
get additional information about the fax session.
TApdFaxServer Component     799

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

OnFaxServerName event

property OnFaxServerName : TFaxNameEvent

TFaxNameEvent = procedure(
CP : TObject; var Name : TpassString) of object;

Defines an event handler that is called to return a file name for an incoming fax.

The fax receive protocol does not include file name information, so the receiving software 
must generate file names (see FaxNameMode) or you can generate the file name in an 
OnFaxServerName event handler. If the FaxNameMode property is fnCount or 
fnMonthDay, this event will not be generated. If FaxNameMode is fnNone this event will be 
generated. If this event is not defined and FaxNameMode is fnNone, the fax will not be 
saved.

OnFaxServerPortOpenClose event

property OnFaxServerPortOpenClose : TFaxServerPortOpenCloseEvent

TFaxServerPortOpenCloseEvent = procedure(
CP : Tobject; Opening : Boolean) of object;

Defines an event handler that is called when the physical communications port is opened 
and closed.

This event is generated when the physical communications port is opened or closed. The 
primary purpose of this event is notification, but it can also be used to access the port prior 
to the fax being generated. The fax will not continue until this event exits. If a TapiDevice is 
defined, this event will fire when TAPI hands an open communications port to the 
application.

OnFaxServerStatus event

property OnFaxServerStatus : TFaxServerStatusEvent

TFaxServerStatusEvent = procedure(CP : TObject;
FaxMode : TFaxServerMode; First, Last : Boolean;
Status : Word) of object;

Defines an event handler that is called regularly during a file transfer. 

This event is generated at StatusInterval intervals during the entire fax session and after the 
completion of each major operation (e.g. incoming ring detected, remote station ID 
received).

You can use this event to update a status display that informs the user about the fax progress.
00     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

CP is the TApdFaxServer component that generated the event. FaxMode is the direction of 
the fax. First is True on the first call to the handler for the given FaxMode, False otherwise. 
Last is True on the last call to the handler for the given FaxMode, False otherwise. Status is 
the value of the FaxProgress property at the time the event was generated. 

A predefined status component called TApdFaxStatus is supplied with Async Professional. If 
you don’t want to write an OnFaxServerStatus event handler, you can use this standard fax 
status window. Just create an instance of TApdFaxStatus and assign it to the StatusDisplay 
property of the TApdFaxServer.

See also: StatusDisplay, StatusInterval

PageLength read-only, run-time property

property PageLength : LongInt

The total number of bytes in the current page. 

PageLength is valid only when you are sending a fax. When receiving a fax, the total size of 
the page is not known in advance, so PageLength is zero.

PageLength can be used by an OnFaxStatus event handler to get the total number of bytes in 
the current page. The appropriate time to check PageLength is when FaxProgress equals 
fpSendPage or fpGetPage. At other times, it is either zero or a value associated with the 
previous page.

See also: BytesTransferred, CurrentPage, TotalPages

PrintOnReceive property

property PrintOnReceive : Boolean

Default: False

Determines whether incoming faxes are automatically printed upon completion.

If PrintOnReceive is True, received faxes are automatically printed. This property can only 
be True if a TApdCustomFaxPrinter is assigned to the FaxPrinter property. 
TApdFaxServer Component     801

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

RemoteID read-only, run-time property

property RemoteID : TStationID

TStationID = string[20];

The station ID of the remote fax machine. 

RemoteID can be used by an OnFaxServerStatus event handler to get the station ID of the 
remote fax machine. The appropriate time to check RemoteID is when FaxProgress equals 
fpGotRemoteID. Before that, it returns an empty string.

See also: StationID

SafeMode property

property SafeMode : Boolean

Default: True

Determines whether TApdFaxServer should yield during time-critical handshaking 
periods. 

At the beginning and end of every fax page, TApdFaxServer performs time-critical 
handshaking with the receiving fax device, where tolerance for delays is very low. Delays as 
small as a few hundred milliseconds can cause the receiver to believe the page transfer failed.

When SafeMode is True (the default), TApdFaxServer does not yield during these periods. 
While this is the safest possible mode of operation, it will result in apparent brief periods of 
unresponsiveness to the user. That is, they won’t be able to switch to another application or 
cancel the fax transfer until the critical handshaking is over. Fortunately, the time-critical 
period lasts only 1-3 seconds, so this should rarely be a problem.

SendQueryInterval property

property SendQueryInterval : Word

Default: 30

Determines the number of seconds between querying the TApdFaxServerManager for new 
fax jobs.

When a fax is not being received or transmitted, the TApdFaxServerManager component 
will be queried for fax transmission jobs that are scheduled, or in the queue to be scheduled. 
Set this property to 0 to disable automatic querying. When a send or receive operation is 
complete, the TApdFaxServerManager will be queried, and the interval will be reset.
02     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

ServerManager property

property ServerManager : TApdFaxServerManager

The TApdFaxServerManager that supplies fax jobs.

Assign a TApdFaxServerManager component to this property to allow the TApdFaxServer 
to automatically query for scheduled fax jobs. 

SessionBPS read-only, run-time property

property SessionBPS : Word

The negotiated transfer rate in bits per second. 

SessionBPS can take on the values 14400, 12000, 9600, 7200, 4800, and 2400. Most 
faxmodems now support 9600 or higher. The fax connection process attempts to negotiate 
the highest possible rate unless you have set DesiredBPS to limit the highest rate.

SessionBPS can be used by an OnFaxServerStatus event handler to get the negotiated 
transfer rate. The appropriate time to check SessionBPS is when FaxProgress equals 
fpSessionParams. Before that, it is undefined.

Session parameters can change more than once during a single session. Be sure that your 
OnFaxServerStatus event handler updates its parameter display each time FaxProgress 
returns the value fpSessionParams.

See also: DesiredBPS, SessionECM, SessionResolution, SessionWidth

SessionECM read-only, run-time property

property SessionECM : Boolean

Indicates whether automatic error correction is enabled. 

SessionECM is True if automatic error correction is enabled for this transfer, or False if it 
isn’t. Error correction is enabled if both modems support it and DesiredECM is True.

SessionECM can be used by an OnFaxServerStatus event handler to check for automatic 
error correction. The appropriate time to check SessionECM is when FaxProgress equals 
fpSessionParams. Before that, it is undefined.

Session parameters can change more than once during a single session. Be sure that your 
OnFaxServerStatus event handler updates its parameter display each time FaxProgress 
returns the value fpSessionParams.

See also: DesiredECM, SessionBPS, SessionResolution, SessionWidth
TApdFaxServer Component     803

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

SessionResolution read-only, run-time property

property SessionResolution : Boolean

Indicates whether the fax is high resolution or standard resolution. 

SessionResolution is True for a high resolution fax transfer, or False for a standard 
resolution transfer. Async Professional automatically enables high resolution if it is sending 
an APF file that contains high resolution data, or if it is receiving a high resolution fax from a 
remote partner.

SessionResolution can be used by an OnFaxStatus event handler to check for the fax 
resolution. The appropriate time to check SessionResolution is when FaxProgress equals 
fpSessionParams. Before that, it is undefined.

Session parameters can change more than once during a single session. Be sure that your 
OnFaxServerStatus event handler updates its parameter display each time FaxProgress 
returns the value fpSessionParams.

See also: SessionBPS, SessionECM, SessionWidth

SessionWidth read-only, run-time property

property SessionWidth : Boolean

Indicates whether the fax is normal or wide width. 

If SessionWidth is True (the default), the fax is a standard width of 1728 pixels (about 8.5 
inches). If SessionWidth is False, the fax width is 2048 pixels (about 10 inches).

SessionWidth can be used by an OnFaxServerStatus event handler to check the fax width. 
The appropriate time to check SessionWidth is when FaxProgress equals fpSessionParams. 
Before that, it is undefined.

Session parameters can change more than once during a single session. Be sure that your 
OnFaxServerStatus event handler updates its parameter display each time FaxProgress 
returns the value fpSessionParams.

See also: SessionBPS, SessionECM, SessionResolution
04     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

SoftwareFlow property

property SoftwareFlow : Boolean

Default: False

Determines whether the fax components enable/disable software flow control during the fax 
session. 

When using software flow control during a fax session, the flow control must be enabled and 
disabled at various points in the session. Because hardware flow control is more reliable, it is 
used by default and the fax components do not enable/disable software flow control. If you 
need to use software flow control, SoftwareFlow must be set to True.

For more information regarding flow control see “Fax sessions and the TApdComPort” on 
page 702.

StationID property

property StationID : TStationID

TStationID = string[20];

The station ID of the faxmodem. 

A fax device can identify itself to another fax device with a 20 character name, called the 
station ID. The Class 1, Class 1.0, Class 2, and Class 2.0 specifications indicate that the 
station ID should contain just a phone number; therefore they limit it to just the digits 0 
through 9 and space. However, the station ID is frequently used to store an alphabetic name. 
Most faxmodems support this convention by allowing upper and lower case letters, as well 
as other special characters in the station ID. This can cause problems for some fax machines, 
though, since they cannot print these characters.

Async Professional does not filter the characters stored in the station ID. If your software 
must be compatible with the broadest possible range of fax hardware, you may want to limit 
the characters stored in StationID.

This station ID is used on both incoming and outgoing calls.

A fax file stored in APF format also contains a station ID in the file header. This station ID is 
stored when a document is converted to APF format. For more information, see 
“TApdFaxConverter Component” on page 594.

See also: TApdFaxConverter.StationID
TApdFaxServer Component     805

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

StatusDisplay property

property StatusDisplay : TApdAbstractFaxStatus

An instance of a fax status window. 

If StatusDisplay is nil (the default), the fax does not provide an automatic status window. 
You can install an OnFaxServerStatus event handler to display status in this case.

If you create an instance of a class derived from TApdAbstractFaxStatus or use the supplied 
TApdFaxStatus component (see page 826) and assign it to StatusDisplay, the status window 
is displayed and updated automatically.

See also: OnFaxServerStatus

StatusInterval property

property StatusInterval : Word

Default: 1

The maximum number of seconds between OnFaxServerStatus events. 

The OnFaxServerStatus event is generated for each major fax session event (connected, got 
station ID, and so on) and at intervals of StatusInterval seconds.

This property also determines how frequently the StatusDisplay window is updated.

See also: OnFaxServerStatus, StatusDisplay

StatusMsg method

function StatusMsg(const Status : Word) : string;

Returns an English string for a fax status code. 

This routine is intended primarily for use in fax status routines. It returns a status string 
from the string table resource linked into your EXE. The string ID numbers correspond to 
the values of the fpXxx constants (see “Fax status” on page 707). If the string table doesn’t 
contain a string resource with the requested ID, an empty string is returned.

The returned string is never longer than MaxMessageLen (80) characters.
06     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

SupportedFaxClasses read-only, run-time property

property SupportedFaxClasses : TFaxClassSet

TFaxClassSet = set of TFaxClass;

TFaxClass = (
fcUnknown, fcDetect, fcClass1, fcClass1_0, fcClass2, fcClass2_0);

The set of fax classes supported by the faxmodem. 

SupportedFaxClasses is available only at run time because it sends commands to the 
faxmodem to determine what baud rates are supported (when it equals fcDetect).

Initially FaxClass is fcDetect, so that the first reference to it causes the faxmodem 
interrogation. Thereafter, references to SupportedFaxClasses return the known set of 
supported fax classes. You can force the re-interrogation of the faxmodem by setting 
FaxClass to fcDetect.

Generally, applications should use the highest supported class: fcClass2_0, then fcClass2, 
then fcClass1_0, and finally fcClass1.

See also: FaxClass

TapiDevice property

property TapiDevice: TApdCustomTapiDevice

Determines the TAPI device used by the TApdFaxServer.

If TapiDevice is nil (the default), TAPI will not be used to select the device or open the 
physical port.

If the TApdComPort specified in the ComPort property has its TapiMode set to tmAuto or 
tmOn, and a TApdTapiDevice is assigned to the TapiDevice property, TAPI will be used to 
select the device and open the physical port.

ToneDial property

property ToneDial : Boolean

Default: True

Determines whether tone or pulse dialing is used for fax transmissions. 

If ToneDial is True (the default), tone dialing is used. Otherwise, pulse dialing is used. 
Setting ToneDial does not immediately issue a modem command, but determines whether 
‘T’ or ‘P’ is added to the dial command later.
TApdFaxServer Component     807

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

TotalPages read-only, run-time property

property TotalPages : Word

The total number of pages in the current fax. 

TotalPages is valid only when you are sending a fax. When you are receiving a fax, the total 
number of pages is not known in advance, so TotalPages is zero.

TotalPages can be used by an OnFaxStatus event handler to get the total number of bytes 
in the current page. The appropriate time to check TotalPages is when FaxProgress equals 
fpSendPage or fpGetPage. Before that, it is either zero or a value associated with the 
previous page.

See also: BytesTransferred, CurrentPage, PageLength
08     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdFaxServerManager Component
The TApdFaxServerManager component provides fax scheduling and queuing 
capability. The ApdFaxServer component requests new fax jobs periodically (every 
SendQueryInterval seconds) or manually (by calling the ForceSendQuery method). The 
ApdFaxServerManager component checks the MonitorDir folder when queried for fax jobs. 
If the fax job is ready to be sent, the ApdFaxServerManager extracts the fax recipient 
information, cover page, and APF data from the APJ file, and the ApdFaxServer will then 
fax the document to the recipient.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

" TApdFaxJobHandler (AdFxSrv). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

TApdFaxServerManager (AdFxSrv)

Properties
DeleteOnComplete

JobFileExt

MonitorDir

Paused

! Version

Methods
" AddRecipient 

" ConcatFaxes

" ExtractAPF

" ExtractCoverFile 

GetJob 

" GetJobHeader

GetNextFax

" GetRecipient

GetSchedTime

" MakeJob

Reset

" ShowFaxJobInfoDialog

UpdateStatus

Events
OnCustomGetJob OnQueried OnRecipientComplete
TApdFaxServerManager Component     809

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

GetJob method

function GetJob(var Recipient : TFaxRecipientRec;
QueryFrom : TApdCustomFaxServer; var JobFileName, FaxFile,
CoverFile : ShortString) : Boolean; 

Returns the next scheduled fax job.

The GetJob method is the workhorse of the TApdFaxServerManager component. This 
method is used internally by the TApdFaxServer component to query the 
TApdFaxServerManager for the next fax to send. 

Call GetJob to get the next scheduled fax job in the MonitorDir. Recipient will contain the 
TFaxRecipientRec record consisting of the receiver’s data. JobFileName will contain the file 
name of the fax job. FaxFile will contain the file name of the extracted APF that will be faxed. 
CoverFile will contain the file name of the extracted cover file text. The return value will be 
True if a fax job is scheduled to be sent at the time the method is called; False if a fax job is 
not scheduled. The TApdFaxServer component will name the FaxFile and CoverFile using 
the JobName or Sender fields of the TFaxJobHeaderRec. Pass an explicit file name for the 
FaxFile and CoverFile parameters to override the default naming scheme.

GetNextFax method

function GetNextFax : ShortString;

Returns the file name of the next fax job to send.

The GetNextFax method returns the file name of the next scheduled fax job in the directory 
being monitored. If a fax job is not scheduled this method will return an empty string.

This method scans the directory specified by MonitorDir and consolidates scheduling 
information for each fax file. Then, the fax job with the earliest scheduled time is located. If 
that job’s scheduled time is less than or equal to the current time, the name of that job file is 
returned. If the scheduled time has not passed, an empty string is returned.

See also: MonitorDir
10     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

GetSchedTime method

function GetSchedTime(JobName : ShortString) : TDateTime; 

Returns the TDateTime for which the first fax in the job file is scheduled. 

The GetSchedTime method returns the TDateTime for which the earliest fax contained in 
the APJ file is scheduled. JobName is the file name of the APJ file.

This method opens the job file, parses the embedded TFaxRecipientRec structures and 
returns the scheduled date/time of the earliest scheduled fax in the file. The 
TFaxJobHeaderRec.SchedDT field will be updated according to this value.

JobFileExt property

property JobFileExt : ShortString

Default: “APJ”

The extension of Async Professional fax Job files. 

The TApdFaxServerManager uses this property to filter out files that are not APJ files when 
looking for fax jobs. Files in the MonitorDir directory without this extension are not 
included when the directory is scanned.

See also: MonitorDir

MonitorDir property

property MonitorDir : ShortString

Default: Empty string

Determines the directory to scan for fax job files.

When the TApdFaxServerManager is queried for fax jobs, it scans the files in this directory. 
Only one TApdFaxServerManager component can look at any given directory at a time. To 
prevent multiple TApdFaxServerManagers from monitoring the same directory, a lock file is 
used. This lock file is created with exclusive access when MonitorDir is set to a valid 
directory and deleted when the TApdServerManager is destroyed or MonitorDir is changed. 
An ecAlreadyMonitored exception is raised if the directory is already being monitored by 
another TApdFaxServerManager.
TApdFaxServerManager Component     811

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnCustomGetJob event

property OnCustomGetJob : TManagerUserGetJobEvent;

TManagerUserGetJobEvent = procedure(Mgr : TApdFaxServerManager;
QueryFrom : TApdCustomFaxServer; var JobFile, FaxFile,
CoverFile : string; var RecipientNum : Integer) of object;

Event generated to override the default fax file scheduling.

This event is generated to allow custom scheduling of fax job files. If this event handler is 
installed the default scheduling built into the TApdFaxServerManger (through the GetJob 
method) is bypassed completely; the parameters of this event will be used instead.

This event is generated when a TApdCustomFaxServer requests a fax to send, either due to 
the SendQueryInterval timer, the end of a send or receive operation, or a call to 
ForceSendQuery. The application must extract the fax file (APF) and optional cover page 
file from the fax job file before this event exits.

Mgr is the TApdFaxServerManager that generated the event. QueryFrom is the 
TApdCustomFaxServer that is requesting a fax to send. JobFile is the name of the fax job file 
(APJ) that contains the next job to send. FaxFile is the name of the fax file (APF) that will be 
sent. CoverFile is the name of the cover page file (in either ASCII text or APF format) that 
will be used. RecipientNum is the index of this recipient in the fax job file (APJ).

This event can be used to provide an alternate scheduling mechanism, or fax job storage 
mechanism. For example, fax recipients can be filtered to specific modems or the fax jobs 
can be stored in a database. When using this event to access a different storage mechanism, a 
temporary fax job file must be created (see the TApdFaxJobHandler for the applicable 
methods). The TApdFaxServerManager will update this file with the appropriate status flags 
upon completion of the fax.

See also: GetJob, OnQueried

OnQueried event

property OnQueried : TFaxServerManagerQueriedEvent;

TFaxServerManagerQueriedEvent = procedure(
Mgr : TApdFaxServerManager; QueryFrom : TApdCustomFaxServer;
const JobToSend : string) of object;

Event generated when a TApdFaxServer requests a fax.

This event is generated when a TApdFaxServer component requests a fax to send, either 
through the SendQueryInterval timer, at the end of a fax send or receive operation, or 
through ForceSendQuery. Use this event to determine which fax will be sent on the 
TApdFaxserverManager level.
12     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Mgr is the TApdFaxServerManager that generated the event. QueryFrom is the 
TApdCustomFaxServer that is requesting a fax. JobToSend is the name of the fax job file 
(APJ) that will be sent.

Note that this event is for notification purposes only, the JobToSend is not editable. Use the 
OnCustomGetJob event handler to change the behavior of the next job scheduling 
mechanism.

See also: OnCustomGetJob

OnRecipientComplete event

property OnRecipientComplete : TManagerUpdateRecipientEvent;

TManagerUpdateRecipientEvent = procedure (
Mgr : TApdFaxServerManager; JobFile : string;
JobHeader : TFaxJobHeaderRec;
var RecipHeader : TFaxRecipientRec) of object;

This event is generated when a recipient in a fax job is complete.

The TApdFaxServerManager component will generate this event when a TApdFaxServer 
notifies it of a completed fax. This event is generated shortly after the TApdFaxServer 
component generates the OnFaxServerFinish or OnFaxServerFatalError event.

Mgr is the TApdFaxServerManger that generated the event. JobFile is the name of the fax job 
file (APJ) that contains the completed fax. JobHeader is the TFaxJobHeaderRec that 
describes the fax jobs contained in JobFile. RecipHeader is the TFaxRecipientRec that 
describes the fax that just completed.

This event is generated immediately before the JobFile is updated. The RecipHeader 
parameter of this event can be modified in this event for rescheduling if needed. Once this 
event exits, the JobFile’s JobHeader, and the recipient’s RecipHeader are updated.

Paused property

property Paused : Boolean

Default: False

Temporarily pauses the TApdFaxServerManager’s queueing functionality.

If Paused is False (the default) the GetJob method scans the directory specified by 
MonitorDir for fax jobs. If Paused is True, GetJob returns False and exits. Use this property 
to temporarily pause processing of fax jobs in the TApdServerManager’s monitored 
directory.

See also: GetJob, MonitorDir
TApdFaxServerManager Component     813

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reset method

procedure Reset;

Reset resets the internal fax list.

Use Reset to reset the TApdFaxServerManger’s internal fax file list. This list is maintained to 
increase the speed of multiple queries by TApdFaxServer components. Use the Reset 
method to clear the list, which will force a re-scan of the MonitorDir the next time the 
TApdFaxServerManager is queried.

UpdateStatus method

procedure UpdateStatus(JobFileName : ShortString;
JobNumber, Result : Word; Failed : Boolean); 

Updates the status flag of the specified job. 

UpdateStatus updates the TFaxJobHeaderRec.Status and TFaxRecipientRec.Status fields of 
the specified fax job file. JobFileName is the file name of the fax job file to update. 
JobNumber is the index of the job to update. Result is the ErrorCode of the fax operation 
that just completed. Failed is False if the job can be retried, or True if all retries have been 
attempted.
14     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdFaxClient Component
The TApdFaxClient component provides the ability to create APJ fax job files with a 
design-time interface. The MakeFaxJob method creates a single-recipient fax job; additional 
recipients can be added to the job file with the AddFaxRecipient method. To submit the job 
for faxing, place the APJ in the ApdFaxServerManager.MonitorDir folder. The 
ApdFaxClient can be used on a remote system to provide fax capability across a network.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

" TApdFaxJobHandler (AdFaxSrv). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

TApdFaxClient (AdFaxSrv) 

Properties
CoverFileName

FaxFileName

HeaderLine

HeaderRecipient

HeaderTitle

JobFileName

Recipient

JobName

PhoneNumber

ScheduledDateTime

Sender

! Version

Methods
" AddRecipient 

AddFaxRecipient

" ConcatFaxes

" ExtractAPF

" ExtractCoverFile

" GetJobHeader

" GetRecipient

MakeFaxJob

" MakeJob

" ShowFaxJobInfoDialog
TApdFaxClient Component     815

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Reference Section

AddFaxRecipient method

procedure AddFaxRecipient;

Adds the Recipient record to an existing job file.

The AddFaxRecipient method will add the recipient information provided through the 
Recipient property to the fax job file specified in the JobFileName property. See the example 
under the MakeJob method for an illustration of the usage of this method.

See also: MakeFaxJob, Recipient

CoverFileName property

property CoverFileName : ShortString

Default: Empty string

Determines the text file to include as a cover page.

CoverFileName determines the text file to include in the job file as a cover page. If a cover 
page is not desired, set this property to an empty string. See “Async Professional Job File 
format” on page 766 for details on job file cover pages.

FaxFileName property

property FaxFileName : ShortString

Default: empty string

Determines the APF file to include in the job file.

Set FaxFileName to the file name of the fax file to be sent by this job. The file specified by this 
property must be in the Async Professional Fax format (APF).

HeaderLine property

property HeaderLine : ShortString

The line of text that is sent at the top of each fax page. 

A header line consists of normal text and replacement tags. A replacement tag is one of 
several characters prefixed with ‘$’. When the header line is transmitted, the tags are 
replaced with appropriate text. The available replacement tags are listed in “Cover pages” on 
page 738.
16     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

"

!

!

No check is made to make sure your header line fits on a page. If your header line does not 
fit, it is truncated when it is transmitted. Using the default fonts, you can fit approximately 
144 characters on a standard width page. 

Caution: Recently passed United States legislation makes it unlawful to send faxes within the 
United States without showing certain sender information on the fax. The new requirement 
states, in part: “It shall be unlawful for any person within the United States to use any 
computer or other electronic device to send any message via facsimile machine unless such 
message clearly contains, in a margin at the top or bottom of each transmitted page or on the 
first page of the transmission, the date and time it is sent and an identification of the 
business, other entity, or individual sending the message and the telephone number of the 
sending machine of such business, other entity, or individual.”

See also: TApdSendFax.EnhHeaderFont, TApdSendFax.EnhTextEnabled, 
TApdSendFax.HeaderSender, HeaderRecipient, HeaderTitle 

HeaderRecipient property

property HeaderRecipient : ShortString

The fax recipient’s name. 

This string replaces the $R replacement tag in a cover page text file or a header line.

See “Cover pages” on page 738 for more information and examples.

See also: HeaderLine, TApdSendFax.HeaderSender, HeaderTitle

HeaderTitle property

property HeaderTitle : ShortString

The fax title. 

This string replaces the $S replacement tag in a cover page text file or a header line.

See “Cover pages” on page 738 for more information and examples.

See also: HeaderLine, HeaderRecipient, TApdSendFax.HeaderSender
TApdFaxClient Component     817

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

JobFileName property

property JobFileName : ShortString

Default: Empty string

The name of the APJ file that is being handled.

Set the JobFileName property to the path and name of an existing APJ file to add recipients, 
or to a new name to create a new APJ. The MakeFaxJob and AddFaxRecipient methods use 
JobFileName to determine which APJ file to work with.

See also: AddFaxRecipient, MakeFaxJob

JobName property

property JobName : ShortString

Default: Empty string;

Determines the friendly name for this fax job.

Set JobName to a string summarizing the fax job. This property will be placed in the 
TFaxHeaderRec.JobName field when the MakeJob method is called. This field can be used 
for a user-friendly display of all pending fax jobs. This field is also used to determine the 
name of the extracted fax file and cover file when transmitting.

See also: MakeJob

MakeFaxJob method

procedure MakeFaxJob;

Creates a new APJ file containing information determined by other TApdFaxClient 
properties.

The MakeFaxJob method is used to create a new APJ file containing a single recipient. 
MakeFaxJob, in turn, calls the TApdFaxJobHandler.MakeJob method, passing the 
TApdFaxClient properties as parameters. The resulting APJ will be named according to the 
FaxJobName property. A TFaxHeaderRec containing the JobName and Sender properties; 
and the recipient information as defined by the Recipient property will be added. The 
CoverFileName and FaxFileName properties determine which cover page text and APF file 
to include. Additional recipients will need to be added using the AddFaxRecipient method.
18     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The following example demonstrates how to create a fax job using MakeFaxJob method and 
how to add another recipient using the AddFaxRecipient method:

begin
{ set properties that apply to this job }
ApdFaxClient.CoverFileName := 'C:\COVER.TXT';
ApdFaxClient.FaxFileName := 'C:\TPFAX.APF';
ApdFaxClient.JobFileName := 'C:\FAXSRVR\TPFAX.APJ';
ApdFaxClient.JobName := 'Fax to TurboPower';
ApdFaxClient.Sender := 'Mike';
{ set properties that apply to first recipient }
ApdFaxClient.Recipient.PhoneNumber := '260 7151';
ApdFaxClient.Recipient.HeaderLine :=

'Fax from $F to $R, $D $T';
ApdFaxClient.Recipient.HeaderRecipient := 'TurboPower';
{ send this job immediately }
ApdFaxClient.Recipient.SchedDT := Now;
{ make the job }
ApdFaxClient.MakeFaxJob;
{ set properties that apply to second recipient }
ApdFaxClient.PhoneNumber := '555 1212';
ApdFaxClient.HeaderRecipient := 'Purchasing department';
{ send this to the second recipient at 6pm tonight }
ApdFaxClient.SchedDT := Date + 0.75;
ApdFaxClient.AddRecipient;

end;

PhoneNumber property

property PhoneNumber : ShortString

Default: Empty string

Determines destination fax number for a single recipient.

Set the PhoneNumber property to the fax number of the recipient for this fax. This property 
is used in the MakeFaxJob and AddFaxRecipient methods to fill the 
TFaxRecipientRec.PhoneNumber field.
TApdFaxClient Component     819

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Recipient run-time property

property Recipient : TFaxRecipientRec

TFaxRecipientRec = packed record
Status : Byte;
JobID : Byte;
SchedDT : TDateTime;
AttemptNum : Byte;
LastResult : Word;
PhoneNumber : String[50];
HeaderLine : String[100];
HeaderRecipient : String[30];
HeaderTitle : String[30];
Padding : Array[228..256] of Byte;

end;

The TFaxRecipientRec containing information about a single recipient.

The Recipient property is a run-time only property that contains information about a fax 
recipient, and recipient-specific information. This fields of this property can also be 
referenced through the PhoneNumber, HeaderLine, HeaderRecipient, and HeaderTitle 
properties. 

ScheduledDateTime read-only property

property ScheduledDateTime : TDateTime

Default: Now

Determines when the current job will be scheduled.

The ScheduledDateTime property is used to schedule a fax job to a recipient at a specific 
time, or to implement a priority queuing system for the Fax Server Components. Set the 
ScheduledDateTime property to the TDateTime that you want the fax to be sent. The 
ScheduledDateTime property is used to fill the TFaxJobHeaderRec.SchedDT and 
TFaxRecipientRec.SchedDT fields.

Since the TApdFaxServerManager component uses the SchedDT field to determine which 
fax to return to the TApdFaxServer component, the ScheduledDateTime property can be 
used to implement a priority system. Set ScheduledDateTime to Now for normal priority 
faxes. Set ScheduledDateTime to Now – 1 for a higher priority fax. The job with a SchedDT 
that has already passed will always take precedence over a job that is scheduled for later.
20     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

Sender property

property Sender : ShortString

Default: Empty string

Designates the creator of this fax job.

The Sender property is used to fill the TFaxHeaderRec.Sender field, which is used for status 
displays and to show who generated the fax job. Set Sender to the name of the person 
creating the fax job, the name of the machine that it was created on, or any designation that 
describes the owner of the fax job. 
TApdFaxClient Component     821

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdAbstractFaxStatus Class
TApdAbstractFaxStatus is an abstract class that defines the methods and properties needed 
by a component that automatically displays status while a TApdSendFax or TApdReceiveFax 
component is sending or receiving a fax. You generally won’t need to create a descendent 
class of your own, since Async Professional supplies one, the TApdFaxStatus component 
(see page 826).

However, TApdFaxStatus shows a particular set of information about a fax transfer in a 
predefined format. If this format is not suitable for your needs, you can create your own 
descendant of TApdAbstractFaxStatus. The best way to start is to study the source code of 
TApdFaxStatus (in the AdFStat unit) and its associated form, TStandardFaxDisplay.

The TApdAbstractFaxStatus class contains an instance of a TForm that holds controls used 
to display the fax status. You design the form, create an instance, and assign the instance to 
the Display property of TApdAbstractFaxStatus.

TApdAbstractFaxStatus replaces the standard VCL properties Caption, Ctl3D, Position, and 
Visible and the standard VCL method Show. When these routines are used in the status 
component, the overridden versions perform the same actions on the associated Display 
form. Thus you can display the status form by calling Show, erase it by setting Visible to 
False, adjust its position by assigning to Position, and use 3D effects by setting Ctl3D to 
True.

Once you create an instance of your TApdAbstractFaxStatus descendant, you must assign it 
to the StatusDisplay property of your TApdSendFax or TApdReceiveFax component. When 
the background fax process needs to update the status display, it calls the UpdateDisplay 
method of TApdAbstractFaxStatus, which you must override to update your status window.
22     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdAbstractFaxStatus (AdFax)

Properties
Display

Fax

Visible

! Version

Methods
CreateDisplay DestroyDisplay UpdateDisplay
TApdAbstractFaxStatus Class     823

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Reference Section

CreateDisplay dynamic abstract method

procedure CreateDisplay; dynamic; abstract;

An abstract method that creates a form to display the fax status. 

A descendant of TApdAbstractFaxStatus must override this method with a routine that 
creates a TForm component that contains various controls (typically of type TLabel) for 
displaying the fax status. The TForm should also contain a TButton control and associated 
OnClick event handler that allow the user to cancel the fax session.

CreateDisplay must then assign the instance of this form to the Display property.

See also: DestroyDisplay, Display

DestroyDisplay dynamic abstract method

procedure DestroyDisplay; dynamic; abstract;

An abstract method that destroys the display form. 

A descendant of TApdAbstractFaxStatus must override this method to destroy the TForm 
instance created by CreateDisplay.

See also: CreateDisplay, Display

Display run-time property

property Display : TForm

A reference to the form created by CreateDisplay. 

CreateDisplay must assign a properly initialized instance of a TForm to this property. 
UpdateDisplay can refer to this property to update the status window.

See also: CreateDisplay, UpdateDisplay

Fax property

property Fax : TApdAbstractFax

The fax component that is using the status component. 

When you derive components from TApdAbstractFaxStatus, you will probably reference 
TApdSendFax or TApdReceiveFax properties to display information about the progress of 
the fax session. Use this property to do so. It is automatically initialized when you assign the 
status component to the StatusDisplay property of TApdSendFax or TApdReceiveFax.
24     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

UpdateDisplay method

procedure UpdateDisplay(
const First, Last : Boolean); virtual; abstract;

An abstract method that writes the contents of the status window. 

A descendant of TApdAbstractFaxStatus must override this method to update the display 
form. The TApdSendFax or TApdReceiveFax component calls this method regularly from 
its OnFaxStatus event handler.

On the first call to UpdateDisplay, First equals True and UpdateDisplay should call the Show 
method of Display to draw the outline and background of the status form. On the last call to 
UpdateDisplay, Last equals True and UpdateDisplay should set the Visible property of 
Display to False to erase the status window.

For all other calls to UpdateDisplay, First and Last are both False. During these calls 
UpdateDisplay should update the various labels in the Display form. To get information 
about the fax session, use the Fax field of TApdAbstractFaxStatus to read the values of 
various properties such as FaxFile and BytesTransferred. See “TApdFaxStatus Component” 
on page 826 for a list of the most commonly used properties.

The CancelClick event handler, if one is provided, should call the CancelFax method of 
TApdSendFax or TApdReceiveFax to terminate the fax session.
TApdAbstractFaxStatus Class     825

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdFaxStatus Component
TApdFaxStatus is a descendant of TApdAbstractFaxStatus that implements a standard fax 
status display. To use it, just create an instance and assign it to the StatusDisplay property of 
your TApdSendFax or TApdReceiveFax component. TApdFaxStatus includes all of the most 
frequently used information about a fax transfer and it provides a Cancel button so that the 
user can abort the session at any time.

TApdFaxStatus overrides all the abstract methods of TApdAbstractFaxStatus. 
TApdFaxStatus has no methods that you must call or properties that you must adjust. You 
might want to change the settings of the Ctl3D and Position properties to modify the 
appearance and placement of the window.

Figure 15.3 shows the TStandardFaxDisplay form that is associated with a TApdFaxStatus 
component.

For an example of using a TApdFaxStatus component, see the TApdSendFax example on 
page 740 or the TApdReceiveFax example on page 756.

 Figure 15.3: TStandardFaxDisplay form.
26     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

 TApdAbstractFaxStatus (AdFax) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822

TApdFaxStatus (AdFStat)
TApdFaxStatus Component     827

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdFaxLog Class
TApdFaxLog is a small class that can be associated with a TApdSendFax or TApdReceiveFax 
to provide automatic fax logging services. Simply create an instance of TApdFaxLog and 
assign it to the FaxLog property of the TApdSendFax or TApdReceiveFax component.

TApdFaxLog creates or appends to a text file whose name is given by the FaxHistoryName 
property. Each time the OnFaxLog event is generated, the associated TApdFaxLog instance 
opens the file, writes a new line to it, and closes the file.

Following is a sample of the text file created by TApdFaxLog:

-----Receive skipped at 2/20/96 3:32:48 PM

Receive FAX0014.APF from 719 260 7151 started at 2/22/96 10:47:34 AM
Receive finished OK at 2/22/96 10:47:48 AM

Transmit BIG.APF to 260-7151 started at 2/26/96 2:23:41 PM
Transmit to 719 260 7151 finished OK at 2/26/96 2:24:14 PM

Transmit BIG.APF to 260-1643 started at 2/26/96 2:26:16 PM
Transmit failed at 2/26/96 2:26:41 PM

(Cancel requested)

Transmit BIG.APF to 260-1643 started at 2/26/96 5:39:35 PM
Transmit failed at 2/26/96 5:40:17 PM

(Called fax number was busy)

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdFaxLog (AdFax)

Properties
Fax FaxHistoryName ! Version

Methods
UpdateLog
28     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

Fax property

property Fax : TApdCustomAbstractFax

The fax component that is using the log component. 

Fax is automatically initialized when the FaxLog property of the owning fax component is 
set. Programs can change Fax to assign the log component to a different fax component.

FaxHistoryName property

property FaxHistoryName : string

Default: “APROFAX.HIS”

Determines the name of the fax log file. 

Set the value of FaxHistoryName before calling StartTransmit or StartReceive. However, 
because the log file is opened and closed for each update, you can change FaxHistoryName 
at any time. If you set FaxHistoryName to an empty string, automatic logging is disabled 
until you assign a non-empty string.

See also: TApdSendFax.StartReceive, TApdReceiveFax.StartTransmit

UpdateLog virtual method

procedure UpdateLog(const Log : TFaxLogCode); virtual;

TFaxLogCode = (lfaxNone, lfaxTransmitStart, lfaxTransmitOk,
lfaxTransmitFail, lfaxReceiveStart, lfaxReceiveOk,
lfaxReceiveSkip, lfaxReceiveFail);

Called for each fax logging event. 

The Log parameter has the same values passed to the OnFaxLog event handler of 
TApdAbstractFax. UpdateLog creates or appends to the log file, builds and writes a text 
string for each event, and closes the log file.

TApdFaxLog contains a field named Fax that UpdateLog uses to obtain additional 
information (FaxFile, BytesTransferred, and CurrentPage) about the fax transfer.

See also: TApdAbstractFax.OnFaxLog
TApdFaxLog Class     829

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Fax Printer Drivers
An Async Professional fax printer driver is a Windows printer driver that generates APF 
format fax files when printed to from any Windows application. After the appropriate fax 
printer driver is installed on the user’s system, it shows up in the list of available printers. The 
user can then choose to print to the fax printer driver rather than to a physical printer. The 
fax printer driver creates a fax file that can then be transmitted using the Async Professional 
fax components.

For example, you could implement a fax server program that sends faxes when the user 
prints to the fax printer driver. The user can simply print to the fax printer driver from any 
Windows application. Your fax server program could run in the background, waiting to be 
notified when printing to the fax printer driver begins and when it is finished. When the 
OnEndDoc event occurs, your fax server program could then send the fax using the 
StartTransmit method of the TApdSendFax component.

By default, when the Async Professional fax printer driver prints, it creates a 
“C:\DEFAULT.APF” fax file. To specify a different name or location, use a 
TApdFaxDriverInterface component.

The TApdFaxDriverInterface component provides control for the fax printer drivers. Async 
Professional provides printer drivers for Windows 95/98/ME, Windows NT 4.0, and 
Windows 2000.

Installation
A fax printer driver can be installed to your user’s system either through code or through 
printer driver setup files (INF files). Installation can be accomplished using the provided 
installation units: PDrvInst, PDrvInNT, PDrvUni, and PDrvUnNT. The following example 
shows how to use these function. See the PINST example for a compilable file showing this 
functionality.

var
QuietOperation : Boolean;

{ Suppresses success/failure prompts when True }
begin

QuietOperation := (ParamCount > 0) and
(pos('Q',UpperCase(paramStr(1))) <> 0) ;

if IsWinNT then
InstallDriver32('')

else
InstallDriver('APFGEN.DRV');
30     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
if not QuietOperation then
case DrvInstallError of
ecOK :

MessageDlg('APF Fax Printer Driver Installed OK',
mtInformation, {mbOK], 0 ;

ecUniAlreadyInstalled : ;
ecUniCannotGetSysDir :
MessageDlg('Couldn't determine Windows\System directory',

mtError, {mbOK], 0) ;
ecUniCannotGetPrinterDriverDir

MessageDlg('Couldn't determine Windows NT printer driver
directory', mtError, {mbOK}, 0) ;

ecUniCannotGetWinDir :
MessageDlg('Couldn't determine Windows directory',

mtError, {mbOK], 0) ;
ecUniUnknownLayout :

MessageDlg(' -- Unknown Windows Layout --'+#13+
'Unable to locate require support'+#13+
'files', mtError, [mbOK], 0) ;

ecUniCannotParseInfFile :
MessageDlg('Cannot locate unidriver files in'+#13+

'Windows Setup (INF) file.', mtError, [mbOK], 0) ;
ecUniCannotInstallFile

MessageDlg('Unidriver files'+'not installed. The print
driver'+#13+'may not be configured properly.',
mtError, [mbOK], 0) ;

ecNotNTDriver :
MessageDlg('This printer driver is not compatible with

Windows NT', mtError, [mbOK], 0) :
ecDrvCopyError :

MessageDlg('Unable to copy printer driver to Windows
system directory', mtError, [mbOK], 0) ;

ecCannotAddPrinter :
MessageDlg('Could not install APFGEN.DRV as a Windows

printer', mtError, [mbOK], 0) ;
ecDrvBadResources :

MessageDlg('Printer driver file contains bad or missing
string resources', mtError, [mbOK], 0) ;

ecDrvDriverNotFound :
MessageDlg('A required printer driver file was not found',

mtError, [mbOK], 0) ;
else
MessageDlg('Unknown installation error : '+

IntToStr(DrvInstallError), mtError, [mbOK], 0) ;
end;

end.
Fax Printer Drivers     831

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The Async Professional fax printer drivers rely on several files supplied by Microsoft. These 
are usually located on your Windows installation medium. The InstallDriver32 and 
InstallDriver methods will first verify whether these files are already installed. If they are not 
installed, a dialog will be displayed where the user can browse for the files. The following list 
shows the required files (APF* are supplied in the APRO\Redist folder, others are supplied 
by Microsoft)

Required printer driver files:

Windows 95/98/ME

• APFGEN.DRV

• UNIDRV.DLL

• UNIDRV.HLP

• ICONLIB.DLL

Windows NT 4/2000 

• APFPDENT.DLL

• APFMON40.DLL

• APFAXCNV.DLL

• RASDD.DLL

• RASDDUI.DLL

• RASDDUI.HLP

Note: Windows 2000 Professional does not contain the RASDD* files required by our 
printer driver. These files can be obtained from a Windows NT4 or Windows 2000 Server 
installation CD.
32     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Recompiling
It is possible to rebuild the Async Professional fax printer drivers, but it is seldom required to 
do so. Before undertaking the build process, first determine that the existing design is not 
suitable to your application. Most developers who want to rebuild the printer drivers do so 
because they want to build in functionality that is already supported by the 
TApdFaxDriverInterface. 

Async Professional provides two fax printer drivers: one for Windows 95/98/ME, another 
for Windows NT/2000. The Windows 95/98/ME printer subsystem is 16-bit, and it requires 
a 16-bit compiler (Delphi 1) to compile the APFGEN.DRV printer driver. The Windows 
NT/2000 printer subsystem is 32-bit, building all three parts of the driver requires a 32-bit 
Delphi compiler and Microsoft Visual C++ 4.0 or later.

For the latest information concerning rebuilding the Async Professional printer drivers, 
search the TurboPower KnowledgeBase (http://www.turbopower.com/search/) for “printer 
driver.”
Fax Printer Drivers     833

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdFaxDriverInterface Component
The TApdFaxDriverInterface component provides control for the fax printer drivers. Using 
this component you can set the output file name that the fax printer driver uses and receive 
notification when the fax printer driver has finished writing the fax file.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdFaxDriverInterface (AdFaxCtl)

Properties
DocName FileName ! Version

Events
OnDocEnd OnDocStart 
34     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

DocName read-only, run-time property

property DocName : string

Contains the name of the print job as it appears in the print spooler. 

DocName is a read-only property that contains a textual description of the document that is 
being printed.

FileName property

property FileName : string

Default: “C:\DEFAULT.APF”

Contains the name of the output file used by the printer driver. 

FileName holds the name of the file used by the printer driver to store the output. The 
default file name is C:\DEFAULT.APF.

OnDocEnd event

property OnDocEnd : TNotifyEvent

Defines an event handler that is called when the printer driver finishes processing a 
print job. 

When a fax print server application receives this event, it can take some further action on the 
file (e.g., send it or do some other processing on it).

The following example uses the OnDocEnd event for notification that the fax printer driver 
has finished creating the fax file. When notification is received, the fax file is transmitted.

procedure TForm1.ApdFaxDriverInterface1DocEnd(Sender : TObject);
begin

{ Done printing to the fax file so send the fax }
ApdSendFax1.FaxFile := ApdFaxDriverInterface1.FileName;
ApdSendFax1.PhoneNumber := '260-7151';
ApdSendFax1.StartTransmit;

end;

See also: OnDocStart
TApdFaxDriverInterface Component     835

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

OnDocStart event

property OnDocStart : TNotifyEvent

Defines an event handler that is called when the printer driver is ready to start printing a 
new document. 

This event is primarily used to supply an output file name for the printer driver to use. 
Control does not return to the printer driver until the event handler is done.

The following example uses OnDocStart to set the output file name prior to the fax printer 
driver writing the fax file:

procedure TForm1.ApdFaxDriverInterface1DocStart(
Sender : TObject);

begin
ApdFaxDriverInterface1.FileName := 'TEMPFAX.APF';

end;

See also: FileName, OnDocEnd
36     Chapter 15: Fax Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 16: Paging Components

The ability to locate and send some kind of message to someone carrying a small electronic 
device (a pager) has become a mainstay of modern existence.  Once the province of the 
wealthy and of high level business figures; one now sees pagers hanging from the belts and 
purses of dock workers, secretaries, and even teenagers.  

The ability to send and receive alphanumeric messages (i.e., those containing textual 
information beyond the simple digits easily entered from a telephone keypad), is 
increasingly common among modern paging equipment. 

The desire to be able to send and receive such information has also increased, perhaps 
somewhat in advance of the technology for doing so, as until recently the primary method 
for entering and sending such data has been restricted to proprietary (and often expensive 
and difficult to use) hardware devices or computer software provided by paging services.

The fairly recent development of new standards for preparing and sending alphanumeric 
messages has made it possible to create generalized software solutions for performing these 
tasks.   However, these “protocols” remain somewhat obscure and awkward to implement at 
the basic software level.

Given Async Professional’s mission of  providing well structured and encapsulated solutions 
to serial, telephony, and basic TCP/IP communications needs; and with the new availability 
of standardized means of performing the required transmissions, Async Professional now 
includes paging components.
     837

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Sending Alphanumeric Pages
Async Professional provides components that support sending messages to alphanumeric 
paging devices using either TAP (Telelocator Alphanumeric Protocol) with a modem over a 
phone line, or SNPP (Simple Network Paging Protocol) over Internet using a TCP/IP socket 
connection.

While these two protocols are fairly different in their implementations, the Async 
Professional paging components provide a consistent interface to sending messages 
regardless of which transmission medium is in use.

Requirements
The primary difference between TAP paging and SNPP paging from the Async Professional 
programmer’s perspective is that TApdSNPPPager requires a TApdWinsockPort to work, as 
it needs an open TCP/IP socket in order to transmit. TApdTAPPager can use either a 
TApdComPort or a TApdWinsockPort using the appropriate DeviceLayer property setting.

In order to successfully send a page by either protocol, the recipient’s pager must be serviced 
by a “Paging Server” that responds to the relevant protocol. A TAP server will typically have 
a phone number to dial, which is almost certainly not the same number that is normally 
called to access the pager directly. An SNPP server will have an IP address associated with it, 
as well as a port number.

Values for these paging parameters must be entered into the relevant properties of a paging 
component before paging may be performed. The programmer will have to gather this 
information from the intended recipients (or from their paging companies) in order to send 
pages successfully with the Async Professional paging components. 

Certain additional requirements are generally automatically handled by the components, 
see the individual component descriptions for more details.
38     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdAbstractPager Component
All of the Async Professional paging components are descended from TApdAbstractPager. 
This abstract paging component provides a set of properties and methods common to 
sending a page regardless of the transmission medium, such as the Pager ID, the message 
text to be sent, and a method to actually send the page.  

Hierarchy
TComponent (VCL)

TapdAbstractPager (AdPager)

Properties
Message PagerID PagerLog

Methods
Send
TApdAbstractPager Component     839

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Reference Section

Message property

property Message : TStrings

Contains the text of the alphanumeric message to be sent as a page.  

As a TStrings, message may be filled using all the methods open to TStrings and TStrings 
descendants. The following code will fill the Message property from the contents of a 
TMemo:

ApdPager1.Message.Assign(Memo1.Lines);

PagerID property

property PagerID : string

Defines the identification string (frequently the phone number) of the pager to which the 
message is being sent.

PagerLog property

property PagerLog : TApdPagerLog

An instance of a pager logging component.

If PagerLog is nil (the default), the pager component does not perform automatic logging. 
You can install pager component event handlers to perform logging in this case.

If you create an instance of (or a descendant of) a TApdPagerLog component (see page 862), 
and assign it to PagerLog, the pager component will call the log component’s UpdateLog 
method automatically.

Send method

procedure Send; virtual; abstract;

Provides a “root” for send methods in descendant components.  

Send is a virtual, abstract method. All descendants must override this method to implement 
their protocol and transmission medium specific behaviors.  See the implementations of 
Send for TApdTAPPager and TApdSNPPPager for more details.
40     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdTAPPager Component
The TApdTAPPager Component is used to send alphanumeric pages to paging services that 
support Telelocator Alphanumeric Protocol (TAP) also known as the “IXO” protocol and 
the Motorola Personal Entry Terminal (PET) protocol. It publishes properties and methods 
inherited from the TApdCustomModemPager that provide logic for call management: 
dialing the telephone, detecting busy signals, redialing on an error, waiting to redial, etc.

Dialing events
The TApdTAPPager component goes through a number of stages in the process of sending a 
page, these can be separated into broad categories of Errors in modem dialing; modem/line 
states as the call progresses, and events/errors specific to the actual TAP protocol.

The TApdTAPPager component provides the mechanism for tracking the first two kinds of 
event in the OnDialError and OnDialEvent event handler properties (see page 849). The 
TApdTAPPager component provides a further level of status processing for TAP specific 
events via the OnTAPStatus event handler. (See page 851.)

Dialing error handling
The Error parameter to OnDialError is of type TDialError, which is a subrange 
(deNone..deNoConnection) of the TDialingCondition enumerated type that indicates the 
detected Error condition at the time OnDialError event is tripped. The values that 
TDialError defines are shown in Table 16.1.

Dialing status
The Event parameter to OnDialStatus is of type TDialingStatus, which is a subrange 
(dsNone..dsCleanup) of the TDialingCondition enumerated type that indicates the detected 
status condition at the time OnDialStatus event is tripped. The values defined by 
TDialingStatus are described in Table 16.2.

Table 16.1: TDialError values

Value Explanation

deNone Un-initialized starting state.

deNoDialTone Modem reported no dial tone.

deLineBusy Modem reported line busy.

deNoConnection Modem unable to establish connection.
TApdTAPPager Component     841

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TAP paging status
During the course of a TAP Page transmission, the TAP server returns several codes 
indicating the success or failure of a particular stage in the connection. TApdTAPPager 
provides an additional mechanism (over that provided by its ancestor’s) for tracking TAP 
specific events and errors.  

The Event parameter to OnTAPStatus is of an enumerated type (TTAPStatus) that indicates 
the detected TAP status at the time OnTAPStatus event is tripped. Table 16.3 describes the 
values which TTAPStatus defines.

Table 16.2: TDialingStatus values

Value Explanation

dsNone Un-initialized starting state.

q Modem has gone off hook.

dsDialing Modem dialing phone number.

dsRinging Line is ringing.

dsWaitForConnect Line answered waiting for connection negotiation.

dsConnected Line connected.

dsWaitingToRedial In redial wait period.

dsRedialing Dialing a number again.

dsMsgNotSent No message sent.

dsCancelling Call request cancelled by user.

dsDisconnect Line disconnected.

dsCleanup Doing post call cleanup.

Table 16.3: TTAPStatus values

Value Explanation

psNone Un-initialized starting state.

psLoginPrompt TAP server login prompt received.

psLoggedIn Successful login to TAP server.

psLoginErr Error in TAP login procedure.

psLoginFail TAP Login procedure failure.

psMsgOkToSend TAP server ready for message transmission.

psSendingMsg TApdTAPPager sending message.
42     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL) 

!TApdBaseComponent (OOMisc)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

" TApdAbstractPager (AdPager) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

TApdCustomModemPager (AdPager)

TApdTAPPager (AdPager)

psMsgAck TAP server acknowledged (successfully received) message
block.

psMsgNak TAP server does not acknowledge message block; unable
to proceed.

psMsgRs TAP server does not acknowledge message block; resend
block.

psMsgCompleted TAP server received entire message successfully.

psDone TAP server logout.

Table 16.3: TTAPStatus values

Value Explanation
TApdTAPPager Component     843

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Properties
AbortNoConnect

BlindDial

DialAttempt

DialAttempts

DialPrefix

DialRetryWait

DialWait

ExitOnError

MaxMessageLength

Message

ModemInit

" PagerID

PagerLog

PhoneNumber

Port

TAPStatusMsg

ToneDial

UseEscapes

UseTapi

! Version

Methods
CancelCall

DialStatusMsg

Disconnect

ReSend

Send

Events
OnDialError

OnDialStatus

OnTAPFinish

OnTAPStatus
44     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

AbortNoConnect property

property AbortNoConnect : Boolean

Default: adpgDefAbortNoConnect

Defines what happens when the connection to a paging terminal number cannot be made 
after the default number of retries. 

If True, the paging process ends and generates an OnDialStatus event with dsCancelling. If 
False, the pager re-attempts the page as defined by the DialAttempts property.

See also: DialAttempts, OnDialStatus

BlindDial property

property BlindDial : Boolean

Default: adpgDefBlindDial

Allows a page to be sent regardless of whether the modem detects a dial tone. 

If BlindDial is True, a different initialization sequence is sent to the modem before a page is 
sent (ATX3 is sent instead of ATX4). This initialization sequence allows the modem to use a 
phone line, even if it can’t detect a dial tone.

CancelCall method

procedure CancelCall;

Cancels the current phone call being sent.

TApdTAPPager sends the TAP “Cancel” command to the remote TAP server before 
proceeding with shut down. It essentially terminates the call processing logic. Any custom 
DoDisconnect, DoFailedToSend, or DoCloseCall logic is processed.

The following example shows how to cancel a page:

procedure TForm1.Button1Click(Sender : TObject);
begin

ApdTAPPager1.CancelCall;
end;

See also: OnDialStatus, OnDialError
TApdTAPPager Component     845

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

DialAttempt property

property DialAttempt : Word

Indicates the number of times the current paging server number has been dialed. 

If the dialed number is busy, TApdTAPPager waits briefly and calls the number again. It tries 
up to DialAttempts times. The DialAttempt property returns the number of the current 
attempt. DialAttempt is incremented immediately upon encountering a busy line.

See also: DialAttempts, DialRetryWait

DialAttempts property

property DialAttempts : Word

Default: adpgDefDialAttempts 

Determines the number of times to automatically dial a paging server number. 

This is the number of times a page is attempted, it is not the number of retries. When 
DialAttempts is one, for example, the number is dialed only once. If the line is busy, it is not 
tried again. When DialAttempts is three, the paging server number is dialed a maximum of 
three times.

See also: DialAttempt, DialRetryWait

DialPrefix property

property DialPrefix : TModemString

TModemString = string[40];

An optional dial prefix.

DialPrefix specifies an optional dial prefix that is inserted in the dial command between 
“ATDT” and the number to dial. If the telephone system requires special numbers or codes 
when dialing out, they can be specified once here rather than in every pager number.

Do not include “ATD” or a ‘T’ or ‘P’ tone/pulse modifier in the dial prefix. “ATD” is 
automatically prefixed by Send and the ‘T’ or ‘P’ is controlled by ToneDial.

See also: Send, ToneDial
46     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

DialRetryWait property

property DialRetryWait : Word

Default: adpgDefDialRetryWait 

The number of seconds to wait after a busy signal before trying the number again. 

After encountering a busy signal, TApdTAPPager checks to see if it should try this number 
again by comparing DialAttempts to DialAttempt. If more attempts are required, it waits 
DialRetryWait seconds before dialing again to give the dialed paging server time to have an 
open line.

If no more dialing attempts are required, TApdTAPPager does not wait, but immediately 
progresses to Canceling the call.

See also: DialAttempt, DialAttempts

DialStatusMsg method

function DialStatusMsg(Status : TDialingCondition) : string;

Returns an English string for a call progress status or error code. 

This routine is intended primarily for use in calling status routines. It returns a status string 
from the string table resource linked into your EXE. The string ID numbers correspond to 
the values of the TDialingCondition enumerated type (see “Dialing status” on page 841). If 
the string table doesn’t contain a string resource with the requested ID, an empty string is 
returned.

The returned string is never longer than MaxMessageLen (80) characters.

DialWait property

property DialWait : Word

Default: adpgDefDialWait 

The number of seconds to wait for a connection after dialing the number. 

The default is 60 seconds.
TApdTAPPager Component     847

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Disconnect method

procedure Disconnect;

Sends the TAP “logout” code to the paging server.

ExitOnError property

property ExitOnError : Boolean

Default: adpgDefExitOnError

Determines what happens when an error occurs during an attempt to send a page.

If ExitOnError is True, no more attempts are made to send the page, regardless of the status 
of DialAttempts. If ExitOnError is False (the default), the paging component continues to 
try dialing the paging server.

See also: AbortNoConnect, DialAttempts

MaxMessageLength property

property MaxMessageLength : Integer

Default: MAX_MSG_LEN (80)

Defines a maximum length for message blocks sent to the paging server. 

The TAP specification permits blocks of up to 256 characters (including all delimiters, 
which reduces actual message data to about 250 characters). Some paging servers seem to 
have trouble with blocks of over 80 characters however; thus the default. 

Also, some TAP paging servers will not allow a single message to a single pager to exceed 
256 characters total length.

Message property

property Message : TStrings

Contains the text of the alphanumeric message to be sent as a page.  

See UseEscapes on page 854 for how to embed control characters inside TAP messages.
48     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ModemInit property

property ModemInit : TModemString

TModemString = string[40];

A custom modem initialization string. 

If you assign a custom modem initialization string to ModemInit, TApdTAPPager always 
sends this string to the modem just before it dials the paging server number. This occurs 
whenever you call Send. 

The string should not contain an “AT” prefix or a trailing carriage return.

See also: Send

OnDialError event

property OnDialError : TDialErrorEvent

TDialErrorEvent = procedure(
Sender : TObject; Error : TDialError) of object;

TDialingCondition = (dsNone, dsOffHook, dsDialing, dsRinging,
dsWaitForConnect, dsConnected, dsWaitingToRedial, dsRedialing,
dsMsgNotSent, dsCancelling, dsDisconnect, dsCleanup, deNone,
deNoDialTone, deLineBusy, deNoConnection);

TDialError = deNone..deNoConnection;

Defines an event handler that is called when an error occurs in the dialing procedure. 

Sender is the pager component that generated the error. Error is a TDialError value number 
indicating the type of error. See “Dialing error handling” on page 841 for the meaning of 
these error codes.

See also: OnDialStatus
TApdTAPPager Component     849

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

OnDialStatus event

property OnDialStatus : TDialStatusEvent

TDialStatusEvent = procedure(
Sender : TObject; Event : TDialingStatus) of object;

TDialingCondition = (dsNone, dsOffHook, dsDialing, dsRinging,
dsWaitForConnect, dsConnected, dsWaitingToRedial, dsRedialing,
dsMsgNotSent, dsCancelling, dsDisconnect, dsCleanup, deNone,
deNoDialTone, deLineBusy, deNoConnection);

TDialingStatus = dsNone..dsCleanup;

Defines an event handler that is called regularly during a page call. 

This event is generated after the completion of each major operation (e.g., going off hook, 
dialing). You can use this event to update a status display that informs the user about the 
progress of the call.

Sender is the pager component that is in progress. Event is a value of TDialingStatus type 
that indicates which phase of the call is in progress. See “Dialing status” on page 841 for the 
meaning of these status codes.

OnTAPFinish event

property OnTAPFinish : TNotifyEvent

Defines an event handler that is called when a TAP page operation completes.

The OnTAPFinish event occurs when the TApdTAPPager component has received a 
connection termination code from the TAP server. It indicates that the TAP communication 
was completed (whether successfully or not).   This may be used in logic for sending 
multiple pages to know when a given page attempt has completed.

To determine the success vs. failure of a page attempt, use the OnPageStatus event.

See also: OnTAPStatus
50     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

OnTAPStatus event

property OnTAPStatus : TTAPStatusEvent

TTAPStatus = (psNone, psLoginPrompt, psLoggedIn, psLoginErr,
psLoginFail, psMsgOkToSend, psSendingMsg, psMsgAck, psMsgNak,
psMsgRs, psMsgCompleted, psDone);

TTAPStatusEvent = procedure(
Sender : TObject; Event : TTapStatus) of object;

Defines an event handler that is called regularly during communication with the paging 
server. 

This event is generated after the completion of stages in connecting with the paging server 
(e.g. logging in, sending the message). You can use it to update a status display that informs 
the user about the progress of the page connection.

Sender is the pager component that is in progress. Event is of type TTAPStatusEvent which 
indicates which phase of the communication is in progress. For a description of the stages, 
see “TAP paging status” on page 842. 

PagerLog property

property PagerLog : TApdPagerLog

An instance of a pager logging component.

If PagerLog is nil (the default), the pager component does not perform automatic logging.  
You can install pager component event handlers to perform logging in this case.

If you create an instance of (or a descendant of) a TApdPagerLog component (see page 862), 
and assign it to PagerLog, the pager component will call the log component’s UpdateLog 
method automatically.

PhoneNumber property

property PhoneNumber : string

Defines the phone number to be dialed to access the Alphanumeric Paging Server.

The phone number is usually not the pager’s phone number. Set PhoneNumber to the 
number to dial prior to calling Send. If the phone system requires prefix codes (like ‘9’), the 
codes must be specified in PhoneNumber or in DialPrefix.

PhoneNumber can be used with status and logging routines to return the phone number 
dialed for the current page.

See also: DialPrefix, Send
TApdTAPPager Component     851

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Port property

property Port : TApdCustomComPort

Determines the serial port used by the Modem Pager component. 

A properly initialized comport component must be assigned to this property before sending 
pages. When a TApdComPort is assigned to this property, the pager component forces the 
Port to the property values shown in the following example:

ApdComPort1.DataBits := 7;
ApdComPort1.StopBits := 1;
ApdComPort1.Parity := pEven;
ApdComPort1.Baud := 9600;

These values are the most common requirements for TAP paging servers and should be 
changed only if you are certain of the impact of those changes. 

You can set these properties manually in code prior to sending a page. If you wish to make 
the change permanent to the component, you will need either to alter the source code, or 
create a descendant component of TApdTAPPager that overrides the SetPortOpts method.

ReSend method

procedure ReSend;

Causes the pager component to attempt to resend the paging message.

This is only effective when logged into the paging terminal.

Send method

procedure Send;

Causes the paging component to dial the phone number specified in PhoneNumber.

The number may be modified by DialPrefix. If it receives a successful answer, Send calls the 
protected method DoDial, which in turn (potentially) calls the virtual DoStartCall, 
DoCloseCall, DoDisconnect, and DoFailedToSend methods. The programmer creating a 
custom Modem pager should override these methods to provide protocol specific 
processing for the call progress.
52     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

The following example shows how to send a simple page with the TApdTAPPager 
component:

procedure TForm1.Button1Click(Sender : TObject);
begin

ApdTAPPager1.PhoneNumber := '555-1234';
ApdTAPPager1.PagerID := '12345';
ApdTAPPager1.Message.Add('Hi There!');
ApdTAPPager1.Send;

end;

See also: DialPrefix, PhoneNumber

TAPStatusMsg method

function TAPStatusMsg(Status : TTAPStatus) : string;

Returns an English string for a TAP status code. 

This routine is intended primarily for use in status monitoring routines. It returns a status 
string from the string table resource linked into your EXE. The string ID numbers 
correspond to the values of the TTAPStatus constants (see “TAP paging status” on 
page 842). If the string table doesn’t contain a string resource with the requested ID, an 
empty string is returned.

The returned string is never longer than MaxMessageLen (80) characters.

ToneDial property

property ToneDial : Boolean

Default: adpgDefToneDial

Determines whether tone or pulse dialing is used for paging calls. 

If ToneDial is True (the default), tone dialing is used. Otherwise, pulse dialing is used. 
Setting ToneDial does not immediately issue a modem command, but determines whether 
‘T’ or ‘P’ is added to the dial command later.

See also: DialPrefix
TApdTAPPager Component     853

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

UseEscapes property

property UseEscapes : Boolean

Default: False

Determines whether or not the paging component scans the text of Message prior to sending 
and expands any “control characters” found into TAP escapes.

If True, escapes are processed according to TAP 1.8. If False, escapes are stripped from the 
message.

Version 1.8 of the TAP specification allows for embedding control characters in pages by use 
of an escaping mechanism. Basically a special character (ASCII #26: “SUB”, otherwise 
known as Ctrl-Z), followed by the desired character whose ASCII value has been 
incremented by 64.

For example, Ctrl-H (ASCII #8, “BS”, or BackSpace) would be sent as #26‘H’; and the 
escape character (ASCII #27) would be sent as #26‘[’.

TApdTAPPager allows such characters to be embedded in the Message property using the 
standard Borland Pascal notations, making it easier to create such messages without 
resorting to complex string constructions at run time.

You may use ‘#’ style character constants with either decimal or hex numeric values; and you 
may use ‘^’ letter values. For example, the Ctrl-H character mentioned above may be 
represented as “#8” (decimal), “#$08” (hexadecimal), or “^H” in the string and 
TApdTAPPageSend will convert those to the proper #26‘H’ sequences when the page is sent.

Some paging terminals are not using the TAP 1.8 specification and don’t provide this 
mechanism. Such terminals’ response to the presence of the escapes is “unpredictable” 
(some just pass them through, converting the #26s to spaces, others freeze). Because of this, 
TApdTAPPager provides the UseEscapes property. If set True the above conversion is 
performed as stated; if False (the default) escape sequences of the above types are stripped 
from the message before sending.
54     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

UseTapi property

property UseTapi : Boolean

Default: False

UseTapi determines whether or not the Pager component uses TAPI (“Telephony API”) to 
present dialable devices to the user.  

This is desirable because it allows the user to pick the port/modem by installed name rather 
than having to identify it solely by port number.
TApdTAPPager Component     855

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdSNPPPager Component
TApdSNPPPager is an implementation of Internet based paging using the Simple Network 
Paging Protocol (SNPP) standard as defined in RFC 1861. 

TApdSNPPPager implements the simplest form (“Level One”) of SNPP transaction, and 
automates sending so that even some Level One commands are irrelevant (e.g. “HELP”).

Hierarchy
TComponent (VCL) 

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

" TApdAbstractPager (AdPager) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 839

TApdCustomINetPager (AdPager)

TApdSNPPPager (AdPager)

Properties
CommDelay

" Message

" PagerID

" PagerLog

Port

Send

ServerDataInput

ServerDoneString

ServerInitString

ServerResponseFailContinue

ServerResponseFailTerminate

ServerSuccessString

! Version

Methods
Send

Events
OnLogin

OnLogout

OnSNPPError

OnSNPPSuccess
56     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

CommDelay property

property CommDelay : Integer

Default: 1

The number of seconds to insert between sending SNPP commands. 

CommDelay is intended to give the TApdSNPPPager component user some control if the 
SNPP server does not respond in a timely fashion to commands.

OnLogin property

property OnLogin : TNotifyEvent

Defines an event handler that is called when the TApdSNPPPager detects the 
ServerInitString.

OnLogout event

property OnLogout : TNotifyEvent

Defines an event handler that is called when a SNPP page operation logs out of the paging 
server.

The OnLogout event occurs when the TApdSNPPPager component has sent the SNPP 
“QUIT” command and received a connection termination code from the SNPP server. It 
indicates that the SNPP communication was completed (whether the page was sent 
successfully or not) and successfully logging out of the paging server has occurred.   This 
may be used in logic for sending multiple pages to know when a given page attempt has 
completed.

To determine the success vs. failure of a page attempt, monitor the OnSNPPError and 
OnSNPPSuccess events.

See also: OnLogin, OnSNPPError, OnSNPPSuccess
TApdSNPPPager Component     857

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

OnSNPPError property

property OnSNPPError : TSNPPMessage

TSNPPMessage = procedure(
Sender : TObject; Code : Integer; Msg : string) of object;

Defines an event handler that is called whenever TApdSNPPPager detects a “400” or “500-
Level” error code returned from the SNPP server. 

Sender is the TApdSNPPPager component generating the event. Code is the numeric code 
of the error. Msg is the message string associated with the error as returned by the SNPP 
server.

OnSNPPSuccess property 

property OnSNPPSuccess : TSNPPMessage

TSNPPMessage = procedure(
Sender : TObject; Code : Integer; Msg : string) of object;

Defines an event handler that is fired whenever TApdSNPPPager detects a “200-Level” 
success/proceed response code returned from the SNPP server. 

Sender is the TApdSNPPPager component generating the event. Code is the numeric code 
of the success response. Msg is the message string associated with the response as returned 
by the SNPP server.

TApdSNPPPager overrides the TApdAbstractPager.Send method to implement the required 
behaviors for SNPP.

Port property

property Port : TApdWinsockPort

Determines the Winsock communications port used by the TapdCustomINet pager 
component. 

A properly initialized Winsock Port component must be assigned to this property before 
pages can be transmitted over TCP/IP.
58     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Send method

procedure Send;

Causes TApdSNPPPager to connect and send a page.

When you call Send, the TApdSNPPPager component instructs its associated 
TApdWinsockPort component to initiate a TCP/IP connection. The TApdWinsockPort 
uses the IP address set in its wsAddress property, and the IP port defined in its wsPort 
property to make the connection.

TApdSNPPPager waits for the response defined in the ServerInitString property and then 
begins an SNPP transaction; first sending the desired destination for the page (in the 
PagerID property), then the text of the message (in the Message property); then it instructs 
the SNPP server to send. Upon receipt of a successful send TApdSNPPPager logs out of the 
SNPP server.

The following example shows how to send a simple page with the TApdSNPPager 
component:

procedure TForm1.Button1Click(Sender : TObject);
begin

ApdWinsockPort1.WsAddress := 'snpp.myservice.com';
ApdWinsockPort1.WsPort := '9999';
ApdSNPPPager1.PagerID := '12345';
ApdSNPPPager1.Message.Add('Hi There!');
ApdSNPPPager1.Send;

end;

ServerDataInput property

property ServerDataInput : string

Default: SNPP_RESP_DATAINPUT   (“3??”)

Defines the string that indicates the server is ready for multi-line input. 

The ServerDataInput property is the string that the user wishes TApdSNPPPager to watch 
for to indicate that the SNPP server has recognized the request to send a multi-line 
command and is waiting for input. This response can vary among servers, but is generally 
prefixed by a success response code in the range 300-399. 

The string may contain wildcards in the form of question marks to indicate that any 
character (usually a digit) is acceptable at that point.
TApdSNPPPager Component     859

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

ServerDoneString property

property ServerDoneString : string

Default: “221”

Defines the string that indicates server log-out.

The ServerDoneString property is the string that the user wishes TApdSNPPPager to watch 
for to indicate that the SNPP server is responding to the SNPP “QUIT” command and has 
logged out of the paging session. This response may vary among servers, but the common 
response seems to be prefixed by a code of 221.

The string may contain wildcards in the form of question marks to indicate that any 
character (usually a digit) is acceptable at that point.

ServerInitString property

property ServerInitString : string

Default: “220”

Defines the string indicating successful login.

The ServerInitString property is the string that the user wishes TApdSNPPPager to watch 
for to indicate that the SNPP server has responded to login and is ready to receive SNPP 
commands. This may vary among servers, but is generally prefixed by a “220” success 
response code.

The string may contain wildcards in the form of question marks to indicate that any 
character (usually a digit) is acceptable at that point.

ServerResponseFailContinue property

property ServerResponseFailContinue : string

Default: SNPP_RESP_FAILCONTINUE  (“5??”)

Defines the string that indicates a non-fatal error in the paging transaction.

The ServerResponseFailContinue property is the string that the user wishes 
TApdSNPPPager to watch for to indicate that the SNPP server has encountered a problem 
with the SNPP transaction but is able to proceed. These responses may vary among servers, 
but they are generally prefixed by a code in the range 500-599.  

The string may contain wildcards in the form of question marks to indicate that any 
character (usually a digit) is acceptable at that point.
60     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ServerResponseFailTerminate property

property ServerResponseFailTerminate : string

Default: SNPP_RESP_FAILTERMINATE  (“4??”)

Defines the string that indicates a fatal error in the paging transaction.

The ServerResponseFailTerminate property is the string that the user wishes 
TApdSNPPPager to watch for to indicate that the SNPP server has encountered a problem 
with the SNPP transaction from which it is unable to recover; often the SNPP server will 
shut down upon such an event.  

These responses may vary among servers, but they are generally prefixed by a code in the 
range 400-499. The string may contain wildcards in the form of question marks to indicate 
that any character (usually a digit) is acceptable at that point.

ServerSuccessString property

property ServerSuccessString : string

Default: SNPP_RESP_SUCCESS (“25?”)

Defines the string that indicates a processing of a paging command.

The ServerSuccessString property is the string that the user wishes TApdSNPPPager to 
watch for to indicate that the SNPP server has responded that a SNPP command has been 
successfully received and processed. This response can vary among servers, but is generally 
prefixed by a success code in the range 250-259. 

The string may contain wildcards in the form of question marks to indicate that any 
character (usually a digit) is acceptable at that point.
TApdSNPPPager Component     861

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdPagerLog Component
TApdPagerLog is a small class that can be associated with a TApdAbstractPager descendant 
(e.g., TApdTAPPager or TApdSNPPPager) to provide automatic page logging services. 
Simply create an instance TApdPagerLog and assign it to the PagerLog property of the pager 
component.

TApdPagerLog creates or appends to a text file whose name is given by the 
PageHistoryName property. As the pager component processes a page transaction it 
instructs the TApdPagerLog instance to open the log file, write a new line indicating the 
current status, and close the file.

Following is a sample of the text that might be created by a TApdPagerLog attached to a 
TApdSNPPPager:

09/09/1999 17:03:58 TAP page to 123456 at (800)555-1234 Started
09/09/1999 17:05:05 TAP page to 123456 at (800)555-1234 Completed

09/09/1999 17:08:42 TAP page to 123123 at (800)555-1122 Started
09/09/1999 17:09:51 TAP page to 123123 at (800)555-1122 Completed

09/09/1999 17:14:20 SNPP page to 1261261 at
snpp.myservice.com:2222 Started

09/09/1999 17:14:25 SNPP page to 1269694 at
snpp.myservice.com:2222 Completed

09/09/1999 17:27:17 TAP page to 112233 at (800)555-9999 Started
09/09/1999 17:27:32 TAP page to 112233 at (800)555-9999 Failed -

Reason: Cancel Requested

09/09/1999 17:27:17 TAP page to 2222211 at (800)555-9999 Started
09/09/1999 17:27:32 TAP page to 2222211 at (800)555-9999 Failed -

Reason: Line Busy

09/09/1999 18:06:52 SNPP page to 1269694 at snpp.pageinc.com:9797
Started

09/09/1999 18:07:01 SNPP page to 1269694 at snpp.pageinc.com:9797
Failed - Reason: Cancel Requested
62     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMisc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdPagerLog (AdPager)

Properties
HistoryName Pager ! Version

Methods
UpdateLog
TApdPagerLog Component     863

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference Section

HistoryName property

property HistoryName : string

Default: adpgDefPagerHistoryName  (“APROPAGR.HIS”)

Determines the name of the file used to store the protocol log.

You should generally set the value of HistoryName before calling the pager component’s 
Send method.  However, because the log file is opened and closed for each update, you can 
change the HistoryName at any time you wish.  If you set HistoryName to an empty string, 
automatic logging is disabled until you assign a non-empty string.

Pager property

property Pager : TApdAbstractPager

The pager component that is using the log component.

Pager is automatically initialized when the PagerLog property of the owning pager 
component is set. You can change Pager to assign the log component to a different pager 
component.

UpdateLog virtual method

procedure UpdateLog(LogStr : string); virtual;

Called for each page logging event.

You may call this method with your own strings to add items to the log at any time.
64     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdGSMPhone Component
The TApdGSMPhone component provides access to cellular phones and other GSM 
compliant devices. One of the more popular uses of GSM is the sending and receiving of 
SMS messages. The TApdGSMPhone component can send SMS messages through the GSM 
device, provide notification when SMS messages are received, and provide access to the 
GSM device’s internal message store.

Async Professional and SMS messaging
The TApdGSMPhone component encroaches upon a technology that is often 
misunderstood. GSM is the Global System for Mobile communications, a consortium of 
several leading cellular companies. GSM defines the communication protocol between the 
cell phone and the cellular service provider. GSM also defines a communications protocol 
between a terminal device (PC) and the cell phone. The TApdGSMPhone uses the text-
mode AT command set defined by GSM Technical Specification 07.05 version 5.1.0, dated 
December 1996.

One of the features that make GSM popular is the text messaging that it provides. When 
people think of GSM text messaging they think of SMS. SMS stands for “Short Message 
Service”, and defines a message format that can be transmitted and received by GSM 
compliant cell phones. In Europe and Asia, SMS is very popular. The idea behind SMS is 
gaining popularity in the US, but most US cellular service providers take some liberties with 
their definition of SMS. Most US cellular service providers advertise SMS, but they do not 
use the SMS defined by GSM.

There are several cellular protocols being used around the world. GSM is used primarily in 
Europe and Asia; TDMA and CDMA are used in the US. TDMA and CDMA do not define 
the protocol between the PC and the cell phone, and cell phones using these protocols use 
different AT command sets.

The TApdGSMPhone component requires a GSM capable device that support text-mode 
AT commands. This usually means a GSM cell phone. At the time of this writing, very few 
US cellular service providers offered GSM cell phones. The TApdGSMPhone was tested in-
house with a Nokia 5190. The TApdGSMPhone component uses only the commands 
specified as mandatory in the GSM Technical Specification for text-mode operation. If your 
cell phone is not GSM capable, most cellular service providers will offer a TAP or SNPP 
gateway. See the TApdTAPPager and TApdSNPPPager components for details on sending 
messages using those paging protocols.
TApdGSMPhone Component     865

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
GSM—more than paging
The TApdGSMPhone component supports sending and receiving SMS messages through 
the GSM device. It also supports managing the message store maintained by the device. The 
TApdGSMPhone component can retrieve all of the messages in the GSM device’s memory, 
delete messages, add messages, and otherwise manage the message store.

The TApdSMSMessage class
When the TApdGSMPhone.Connect method is called, the cell phone is initialized to 
support text-mode, and the cell phone’s message store is loaded into the MessageStore 
property of the TApdGSMPhone. MessageStore is a TStringList descendent, each Items and 
Objects value represents a message in the phone’s message store. The Items property 
contains a string indicating the timestamp for the message. The Objects property contains a 
TApdSMSMessage object, which contains properties that define the message itself. The 
TApdSMSMessage class contains the properties shown in Table 16.4 that describe the 
message.

The TApdSMSStatus type is an enumeration of the possible status flags for an SMS message. 
The Status property of the TApdSMSMessage class can be one of the following values shown 
in Table 16.5.

Table 16.4: TApdSMSMessage class properties

Property Type Description

Address String The SMS address of the sender for inbound
messages, of the destination for outbound
messages.

Message String The text of the SMS message.

Status TApdSMSStatus The status of the message (read, sent, etc.).

TimeStamp TDateTime The timestamp on the message.

Table 16.5: TApdSMSStatus enumeration

Value Description

ssUnread The message has not been read.

ssRead The message has been read.

ssUnsent The message has not been sent.

ssSent The message has been sent.
66     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The TApdMessageStore class
The cell phone maintains a list of messages in a message store. The TApdGSMPhone 
component provides that message store in the MessageStore property. When the 
Synchronize method of the TApdGSMPhone component is called, commands are sent to the 
phone to retrieve all messages in the phone’s message store. These messages are stored in the 
MessageStore property as TApdSMSMessage objects. When messages are added to the 
MessageStore property they are added to the phone’s message store. When messages are 
deleted from the MessageStore property they are deleted from the phone’s message store. 

When adding messages to the MessageStore property, the message is not sent automatically, 
it is merely placed in the phone’s message store outbox. The TApdGSMPhone’s 
SendAllMessages and SendFromMemory methods will transmit the messages once they are 
placed in the phone’s message store. SendAllMessages will send commands to the phone to 
send all messages in the phone’s message store outbox. SendFromMemory will only 
transmit the specified message.

The TApdMessageStore class is a TStringList descendent. Most public methods are 
overridden to manage the phone’s message store as items are added, deleted or moved. The 
Add method will add a message to the phone’s message store outbox. The Delete method 
will erase the specified message from the phone’s message store. The Capacity property is a 
reflection of the phone’s message store capacity. The Clear method will erase all messages in 
the phone’s message store.

Protocol implementation
The GSM Technical Specification (GTS) 07.05 version 5.1.0 dated December 1996 defines 
three interface protocols to communicate between the GSM device and computer serial 
port:

• Binary protocol (Block mode).

• Character-based interface using “AT” commands (Text mode).

• Character-based interface with hex-encoded binary transfer of message blocks (PDU 
mode).

The TApdGSMPhone component implements the Text-mode interface. In text mode, the 
TApdGSMPhone will transmit GSM AT commands to the GSM device and collect the 
responses. The commands that the TApdGSMPhone uses are defined in the GTS as 
mandatory for the device to support. In reality, not all GSM devices support all of the 
TApdGSMPhone Component     867

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
mandatory commands. If your device does not support these mandatory commands, it is 
unlikely that you will be able to use all of the TApdGSMPhone methods. The GSM AT 
commands that the TApdGSMPhone uses are listed in Table 16.6.

The QuickConnect property determines whether or not the TApdGSMPhone component 
will automatically synchronize the MessageStore with the phone’s message store upon 
connection. If QuickConnect is False (the default) the MessageStore will be synchronized.

Table 16.6: Supported GSM AT commands

GSM AT Command Description

General configuration commands

+CSMS Select Message Service – used to verify GSM compliance.

+CPMS Selects Preferred Message Storage.

Message configuration commands

+CSMP Set text mode parameters.

+CSDH Show text mode parameters.

Message receiving and reading commands

+CNMI Request New Message Indications (notification when a
message is received).

+CMGL List messages.

Message sending and writing commands

+CMGS Send message.

+CMSS Send message from memory.

+CMGW Write message to memory.

+CMGD Delete message from memory.
68     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Using the TApdGSMPhone component
The TApdGSMPhone component is designed to be functional and easy to use. The first 
example will demonstrate sending a single SMS message through a GSM compliant cell 
phone. The second example will demonstrate one way to display a phone’s message store in a 
TListBox component.

Sending a single SMS message
Create a new project; drop a TApdComPort and TApdGSMPhone component onto the 
form. Set the ComNumber property of the TApdComPort component to the serial port 
number where the GSM data cable is connected. Drop a TLabel component onto the form 
and change the Caption property to “Destination address.” Drop a TEdit component on the 
form next to the label. Drop another TLabel component on the form and change the 
Caption to “Message.” Drop another TEdit component onto the form next to that label. 
Finally, drop the obligatory TButton onto the form and change the Caption property to 
“Send.” Create the button’s OnClick event handler and enter the following code:

procedure TForm1.Button1Click(Sender: TObject);
begin

{ set the message properties }
ApdGSMPhone1.SMSAddress := Edit1.Text;
ApdGSMPhone1.SMSMessage := Edit2.Text;
{ tell the component not to synchronize the message store }
ApdGSMPhone1.QuickConnect := True;
{ send the message }
ApdGSMPhone1.SendMessage;

end;

When the message has been sent to the phone, the OnSessionFinish event will be generated. 
The ErrorCode parameter of that event will tell you whether the message was sent 
successfully (ErrorCode = ecOK) or whether it failed (ErrorCode = one of the ecSMSXxx 
error codes). Create the OnSessionFinish event handler and make it look like the following:

procedure TForm1.ApdGSMPhone1SessionFinish(Pager:
TApdCustomGSMPhone;

ErrorCode: Integer);
begin

ShowMessage('Message status: ' + ErrorMsg(ErrorCode));
end;

Compile and run your project. Enter a destination address in the first edit control and a 
short message in the second edit control, and then click the button. The “Message status” 
dialog box will be displayed once the phone responds to the commands.
TApdGSMPhone Component     869

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
To expand upon this example, you can send multiple messages in the same session. To do 
this, add the OnNextMessage event handler. This event is generated when the response to 
the previous message has been received. If another message is ready to be sent, set the 
Address and Message properties to the appropriate values for the new message and set the 
NextMessageReady parameter to True. If another message is not ready to be sent, set the 
NextMessageReady parameter to False. Once all messages have been sent (after you set 
NextMessageReady to False), the OnSessionFinish event will be generated.

Displaying the phone’s message store
This example demonstrates how to connect to your GSM compliant cell phone, and retrieve 
and display the phone’s message store. Create a new project and drop a TApdComPort and 
TApdGSMPhone component onto the form. Set the ComNumber property of the 
TApdComPort component to the serial port number where the GSM data cable is 
connected. Drop three TEdit components onto the form, change the names to edtAddress, 
edtTimestamp, and edtStatus. Drop a TMemo on the form to contain the message and name 
that MemoMessage. Finally, drop the obligatory TButton onto the form and change the 
Caption property to “Connect.” Create the button’s OnClick event handler and enter the 
following code:

procedure TForm1.Button1Click(Sender: TObject);
begin

{ connect to phone and synchronize the message store }
ApdGSMPhone1.QuickConnect := False;
ApdGSMPhone1.Connect;

end;

If the QuickConnect property is False, the MessageStore property of the TApdGSMPhone 
component will be populated with the cell phone’s internal message store. When the 
TApdGSMPhone component completes the initialization and retrieves the message store 
from the phone, the OnGSMComplete event will be generated. The State parameter of that 
event handler will be gsListAll, and the ErrorCode will be ecOK if the component was able 
to retrieve the message store. Create the OnGSMComplete event handler and add the 
following code to display the timestamps of the messages in the list box:

procedure TForm1.ApdGSMPhone1GSMComplete(
Pager: TApdCustomGSMPhone; State: TApdGSMStates;
ErrorCode: Integer);

begin
if State = gsListAll then

ListBox1.Items.AddStrings(Pager.MessageStore);
end;
70     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
In this example we will be displaying the details of the message when the list box is double 
clicked. Add the OnDblClick event handler for the TListBox and add the following code:

procedure TForm1.ListBox1DblClick(Sender: TObject);
var

I : Integer;
Msg : TApdSMSMessage;

begin
if ListBox1.ItemIndex > 0 then begin

I := ListBox1.ItemIndex;
Msg := ApdGSMPhone1.MessageStore.Messages[I];
edtAddress.Text := Msg.Address;
edtTimestamp.Text := Msg.TimeStampStr;
edtStatus.Text := ApdGSMPhone1.StatusToStr(Msg.Status);
MemoMessage.Text := Msg.Message;

end;
end;
TApdGSMPhone Component     871

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdSMSMessage Class
The TApdGSMPhone component uses the TApdSMSMessage class to defines SMS messages 
contained in the MessageStore of the component. The TApdSMSMessage class descends 
from TObject and encapsulates an SMS message.

Hierarchy
TObject (VCL)

TApdSMSMessage (AdGSM)

Properties
Address

Message

MessageIndex

Status

TimeStamp

TimeStampStr
72     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

Address property

property Address : string

Contains the SMS address of the message.

Address is the SMS address of the SMS message. For received messages, Address is the 
address of the sender. For outbound message, Address is the address of the destination.

Message property

property Message : string

The SMS message text.

Message is the text of the SMS message. SMS text messages are usually limited to 160 
characters, including the address and the text of the message. No validation is performed on 
the size of the message through the components. 

MessageIndex property

property MessageIndex : Integer

The position in the phone’s message store.

The MessageIndex property reflects the position of the message in the phone’s message 
store. The MessageIndex is dependent on the phone’s message store, and may not be 
consecutive.
TApdSMSMessage Class     873

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Status property

property Status : TApdSMSStatus

TApdSMSStatus = (ssUnread, ssRead, ssUnsent, ssSent, ssAll);

Status determines the status of the message.

Status is the phone’s flag for the message. Status can be one of the following:

The StatusToString method of the TApdGSMPhone component can convert a 
TApdSMSStatus value to a string.

TimeStamp property

property TimeStamp : TDateTime

TimeStamp is a TDateTime indicating the timestamp of the message.

TimeStamp is the timestamp for the message. The SMS timestamp is usually inserted into 
the message by the cell phone, and usually indicates when the message was transmitted. You 
cell phone may treat TimeStamp differently.

See also: TimeStampStr

TimeStampStr property

property TimeStampStr : string

A string containing the message timestamp.

The GSM specification defines a fairly specific format to indicate the timestamp of the 
message. The TimeStampStr property reflects the literal timestamp provided by the cell 
phone. The TimeStamp property is a converted representation of this literal timestamp 
string.

See also: TimeStamp

Value Description

ssUnread The message has not been read.

ssRead The message has been read.

ssUnsent The message has not been sent.

ssSent The message has been sent.
74     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TApdMessageStore Class
The TApdGSMPhone maintains a list of messages which reflects the message store on the 
cell phone. TheTApdMessageStore class defines the interface with the cell phone’s message 
store.

Hierarchy
TStringList (VCL)

TApdMessageStore (AdGSM)

Properties
Capacity Messages

Methods
AddMessage Clear Delete
TApdMessageStore Class     875

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Reference Section

AddMessage method

function AddMessage(const Dest, Msg : string) : Integer;

Adds an SMS message to the message store.

Use the AddMessage method to add an SMS message to the message store. If the 
TApdGSMPhone is connected to the cell phone, the message is added immediately.

Dest is the destination address of the message. Msg is the text of the message. 

Capacity read-only, run-time property

property Capacity : Integer

Indicates the message store capacity.

Different cell phones will have internal message stores with different capacities. The 
Capacity property indicates the number of messages that the phone’s message store can 
contain. This property is valid once the Synchronize method of the TApdGSMPhone has 
been called.

Clear method

procedure Clear;

Deletes all messages from the message store.

Use the Clear method to delete all messages from the TApdMessageStore and the cell phone. 

Delete method

procedure Delete(Index: Integer);

Deletes a single message from the TApdMessageStore and the cell phone.

Delete is an indexed property that deletes the specified message from both the cell phone’s 
message store and the TApdMessageStore. Index is the index of the message to delete.
76     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

Messages run-time property

property Messages[Index: Integer] : TApdSMSMessage

Contains the messages stored in the TApdMessageStore.

The Messages property of the TApdMessageStore class is an indexed property that provides 
access to the SMS messages contained in the class. Use Messages the same way the Strings 
and Objects properties of the TStringList are used. The return value will be the 
TApdSMSMessage stored in the location determined by Index. 
TApdMessageStore Class     877

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TApdGSMPhone Component
TApdGSMPhone forms the foundation for accessing cell phones or other GSM devices and 
provides a set of properties and methods to control TApdSMSMessage class and 
TApdMessageStore.

Hierarchy
TComponent (VCL)

! TApdBaseComponent (OOMISC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

TApdCustomGSMPhone (AdGSM)

TApdGSMPhone (AdGSM)

Properties
ComPort

Connected

ErrorCode

GSMState

MessageStore

NotifyOnNewMessage

QuickConnect

SMSAddress

SMSMessage

! Version

Methods
Connect

SendAllMessages

SendMessage

Synchronize

Events
OnGSMComplete OnNewMessage OnNextMessage
78     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

ComPort property

property ComPort : TApdCustomComPort

Determines the serial port used by the TApdGSMPhone component.

A comport component must be assigned to this property before connecting to the phone 
with the AutoOpen set to True (default). If the AutoOpen property of ComPort is False, the 
port must be explicitly opened before use.

Connect method

procedure Connect;

Connects to the cell phone or GSM device.

The Connect method configures the device, verifies that it supports the GSM AT command 
set, and synchronizes the message store. When QuickConnect is False, the TApdGSMPhone 
component will be synchronized automatically with the phone’s message store. When 
QuickConnect is True, the Synchronize method will not be called and one can send a 
message without using the memory store.

Once Connect completes, the OnGSMComplete event will be generated. If QuickConnect is 
False, the State parameter of that event will be gsListAll. If QuickConnect is True, the State 
parameter of that event will be gsConfig.

See also: Connected, OnGSMComplete, QuickConnect

Connected property

property Connected : Boolean

Determines whether a connection to the phone has been made or not.

Connected is True when a successful link to the device has been made, and False when not 
linked to the device.

See also: Connect
TApdGSMPhone Component     879

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

ErrorCode property

property ErrorCode : Integer

The result of the last operation

ErrorCode contains the result of the last operation. ErrorCode can be one of the following 
values:

Error Code Description

0…127 GSM 04.11 values.

128…255 GSM 03.40 values.

300 ME failure.

301 SMS service of ME reserved.

302 Operation not allowed.

303 Operation not supported.

304 Invalid PDU mode parameter.

305 Invalid text mode parameter.

310 SIM not inserted.

311 SIM PIN required.

312 PH-SIM PIN required.

313 SIM failure.

314 SIM busy.

315 SIM wrong.

316 SIM PUK required.

317 SIM PIN2 required.

318 SIM PUK2 required.

320 Memory failure.
80     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

GSMState property

property GSMState : TApdGSMStates

TApdGSMStates = (
gsNone, gsConfig, gsSendAll, gsListAll, gsSend, gsWrite)

The state the GSM Phone is in at that moment.

The GSMStates are used internally primarily to determine that state of the GSM state 
machine. GSMState will be set when one of the TApdGSMPhone public methods is called to 
indicate what the TApdGSMPhone is doing. 

The following table shows the TApdGSMStates values:

321 Invalid memory index.

322 Memory full.

330 SMSC address unknown.

331 No network service.

332 Network timeout.

340 No +CNMA acknowledgement expected.

500 Unknown error.

512… Manufacturer specific.

Value Description

gsNone Idle.

gsConfig Configuration and GSM validation.

gsSendAll Sending all messages from the message store.

gsListAll Retrieving messages from the message store.

gsSend Sending a single SMS message.

gsWrite Writing a single SMS message to the message store.

Error Code Description
TApdGSMPhone Component     881

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

MessageStore property

property MessageStore : TApdMessageStore

Contains a list of SMS messages.

The MessageStore property contains a list of SMS messages. The MessageStore property is a 
TApdMessageStore, which is a TStringList descendent. See the TApdMessageStore and 
TApdSMSMessage definitions earlier in this section for details. 

NotifyOnNewMessage property

property NotifyOnNewMessage : Boolean

Determines whether notification is provided for new messages.

The GSM specification permits initializing the device to provide notification when new 
messages are received. The NotifyOnNewMessage property determines whether the device 
is configured to provide this notification or not. 

When a new message is received, and the device has been properly configured, the 
OnNewMessage event will be generated to provide notification of the newly received 
message.

See also: OnNewMessage

OnGSMComplete event

property OnGSMComplete : TApdGSMCompleteEvent

TApdGSMComleteEvent = procedure(Pager : TApdCustomGSMPhone;
State : TApdGSMStates; ErrorCode : Integer) of object;

Defines an event handler that is called when the GSM operation is complete.

A GSM operation is started when the Connect, SendAllMessages, SendMessage, and 
Synchronize methods are called, as well as when the messages contained in the 
MessageStore property are modified. The OnGSMComplete event is generated when the 
operation is complete.

Pager is the TApdCustomGSMPhone component that generated the event. State is a 
TApdGSMState that indicates the operation that just completed. ErrorCode is the result of 
the operation.

See also: ErrorCode, GSMState
82     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

OnNewMessage event

property OnNewMessage : TApdGSMNewMessageEvent

TApdGSMNewMessageEvent = procedure(Pager : TApdCustomGSMPhone;
Index : Integer; Message : string) of object;

Defines an event handler that is called when there is a new SMS message in the 
memory store.

If the NotifyOnNewMessage property is True, and the device supports it, the device will 
send notification to the TApdGSMPhone component when a new message is received. 
When this notification is received, the newly received message is stored in the MessageStore 
property and this event is generated.

Pager is the TApdCustomGSMPhone component that generated the event. Index is the 
position in the MessageStore property where the new message was placed. Message is a 
string containing the text of the received message.

See also: MessageStore, NotifyOnNewMessage

OnNextMessage event

property OnNextMessage : TApdGSMNextMessageEvent

TApdGSMNextMessageEvent = procedure(Pager : TApdCustomGSMPhone;
Index : Integer; NextMessageReady : Boolean) of object;

Defines an event handler that returns the next message to send.

The TApdGSMPhone component supports sending multiple SMS messages in a single 
operation. When the SendMessage method is called, the message defined by the 
SMSAddress and SMSMessage properties is sent immediately. Once confirmation that this 
message has been sent is received, the OnNextMessage event is generated.

If another message is ready to be sent, change the SMSAddress and SMSMessage properties 
to reflect the new message to send, and set the NextMessageReady parameter to True. If 
another message is not ready, set the NextMessageReady parameter to False. The 
OnGSMComplete event handler will be generated once NextMessageReady is set to False.

ErrorCode contains the result of the last message sent.

See also: OnGSMComplete, SendMessage, SMSAddress, SMSMessage
TApdGSMPhone Component     883

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

QuickConnect property

property QuickConnect : Boolean

Default: False

This property determines whether to connect without synchronizing the phone.

When the Connect method of the TApdGSMPhone component is called, the device is 
initialized and the GSM capabilities of the device are verified. If the QuickConnect property 
is False (the default), the MessageStore property is synchronized with the message store of 
the device. If QuickConnect is True, the operation terminates once the device has been 
connected.

Set QuickConnect to True if your device does not support an internal message store, or if 
you do not want to synchronize the message stores.

See also: Connect

SendAllMessages method

procedure SendAllMessages;

This procedure sends all the SMS messages in the memory store.

SendAllMessages iterates through all of the messages contained in the MessageStore 
property and sends all messages with a Status of ssUnsent. 

SendMessage method

procedure SendMessage;

This routine will send a message without placing the message in memory.

This method is used to send a single message, or to start sending a series of messages, 
without accessing the GSM device’s message store. Set the SMSAddress property to the SMS 
address of the recipient for the message, and the SMSMessage property to the message that 
you want to send, then call the SendMessage method. If the OnNextMessage event handler is 
assigned, that event will be generated once SendMessage sends the message. The 
OnNextMessage event handler can be used to send a sequence of messages.

The OnGSMComplete event handler will be generated once SendMessage completes 
sending messages.

See also: OnGSMComplete, OnNextMessage, SMSAddress, SMSMessage
84     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

SMSAddress property

property SMSAddress : string

The SMS address of the recipient for an SMS message.

The SMSAddress property determines where the SMS message will be sent. This property is 
used with the SendMessage method to transmit a single message, or a series of messages. 
The message determined by SMSMessage is sent to the address determined by SMSAddress.

The SMSAddress and SMSMessage properties, and the SendMessage method, do not access 
the message store of the GSM device or the MessageStore property of the component.

See also: OnNextMessage, SendMessage, SMSMessage

SMSMessage property

property SMSMessage : string

The SMS message.

The SMSMessage property determines the message to send. This property is used with the 
SendMessage method to transmit a single message, or a series of messages. The message 
determined by SMSMessage is sent to the address determined by SMSAddress.

The SMSAddress and SMSMessage properties, and the SendMessage method, do not access 
the message store of the GSM device or the MessageStore property of the component.

See also: OnNextMessage, SendMessage, SMSAddress

Synchronize method

procedure Synchronize;

This routine will synchronize the message store of the GSM device.

The Synchronize method is used to synchronize the messages contained in the 
MessageStore property with the messages contained in the GSM device’s internal message 
store. This method is called internally during a Connect sequence if the QuickConnect 
property is False. 

See also: Connect, MessageStore, QuickConnect
TApdGSMPhone Component     885

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
86     Chapter 16: Paging Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 17: Low-level Facilities

The routines described in this chapter come from a few units that Async Professional uses 
internally. These routines may also prove useful in your applications and therefore are 
documented here.

The first section documents procedures and functions that manage event timers. These 
non-object-oriented routines are used to provide tick-resolution (18.2 ticks/second) timing 
services for the rest of the library.

The second section documents a few functions that return strings for numeric codes: serial 
port names, error messages, and protocol names from the corresponding numeric type used 
by Async Professional.

The third section documents the IsPortAvailable method, which can be used to determine 
whether a specific serial port is available.
     887

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Timers
The OoMisc unit provides the timer routines used internally by Async Professional. You 
might find these routines handy for your programs as well. In almost all cases you will find it 
more convenient to use timer triggers with a TApdComPort component (see page 22) rather 
than working with the timer routines directly. If you don’t want to use OoMisc timers 
directly then you don’t need to read this section.

OoMisc’s basic time unit is the BIOS clock tick. One clock tick is approximately 55 
milliseconds. Put another way, there are about 18.2 clock ticks per second. This means that 
55 milliseconds is the smallest interval that you can time and the timing of any event has an 
uncertainty of 55 milliseconds.

Unless otherwise specified, all Async Professional routines that have time-out parameters—
the Ticks parameter to the TApdComPort SetTimerTrigger method, for example—require a 
value expressed in clock ticks. OoMisc also offers routines to convert between ticks and 
seconds in case you prefer to work with seconds.

The basic timer record is called an EventTimer. When an EventTimer is initialized it is 
passed the duration of the event. EventTimers can also be used to measure elapsed times, in 
which case the initial duration isn’t important and can be set to zero.

Here is an example program that uses some timer functions:

uses OoMisc;

procedure TForm1.Button1Click(Sender: TObject);
var

ET: EventTimer;
begin

Aborted := False; { Global Boolean Flag }
Label2.Caption := '';
NewTimer(ET, Secs2Ticks(60));
repeat

Label1.Caption := Format(
'Elapsed ticks: %d Remaining ticks: %d',
[ElapsedTime(ET), RemainingTime(ET)]);

Application.ProcessMessages;
until Abort or TimerExpired(ET);

end;

procedure TForm1.Button2Click(Sender: TObject);
begin

Aborted := True;
Label2.Caption := 'Aborted';

end;
88     Chapter 17: Low-level Facilities



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
This example uses a simple WinCrt-based interface because the EventTimer is user-interface 
independent.

An EventTimer is initialized by calling NewTimer, which is passed an EventTimer and the 
number of ticks until expiration. This example uses the Secs2Ticks function to start an 
EventTimer that expires in 60 seconds (or 1092 clock ticks).

This program loops continuously, displaying the elapsed ticks and the remaining ticks, until 
the timer expires or a key is pressed.

It is perfectly legal to use the ElapsedTime routines even after a timer has expired. If the 
example program called ElapsedTime after the timer had expired, it would still return the 
number of ticks since the timer was started.

A timer is good for 24 hours at most. If you reference a timer after 24 hours, the results are 
modulo 24 hours.

Routines
DelayTicks

ElapsedTime

ElapsedTimeInSecs

NewTimer

NewTimerSecs

RemainingTime

RemainingTimeInSecs

Secs2Ticks

Ticks2Secs

TimerExpired
Timers     889

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

DelayTicks

function DelayTicks(Ticks: LongInt; Yield : Bool) : LongInt;

Delays for a specified number of clock ticks.

If Yield is False, DelayTicks does not yield to other applications and returns control only 
after Ticks ticks elapse. In this case the function result is always zero.

If Yield is True, DelayTicks yields to other applications and to the owning application. The 
return value is a long integer whose low word is the last Windows message number and high 
word is the window handle that received the message. If the owning application posts a quit 
message (WM_QUIT) DelayTicks reposts the message and exits, and the message part of 
the function result is WM_QUIT.

Even with Yield set to True, DelayTicks should not be used to delay for periods of time 
longer than a few seconds. For longer delays you should set up an EventTimer or a timer 
trigger and continue the execution of your program until the timer expires.

ElapsedTime

function ElapsedTime(ET : EventTimer) : LongInt;

EventTimer = record
StartTicks : LongInt; {Tick count when timer was initialized}
ExpireTicks : LongInt; {Tick count when timer will expire}

end;

Returns the elapsed time, in ticks, for this timer.

This routine returns the number of ticks that have elapsed since NewTimer was called to 
initialize the specified EventTimer. In the EventTimer record, both fields hold tick counts 
since midnight. A tick is a PC hardware interval that occurs roughly 18.2 times per second, 
or about once per 55 milliseconds.

See also: ElapsedTimeInSecs, NewTimer
90     Chapter 17: Low-level Facilities



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

ElapsedTimeInSecs

function ElapsedTimeInSecs(ET : EventTimer) : LongInt;

Returns the elapsed time, in seconds, for this timer.

This routine returns the same result as ElapsedTime, but converted to seconds. Partial 
seconds are truncated.

The following example shows how to use an EventTimer within a simple WinCrt 
application. Async Professional uses timers internally, without direct connection to the user 
interface. 

This example displays the elapsed time until a key is pressed or 20 seconds have elapsed:

var
ET : EventTimer;

begin
WriteLn('You have 20 seconds to press a key:');
NewTimerSecs(ET, 20);
repeat

Write(^M, ElapsedTimeInSecs(ET));
until KeyPressed or TimerExpired(ET);
WriteLn;
if not KeyPressed then WriteLn('Time is up.');

end.

See also: ElapsedTime, NewTimer

NewTimer

procedure NewTimer(var ET : EventTimer; Ticks : LongInt);

Initializes a timer that will expire in the specified number of clock ticks.

This routine initializes an EventTimer record, which is used to measure elapsed time or to 
schedule an event. NewTimer does two things: 1) it stores the current time in the StartTicks 
field of ET, and 2) it calculates what the time will be when Ticks number of clock ticks expire 
and stores that value in ExpireTicks. Ticks must be less than or equal to TicksPerDay 
(1,573,040). The timer handles rollover at midnight when needed.
Timers     891

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

The following example initializes a timer and then loops until the timer expires in 20 
seconds.

var
ET : EventTimer;

...
NewTimer(ET, Secs2Ticks(20));
repeat

...
until TimerExpired(ET);

See also: ElapsedTime, NewTimerSecs, RemainingTime, TimerExpired

NewTimerSecs

procedure NewTimerSecs(var ET : EventTimer; Secs : LongInt);

Initializes a timer that will expire in the specified number of seconds.

This routine is identical to NewTimer except that the time-out period is expressed in terms 
of seconds rather than clock ticks.

See also: ElapsedTime, NewTimer, RemainingTimeInSecs, TimerExpired

RemainingTime

function RemainingTime(ET : EventTimer) : LongInt;

Returns the amount of time remaining, in clock ticks, until the specified timer expires.

If the timer has already expired, RemainingTime returns zero.

See also: ElapsedTime, RemainingTimeInSecs, TimerExpired

RemainingTimeInSecs

function RemainingTimeInSecs(ET : EventTimer) : LongInt;

Returns the remaining time, in seconds, for the specified timer.

Partial seconds are truncated. If the timer has already expired, RemainingTimeInSecs 
returns zero.

See also: ElapsedTime, RemainingTime, TimerExpired
92     Chapter 17: Low-level Facilities



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Secs2Ticks

function Secs2Ticks(Secs : LongInt) : LongInt;

Converts seconds to clock ticks.

The conversion uses long integer arithmetic to do the conversion, which does not throw 
away any accuracy given that an integer number of ticks is being returned.

See also: Ticks2Secs

Ticks2Secs

function Ticks2Secs(Ticks : LongInt) : LongInt;

Converts clock ticks to seconds.

This routine uses long integer arithmetic and rounds to the nearest second.

The following example gets the elapsed time in ticks from a timer and displays it to the 
nearest number of seconds.

var
ET : EventTimer;

...
WriteLn(Ticks2Secs(ElapsedTime(ET)));

See also: Secs2Ticks

TimerExpired

function TimerExpired(ET : EventTimer) : Bool;

Returns True if the specified timer has expired.

The timer expires when the time originally passed to NewTimer or NewTimerSecs has 
elapsed. A timer’s elapsed time can still be used even after the timer expires.

See also: ElapsedTime, NewTimer, NewTimerSecs
Timers     893

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Name Routines
Async Professional provides several routines that are useful in message boxes, status dialogs, 
and logging reports. These routines simply convert a numeric value such as an error code 
into a string that describes the meaning of the number. These routines are described in this 
section.

Routines
ComName ErrorMsg ProtocolName
94     Chapter 17: Low-level Facilities



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

ComName

function ComName(const ComNumber : Word) : string;

Returns the name of a serial port.

ComName simply appends ComNumber to “COM.” For example, if ComNumber is 3, 
ComName returns “COM3.”

ComName is interfaced by the AdPort unit.

ErrorMsg

function ErrorMsg(const ErrorCode : SmallInt) : string;

Returns an English string describing an error code.

These strings are stored in a string table in APW.RES, which is linked into the application. 
The string table can be translated into another language if desired.

The error code you pass to ErrorMsg is usually obtained from the ErrorCode property of 
any exception class derived from EAPDException. All Async Professional exceptions 
initialize this property. In fact, when the EAPDException Create constructor is called, it 
passes the string returned by ErrorMsg on to the Create constructor of the VCL Exception 
class.

The error code can also be obtained from the TApdProtocol component’s ProtocolError 
property when a protocol is terminated abnormally, or from the ErrorCode parameter 
passed to the OnProtocolError event handler. Because protocols run in the background, 
they do not generate exceptions but instead pass error codes.

A complete list of error codes, exceptions, and error messages is given in “Error Handling 
and Exception Classes” on page 900.

ErrorMsg is interfaced by the AdExcept unit.
Name Routines     895

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

The following example shows an exception handler that takes specific action for some error 
codes and shows an error message for all others:

try
ApdComPort.Open := True;
...work with comport component

except
on E : EAPDException do

case E.ErrorCode of
...handle specific errors

else
{show error message for all errors not handled above}
ShowMessage(ErrorMsg(E.ErrorCode));

end;
end;

IsPortAvailable

function IsPortAvailable(ComNum : Cardinal) : Boolean;

Determines whether a serial port is valid or not.

The IsPortAvailable method will return true if a given serial port is valid, or false if the serial 
port is not valid. The serial port to verify is passed in the ComNum parameter.

Serial port validity is determined by two typed constants: ApdShowPortsInUse and 
ApdUseDispatcherForAvail. 

ApdShowPortsInUse defaults to true. When ApdShowPortsInUse is true, IsPortAvailable 
will consider a serial port that is in use by another application to be a valid port and return 
true. When ApdShowPortsInUse is false, IsPortAvailable will consider a serial port that is in 
use by another application to be an invalid port and return false.

ApdUseDispatcherForAvail also defaults to true. This typed constant determines whether 
the validity check is made by the Async Professional dispatcher, or by the Win32 CreateFile 
API method. Some serial ports are not accessible directly through our dispatcher, such as 
pure virtual serial port emulations. While these ports are not accessible through the default 
dispatcher, they may be accessible through a custom dispatcher or through the TAPI 
interface. 

The serial device selection dialog, displayed when the TApdComPort.ComNumber = 0 and 
TApdComPort.PromptForPort = True, will display all available serial ports using the 
IsPortAvailable method. Changing the ApdShowPortsInUse and 
ApdUseDispatcherForAvail values will filter the available port drop down list according to 
the new values.
96     Chapter 17: Low-level Facilities



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

The following example will populate a TListBox with a list of all ports that are available and 
not in use. ComName is interfaced in the AdPort unit.

uses
AdSelCom, AdPort;

procedure TForm1.Button1Click(Sender: TObject);
var

I : Integer;
begin

ApdShowPortsInUse := False;
for I := 1 to 50 do

if IsPortAvailable(I) then
ListBox1.Items.Add(ComName(I) + ' is available');

end;

ProtocolName

function ProtocolName(const ProtocolType : TProtocolType) : string;

TProtocolType = (
ptNoProtocol, ptXmodem, ptXmodemCRC, ptXmodem1K, ptXmodem1KG,
ptYmodem, ptYmodemG, ptZmodem, ptKermit, ptAscii, ptBPlus);

Returns the name of a protocol.

The ProtocolType property of a TApdProtocol component can be passed to this function to 
return the name of the protocol. For example, passing ptXmodem to this function returns 
“Xmodem” and passing ptBPlus returns “B+”.

ProtocolName is interfaced by the AdProtcl unit.

See also: TApdProtocol.ProtocolType
Name Routines     897

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
98     Chapter 17: Low-level Facilities



13

11

10

12

18

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 18: Appendices

This chapter contains a discussion of error handling, a description of the Async Professional 
conditional defines, a glossary of communications terms, and some general tips on 
debugging asynchronous communications programs in the Windows environment.
     899

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Error Handling and Exception Classes
Async Professional takes a consistent approach to error handling throughout the library. It 
uses VCL exceptions to report errors wherever it makes sense. Each exception corresponds 
to a particular error condition, which also corresponds to a numeric error code.

In two particular cases, exceptions are not a sensible way of reporting errors. The first case is 
for serial line errors. These are usually caused by line noise which can occur randomly 
throughout a communications session. They can either be ignored or they can cause the 
application to request that the remote resend a block of data. The second case is for errors 
that occur during protocol file transfers. Most such errors are handled automatically by the 
protocol. The few that cause the protocol to terminate cannot be reported by exceptions 
because Async Professional protocols run in the background, and there is no telling what 
the foreground application is doing when the fatal error occurs.

In both of these cases, errors are reported by using status codes that the application can 
check. Line errors are reported using a unique set of status codes that are described in the 
reference entry for the LineError property of the TApdComPort component (see page 22). 
Protocol errors are reported using status codes that fit into the same numeric system used 
for errors that are reported as exceptions. If a protocol error occurs in the foreground (when 
a property is set to an invalid value for example), an exception is generated.

All Async Professional exceptions descend from a class named EAPDException, itself 
descended from the VCL Exception class. EAPDException has a read/write, run-time 
property named ErrorCode. This property returns an integer status code that can be tested 
to determine the cause for a particular exception. In special cases, a new value can be 
assigned to ErrorCode to update the meaning of an error or to cause other error handlers to 
disregard the error.

Further descended from EAPDException are eight exception classes that encompass error 
groups as shown in Table 18.1.

Table 18.1: Exception class descendants of EAPDException

Exception Group Description

EGeneral General programmer error.

EOpenComm Error occurred while opening a serial port.

ESerialIO Call to a communications API failed.

EModem Improper use of a modem or dialer component.

ETrigger Error while adding or modifying a trigger.

EPacket Improper use of data packet component.
00     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
Additional exception classes derived from these groups correspond to particular error 
conditions and numeric error codes. The Table 18.2 shows the most specific Async 
Professional exception classes in alphabetical order.

EProtocol Improper use of a protocol component.

EINI INI database error.

EFax Fax conversion, unpacking, sending, or.
receiving error.

ETapi TAPI dial, answer, or configuration error.

Table 18.2: Additional Async Professional exception classes

Exception Ancestor Error Code(s)

EAlreadyDialing EModem ecAlreadyDialing

EAlreadyOpen EOpenComm ecAlreadyOpen

EApdSocketException Exception All ADWSXXX and WSAXXX error
codes

EBadArgument EGeneral ecBadArgument

EBadFieldForIndex EINI ecBadFieldForIndex

EBadFieldList EINI ecBadFieldList

EBadGraphicsFormat EFax ecBadGraphicsFormat

EBadId EOpenComm ecBadId

EBadTriggerHandle ETrigger ecBadTriggerHandle

EBaudRate EOpenComm ecBaudRate

EBufferIsEmpty ESerialIO ecBufferIsEmpty

EBufferTooBig EGeneral ecBufferTooBig

EByteSize EOpenComm ecByteSize

ECannotUseWithWinsock EGeneral ecCannotUseWithWinsock

ECantMakeBitmap EFax ecCantMakeBitmap

ECommNotOpen EOpenComm ecCommNotOpen

EConvertAbort EFax ecConvertAbort

EDatabaseEmpty EINI ecDatabaseEmpty

Table 18.1: Exception class descendants of EAPDException (continued)

Exception Group Description
Error Handling and Exception Classes     901

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
EDatabaseFull EINI ecDatabaseFull

EDataTooLarge EINI ecDataTooLarge

EDefault EOpenComm ecDefault

EFaxBadFormat EFax ecFaxBadFormat

EFaxBadMachine EFax ecFaxBadMachine

EFaxBadModemResult EFax ecFaxBadModemResult

EFaxBusy EFax ecFaxBusy

EFaxDataCall EFax ecFaxDataCall

EFaxInitError EFax ecFaxInitError

EFaxNoCarrier EFax ecFaxNoCarrier

EFaxNoDialTone EFax ecFaxNoDialTone

EFaxPageError EFax ecFaxPageError

EFaxSessionError EFax ecFaxSessionError

EFaxTrainError EFax ecFaxTrainError

EFaxVoiceCall EFax ecFaxVoiceCall

EFontFileNotFound EFax ecFontFileNotFound

EGetBlockFail ESerialIO ecGetBlockFail

EGotQuitMsg EGeneral ecGotQuitMsg

EHardware EOpenComm ecHardware

EIniRead EINI ecIniRead

EIniWrite EINI ecIniWrite

EInternal EGeneral ecInternal,
ecNoFieldsDefined,
ecNoIndexKey,
ecDatabaseNotPrepared

EInvalidPageNumber EFax ecInvalidPageNumber

EInvalidProperty EPacket ecStartStringEmpty,
ecPacketTooSmall,
ecNoEndCharCount,
ecEmptyEndString,
ecZeroSizePacket

EKeyTooLong EINI ecKeyTooLong

Table 18.2: Additional Async Professional exception classes (continued)

Exception Ancestor Error Code(s)
02     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
ELoggingNotEnabled ESerialIO ecLoggingNotEnabled

EMemory EOpenComm ecMemory

EModemBusy EModem ecModemBusy

EModemNotAssigned EGeneral ecModemNotAssigned

EModemNotDialing EModem ecModemNotDialing

EModemNotResponding EModem ecModemNotResponding

EModemNotStarted EModem ecModemNotStarted

EModemRejectedCommand EModem ecModemRejectedCommand

EModemStatusMismatch EModem ecModemStatusMismatch

ENoHandles EOpenComm ecNoHandles

ENoImageBlockMarked EFax ecNoImageBlockMarked

ENoImageLoaded EFax ecNoImageLoaded

ENoPortSelected EOpenComm ecNoPortSelected

ENotDialing EModem ecNotDialing

ENoTimers EOpenComm ecNoTimers

ENullApi ESerialIO ecNullApi

EOutputBufferTooSmall ESerialIO ecOutputBufferTooSmall

EPhonebookNotAssigned EGeneral ecPhonebookNotAssigned

EPortNotAssigned EGeneral ecPortNotAssigned

EPutBlockFail ESerialIO ecPutBlockFail

ERecordExists EINI ecRecordExists

ERecordNotFound EINI ecRecordNotFound

ERegisterHandlerFailed ESerialIO ecRegisterHandlerFailed

ESequenceError EProtocol ecSequenceError

EStringSizeError EPacket ecPacketTooLong

ETapi16Disabled ETapi ecTapi16Disabled

ETapiAddressBlocked ETapi ecAddressBlocked

ETapiAllocated ETapi ecAllocated

ETapiBadDeviceID ETapi ecBadDeviceID

Table 18.2: Additional Async Professional exception classes (continued)

Exception Ancestor Error Code(s)
Error Handling and Exception Classes     903

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
ETapiBearerModeUnavail ETapi ecBearerModeUnavail

ETapiBillingRejected ETapi ecBillingRejected

ETapiBusy ETapi ecTapiBusy

ETapiCallUnavail ETapi ecCallUnavail

ETapiCompletionOverrun ETapi ecCompletionOverrun

ETapiConferenceFull ETapi ecConferenceFull

ETapiDialBilling ETapi ecDialBilling

ETapiDialDialtone ETapi ecDialDialtone

ETapiDialPrompt ETapi ecDialPrompt

ETapiDialQuiet ETapi ecDialQuiet

ETapiGetAddrFail ETapi ecTapiGetAddrFail

ETapiIncompatibleApiVersion ETapi ecIncompatibleApiVersion

ETapiIncompatibleExtVersion ETapi ecIncompatibleExtVersion

ETapiIniFileCorrupt ETapi ecIniFileCorrupt

ETapiInUse ETapi ecInUse

ETapiInvalAddress ETapi ecInvalAddress

ETapiInvalAddressID ETapi ecInvalAddressID

ETapiInvalAddressMode ETapi ecInvalAddressMode

ETapiInvalAddressState ETapi ecInvalAddressState

ETapiInvalAppHandle ETapi ecInvalAppHandle

ETapiInvalAppName ETapi ecInvalAppName

ETapiInvalBearerMode ETapi ecInvalBearerMode

ETapiInvalCallComplMode ETapi ecInvalCallComplMode

ETapiInvalCallHandle ETapi ecInvalCallHandle

ETapiInvalCallParams ETapi ecInvalCallParams

ETapiInvalCallPrivilege ETapi ecInvalCallPrivilege

ETapiInvalCallSelect ETapi ecInvalCallSelect

ETapiInvalCallState ETapi ecInvalCallState

ETapiInvalCallStatelist ETapi ecInvalCallStatelist

Table 18.2: Additional Async Professional exception classes (continued)

Exception Ancestor Error Code(s)
04     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
ETapiInvalCard ETapi ecInvalCard

ETapiInvalCompletionID ETapi ecInvalCompletionID

ETapiInvalConfCallHandle ETapi ecInvalConfCallHandle

ETapiInvalConsultCallHandle ETapi ecInvalConsultCallHandle

ETapiInvalCountryCode ETapi ecInvalCountryCode

ETapiInvalDeviceClass ETapi ecInvalDeviceClass

ETapiInvalDeviceHandle ETapi ecInvalDeviceHandle

ETapiInvalDialParams ETapi ecInvalDialParams

ETapiInvalDigitList ETapi ecInvalDigitList

ETapiInvalDigitMode ETapi ecInvalDigitMode

ETapiInvalDigits ETapi ecInvalDigits

ETapiInvalExtVersion ETapi ecInvalExtVersion

ETapiInvalFeature ETapi ecInvalFeature

ETapiInvalGroupID ETapi ecInvalGroupID

ETapiInvalLineHandle ETapi ecInvalLineHandle

ETapiInvalLineState ETapi ecInvalLineState

ETapiInvalLocation ETapi ecInvalLocation

ETapiInvalMediaList ETapi ecInvalMediaList

ETapiInvalMediaMode ETapi ecInvalMediaMode

ETapiInvalMessageID ETapi ecInvalMessageID

ETapiInvalParam ETapi ecInvalParam

ETapiInvalParkID ETapi ecInvalParkID

ETapiInvalParkMode ETapi ecInvalParkMode

ETapiInvalPointer ETapi ecInvalPointer

ETapiInvalPrivSelect ETapi ecInvalPrivSelect

ETapiInvalRate ETapi ecInvalRate

ETapiInvalRequestMode ETapi ecInvalRequestMode

ETapiInvalTerminalID ETapi ecInvalTerminalID

ETapiInvalTerminalMode ETapi ecInvalTerminalMode

Table 18.2: Additional Async Professional exception classes (continued)

Exception Ancestor Error Code(s)
Error Handling and Exception Classes     905

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
ETapiInvalTimeout ETapi ecInvalTimeout

ETapiInvalTone ETapi ecInvalTone

ETapiInvalToneList ETapi ecInvalToneList

ETapiInvalToneMode ETapi ecInvalToneMode

ETapiInvalTransferMode ETapi ecInvalTransferMode

ETapiLineMapperFailed ETapi ecLineMapperFailed

ETapiLoadFail ETapi ecTapiLoadFail

ETapiNoConference ETapi ecNoConference

ETapiNoDevice ETapi ecNoDevice

ETapiNoDriver ETapi ecNoDriver

ETapiNoMem ETapi ecNoMem

ETapiNoMultipleInstance ETapi ecNoMultipleInstance

ETapiNoRequest ETapi ecNoRequest

ETapiNoSelect ETapi ecTapiNoSelect

ETapiNotOwner ETapi ecNotOwner

ETapiNotRegistered ETapi ecNotRegistered

ETapiNotSet ETapi ecTapiNotSet

ETapiOperationFailed ETapi ecOperationFailed

ETapiOperationUnavail ETapi ecOperationUnavail

ETapiRateUnavail ETapi ecRateUnavail

ETapiReinit ETapi ecReinit

ETapiRequestOverrun ETapi ecRequestOverrun

ETapiResourceUnavail ETapi ecResourceUnavail

ETapiStructureTooSmall ETapi ecStructureTooSmall

ETapiTargetNotFound ETapi ecTargetNotFound

ETapiTargetSelf ETapi ecTargetSelf

ETapiTranslateFail ETapi ecTapiTranslateFail

ETapiUnexpected ETapi ecTapiUnexpected

ETapiUninitialized ETapi ecUninitialized

Table 18.2: Additional Async Professional exception classes (continued)

Exception Ancestor Error Code(s)
06     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
As you can see, there is largely a one-to-one correspondence between exceptions and error 
codes.

In some cases, Async Professional catches and either handles or re-raises standard VCL 
exceptions. Examples include EOutOfMemory (when a memory allocation call fails), 
EInOutError (when an attempt to open, read, or write a file fails), and EInvalidOperation 
(when an improperly initialized form is used).

The ErrorMsg function of Async Professional (see page 895) can be used to generate an 
English-language string for each error code. The strings are stored in a string table in 
APW.RC, which has been compiled to APW.R32. This file is linked to your application’s EXE 
file so that the error message text is available to your application. The following table shows 
the default string for each error code. These strings provide additional explanation of each 
error.

The ErrorMsg function of Async Professional (see page 895) can be used to generate an 
English-language string for each error code. The strings are stored in a string table in 
APW.STR, which has been compiled to either APW.R16 (Delphi 1.0) or APW.R32 (32-bit 
Delphi). The resources are then linked to your application’s EXE file.

ETapiUserUserInfoTooBig ETapi ecUserUserInfoTooBig

ETapiVoiceNotSupported ETapi ecTapiVoiceNotSupported

ETapiWaveFail ETapi ecTapiWaveFail

ETimeout EProtocol ecTimeout

ETooManyErrors EProtocol ecTooManyErrors

ETracingNotEnabled ESerialIO ecTracingNotEnabled

ETriggerTooLong ETrigger ecTriggerTooLong

EUnpackAbort EFax ecUnpackAbort

Table 18.2: Additional Async Professional exception classes (continued)

Exception Ancestor Error Code(s)
Error Handling and Exception Classes     907

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The Table 18.3 shows the default string for each error code. These strings provide additional 
explanation of each error. The error codes are shown here as absolute values. Note that the 
values may be positive or negative at different points during code execution.

Table 18.3: Error code default strings 

Error Code Value Error Message

ecOK 0 OK

ecFileNotFound 2 File not found

ecPathNotFound 3 Path not found

ecTooManyFiles 4 Too many open files

ecAccessDenied 5 File access denied

ecInvalidHandle 6 Invalid file handle

ecOutOfMemory 8 Insufficient memory

ecInvalidDrive 15 Invalid drive

ecNoMoreFiles 18 No more files

ecDiskRead 100 Attempt to read beyond end of file

ecDiskFull 101 Disk is full

ecNotAssigned 102 File/device not assigned

ecNotOpen 103 File/device not open

ecNotOpenInput 104 File/device not open for input

ecNotOpenOutput 105 File/device not open for output

ecWriteProtected 150 Disk is write-protected

ecUnknownUnit 151 Unknown disk unit

ecDriveNotReady 152 Drive is not ready

ecUnknownCommand 153 Unknown command

ecCrcError 154 Data error

ecBadStructLen 155 Bad request structure length

ecSeekError 156 Seek error

ecUnknownMedia 157 Unknown media type

ecSectorNotFound 158 Disk sector not found

ecOutOfPaper 159 Printer is out of paper

ecDeviceWrite 160 Device write error
08     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
ecDeviceRead 161 Device read error

ecHardwareFailure 162 General failure

ecBadHandle 1001 Bad handle passed to com function

ecBadArgument 1002 Bad argument passed to function

ecGotQuitMsg 1003 Got quit message

ecBufferTooBig 1004 Terminal buffer greater than 65521

ecPortNotAssigned 1005 ComPort component not assigned

ecInternal 1006 Internal error processing INI database

ecModemNotAssigned 1007 Modem component not assigned

ecPhonebookNotAssigned 1008 Phonebook component not assigned

ecCannotUseWithWinsock 1009 Component not compatible with Winsock

ecBadId 2001 ie_BadId -specified comport doesn’t
exist

ecBaudRate 2002 ie_Baudrate - unsupported baud rate

ecByteSize 2003 ie_Bytesize - invalid byte size

ecDefault 2004 ie_Default - error in default
parameters

ecHardware 2005 ie_Hardware - specified comport in use

ecMemory 2006 ie_Memory - unable to allocate queues

ecCommNotOpen 2007 ie_NOpen - device not open

ecAlreadyOpen 2008 ie_Open - device already open

ecNoHandles 2009 No more handles, can’t open port

ecNoTimers 2010 No timers available

ecNoPortSelected 2011 No port selected (attempt to open
com0)

ecNullApi 3001 No device layer specified

ecNotSupported 3002 Function not supported by driver

ecRegisterHandlerFailed 3003 EnableCommNotification failed

ecPutBlockFail 3004 Failed to put entire block

ecGetBlockFail 3005 Failed to get entire block

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
Error Handling and Exception Classes     909

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
ecOutputBufferTooSmall 3006 Output buffer too small for block

ecBufferIsEmpty 3007 Buffer is empty

ecTracingNotEnabled 3008 Tracing not enabled

ecLoggingNotEnabled 3009 Logging not enabled

ecBaseAddressNotSet 3010 Base addr not found, RS485 mode

ecModemNotStarted 4001 StartModem has not been called

ecModemBusy 4002 Modem is busy elsewhere

ecModemNotDialing 4003 Modem is not currently dialing

ecNotDialing 4004 Dialer is not dialing

ecAlreadyDialing 4005 Dialer is already dialing

ecModemNotResponding 4006 No response from modem

ecModemRejectedCommand 4007 Bad command sent to modem

ecModemStatusMismatch 4008 Wrong modem status requested

ecNoMoreTriggers 5001 No more trigger slots

ecTriggerTooLong 5002 Data trigger too long

ecBadTriggerHandle 5003 Bad trigger handle

ecStartStringEmpty 5501 Start string is empty

ecPacketTooSmall 5502 Packet size cannot be smaller than
start

ecNoEndCharCount 5503 CharCount packets must hand end
condition

ecEmptyEndString 5504 End string is empty

ecZeroSizePacket 5505 Packet size cannot be zero

ecPacketTooLong 5506 Packet too long

ecBadFileList 6001 Bad format in file list

ecNoSearchMask 6002 No search mask specified during
transmit

ecNoMatchingFiles 6003 No files matched search mask

ecDirNotFound 6004 Directory in search mask doesn’t exist

ecCancelRequested 6005 Cancel requested

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
10     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
ecTimeout 6006 Fatal time out

ecProtocolError 6007 Unrecoverable event during protocol

ecTooManyErrors 6008 Too many errors during protocol

ecSequenceError 6009 Block sequence error in Xmodem

ecNoFilename 6010 No filename specified in protocol
receive

ecFileRejected 6011 File was rejected

ecCantWriteFile 6012 Can’t write file

ecTableFull 6013 Kermit window table is full, fatal
error

ecAbortNoCarrier 6014 Aborting due to carrier loss

ecBadProtocolFunction 6015 Function not supported by protocol

ecKeyTooLong 7001 Key string too long

ecDataTooLarge 7002 Data string too long

ecNoFieldsDefined 7003 No fields defined in database

ecIniWrite 7004 Generic INI file write error

ecIniRead 7005 Generic INI file read error

ecNoIndexKey 7006 No index defined for database

ecRecordExists 7007 Record already exists

ecRecordNotFound 7008 Record not found in database

ecMustHaveIdxVal 7009 Invalid index key name

ecDatabaseFull 7010 Maximum database records (999) reached

ecDatabaseEmpty 7011 No records in database

ecDatabaseNotPrepared 7012 iPrepareIniDatabase not called

ecBadFieldList 7013 Bad field list in INI component

ecBadFieldForIndex 7014 Bad field index in INI component

ecFaxBadFormat 8001 File is not an APF file

ecBadGraphicsFormat 8002 Unsupported graphics file format

ecConvertAbort 8003 User aborted fax conversion

ecUnpackAbort 8004 User aborted fax unpack

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
Error Handling and Exception Classes     911

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
ecCantMakeBitmap 8005 CreateBitmapIndirect API failure

ecNoImageLoaded 8050 No image loaded into viewer

ecNoImageBlockMarked 8051 No block of image marked

ecFontFileNotFound 8052 APFAXFNT not found, or resource bad

ecInvalidPageNumber 8053 Invalid page number specified for fax

ecBmpTooBig 8054 BMP size exceeds Windows max of 32767

ecEnhFontTooBig 8055 Font too big for enh text converter

ecFaxBadMachine 8060 Fax incompatible with remote fax

ecFaxBadModemResult 8061 Bad response from modem

ecFaxTrainError 8062 Modems failed to train

ecFaxInitError 8063 Error while initializing modem

ecFaxBusy 8064 Called fax number was busy

ecFaxVoiceCall 8065 Called fax number answered with voice

ecFaxDataCall 8066 Incoming data call

ecFaxNoDialTone 8067 No dial tone

ecFaxNoCarrier 8068 Failed to connect to remote fax

ecFaxSessionError 8069 Fax failed in mid-session

ecFaxPageError 8070 Fax failed at page end

ecFaxGDIPrintError 8071 NextBand GDI error in fax print driver

ecFaxMixedResolution 8072 Multiple resolutions in one session

ecFaxConverterInitFail 8073 Initialization of fax converter failed

ecUniAlreadyInstalled 8080 Unidrv support files already installed

ecUniCannotGetSysDir 8081 Cannot determine windows system dir

ecUniCannotGetWinDir 8082 Cannot determine windows dir

ecUniUnknownLayout 8083 Cannot determine setup file layout

ecUniCannotParseInfFile 8084 Cannot find Unidrv files in setup file

ecUniCannotInstallFile 8085 Cannot install Unidrv files to sys dir

ecNotNTDriver 8086 Printer driver not NT compatible

ecDrvCopyError 8087 Error copying printer driver

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
12     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
ecCannotAddPrinter 8088 32-bit AddPrinter call failed

ecDrvBadResources 8089 Bad/missing resources in driver

ecDrvDriverNotFound 8090 Driver not found

ecUniCannotGetPrinterDir 8091 Cannot determine WinNT printer driver
dir

ecInstallDriverFailed 8092 AddPrinterDriver API failed

ADWSERROR 9001 Async Professional Error

ADWSLOADERROR 9002 Error loading Winsock DLL

ADWSVERSIONERROR 9003 Incorrect version of Winsock

ADWSNOTINIT 9004 Winsock not initialized

ADWSINVPORT 9005 Specified port is not valid

ADWSCANTCHANGE 9006 Cannot change parameter while socket
is connected

ADWSCANTRESOLVE 9007 Cannot resolve destination address

WSAEINTR 10004 Interrupted function call

WSAEBADF 10009 Bad file number

WSAEACCES 10013 Permission denied

WSAEFAULT 10014 Unknown error

WSAEINVAL 10022 Invalid argument

WSAEMFILE 10024 Too many open files

WSAEWOULDBLOCK 10035 Warning: the socket would block on
this call

WSAEINPROGRESS 10036 A blocking call is in progress

WSAEALREADY 10037 WSAEALREADY: watch out, Al is ready

WSAENOTSOCK 10038 Socket descriptor is (1) not a socket,
or (2) is of wrong type

WSAEDESTADDRREQ 10039 The destination address is required
for this operation

WSAEMSGSIZE 10040 The datagram was too large to fit into
the buffer and was truncated

WSAEPROTOTYPE 10041 WSAEPROTOTYPE

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
Error Handling and Exception Classes     913

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
WSAENOPROTOOPT 10042 The option is unknown or not supported

WSAEPROTONOSUPPORT 10043 Either (1) no buffer space available
so socket cannot be created or (2)
protocol not supported

WSAESOCKTNOSUPPORT 10044 Specified socket type not supported in
this address family

WSAEOPNOTSUPP 10045 Operation is not supported by this
socket

WSAEPFNOSUPPORT 10046 Specified protocol family is not
supported

WSAEAFNOSUPPORT 10047 Specified address family is not
supported by this protocol

WSAEADDRINUSE 10048 The address is already in use for this
operation

WSAEADDRNOTAVAIL 10049 The address is not available from this
machine

WSAENETDOWN 10050 The network subsystem has failed

WSAENETUNREACH 10051 The network is unreachable from this
machine at this time

WSAENETRESET 10052 The network has been reset

WSAECONNABORTED 10053 The virtual circuit has been aborted
due to timeout, etc

WSAECONNRESET 10054 The virtual circuit has been reset by
the partner

WSAENOBUFS 10055 The descriptor is not a socket, or no
buffer space is available

WSAEISCONN 10056 The socket is already connected

WSAENOTCONN 10057 The socket is not connected

WSAESHUTDOWN 10058 The socket has been shutdown

WSAETOOMANYREFS 10059 WSAETOOMANYREFS

WSAETIMEDOUT 10060 The operation timed out

WSAECONNREFUSED 10061 The attempt to connect was forcibly
refused

WSAELOOP 10062 WSAELOOP: see WSAELOOP

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
14     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
WSAENAMETOOLONG 10063 The name is too long

WSAEHOSTDOWN 10064 The host machine is down

WSAEHOSTUNREACH 10065 The host machine is unreachable

WSAENOTEMPTY 10066 WSAENOTEMPTY

WSAEPROCLIM 10067 WSAEPROCLIM

WSAEUSERS 10068 WSAEUSERS

WSAEDQUOT 10069 WSAEDQUOT

WSAESTALE 10070 WSAESTALE

WSAEREMOTE 10071 WSAEREMOTE

WSASYSNOTREADY 10091 Network subsystem unusable

WSAVERNOTSUPPORTED 10092 Version requested by WSAStartUp not
supported by loaded Winsock DLL

WSANOTINITIALISED 10093 WSAStartUp not yet called

WSAEDISCON 10101 WSAEDISCON

WSAHOST_NOT_FOUND 11001 Host not found

WSATRY_AGAIN 11002 Host not found, or SERVERFAIL, can try
again

WSANO_RECOVERY 11003 Non recoverable errors, FORMERR,
REFUSED, NOTIMP

WSANO_DATA 11004 Valid name, but no data record of
requested type

WSANO_ADDRESS 11004 No address

ecAllocated 13801 Already allocated

ecBadDeviceID 13802 Bad device ID

ecBearerModeUnavail 13803 Bearer mode unavailable

ecCallUnavail 13805 Call unavailable

ecCompletionOverrun 13806 Completion overrun

ecConferenceFull 13807 Conference full

ecDialBilling 13808 Dial failed

ecDialDialtone 13809 Dial failed, no dialtone

ecDialPrompt 13810 Dial failed

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
Error Handling and Exception Classes     915

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
ecDialQuiet 13811 Dial failed

ecIncompatibleApiVersion 13812 Incompatible API version

ecIncompatibleExtVersion 13813 Incompatible EXT version

ecIniFileCorrupt 13814 INI file corrupt

ecInUse 13815 Resource in use

ecInvalAddress 13816 Invalid address

ecInvalAddressID 13817 Invalid address ID

ecInvalAddressMode 13818 Invalid address mode

ecInvalAddressState 13819 Invalid address state

ecInvalAppHandle 13820 Invalid application handle

ecInvalAppName 13821 Invalid application name

ecInvalBearerMode 13822 Invalid bearer mode

ecInvalCallComplMode 13823 Invalid call completion mode

ecInvalCallHandle 13824 Invalid call handle

ecInvalCallParams 13825 Invalid call parameters

ecInvalCallPrivilege 13826 Invalid call privilege

ecInvalCallSelect 13827 Invalid call select

ecInvalCallState 13828 Invalid call state

ecInvalCallStatelist 13829 Invalid call state list

ecInvalCard 13830 Invalid card

ecInvalCompletionID 13831 Invalid completion ID

ecInvalConfCallHandle 13832 Invalid conference call handle

ecInvalConsultCallHandle 13833 Invalid consultation call handle

ecInvalCountryCode 13834 Invalid country code

ecInvalDeviceClass 13835 Invalid device class

ecInvalDeviceHandle 13836 Invalid device handle

ecInvalDialParams 13837 Invalid dial params

ecInvalDigitList 13838 Invalid digit list

ecInvalDigitMode 13839 Invalid digit mode

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
16     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
ecInvalDigits 13840 Invalid digits

ecInvalExtVersion 13841 Invalid ext version

ecInvalGroupID 13842 Invalid group ID

ecInvalLineHandle 13843 Invalid line handle

ecInvalLineState 13844 Invalid line state

ecInvalLocation 13845 Invalid location

ecInvalMediaList 13846 Invalid media list

ecInvalMediaMode 13847 Invalid media mode

ecInvalMessageID 13848 Invalid message ID

ecInvalParam 13850 Invalid parameter

ecInvalParkID 13851 Invalid park ID

ecInvalParkMode 13852 Invalid park mode

ecInvalPointer 13853 Invalid pointer

ecInvalPrivSelect 13854 Invalid privilege select

ecInvalRate 13855 Invalid rate

ecInvalRequestMode 13856 Invalid request mode

ecInvalTerminalID 13857 Invalid terminal ID

ecInvalTerminalMode 13858 Invalid terminal mode

ecInvalTimeout 13859 Invalid timeout

ecInvalTone 13860 Invalid tone

ecInvalToneList 13861 Invalid tone list

ecInvalToneMode 13862 Invalid tone mode

ecInvalTransferMode 13863 Invalid transfer mode

ecLineMapperFailed 13864 Line mapper failed

ecNoConference 13865 No conference

ecNoDevice 13866 No device

ecNoDriver 13867 No driver

ecNoMem 13868 No memory

ecNoRequest 13869 No request

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
Error Handling and Exception Classes     917

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
ecNotOwner 13870 Not owner

ecNotRegistered 13871 Not registered

ecOperationFailed 13872 Operation failed

ecOperationUnavail 13873 Operation unavailable

ecRateUnavail 13874 Rate unavailable

ecResourceUnavail 13875 Resource unavailable

ecRequestOverrun 13876 Request overrun

ecStructureTooSmall 13877 Structure too small

ecTargetNotFound 13878 Target not found

ecTargetSelf 13879 Target is self

ecUninitialized 13880 Uninitialized

ecUserUserInfoTooBig 13881 User info too big

ecReinit 13882 Reinit failed

ecAddressBlocked 13883 Address blocked

ecBillingRejected 13884 Billing rejected

ecInvalFeature 13885 Invalid feature

ecNoMultipleInstance 13886 No multiple instance

ecTapiBusy 13928 TAPI already open, dialing or
answering

ecTapiNotSet 13929 TapiMode not set in TApdComPort

ecTapiNoSelect 13930 No TAPI device selected

ecTapiLoadFail 13931 Failed to find/load TAPIDLL

ecTapiGetAddrFail 13932 Failed to get TAPI address

ecTapi16Disabled 13933 TAPI disabled for 16-bit environments

ecTapiUnexpected 13934 Unexpected TAPI error

ecTapiVoiceNotSupported 13935 TAPI device does not support voice

ecTapiWaveFail 13936 TAPI wave file error

ecTapiCIDBlocked 13937 Caller ID blocked

ecTapiCIDOutOfArea 13938 Out of area call

ecTapiWaveFormatError 13939 The selected file is not a wave file

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
18     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
The “ie_” designations refer to error codes returned by the Windows communications API.

All of the Async Professional error codes are defined in numeric order in the source file 
OOMISC.PAS. All of the exception classes are declared in ADEXCEPT.PAS.

ecTapiWaveReadError 13940 Unable to read wave file data

ecTapiWaveBadFormat 13941 Unsupported wave format

ecTapiTranslateFail 13942 Unable to translate address

ecTapiWaveDeviceInUse 13943 Wave device in use

ecTapiWaveFileExists 13944 Wave file already exists

ecTapiWaveNoData 13945 No wave data available

Table 18.3: Error code default strings  (continued)

Error Code Value Error Message
Error Handling and Exception Classes     919

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Conditional Defines
Before using Async Professional, you need to understand and perhaps modify various 
conditional defines in AWDEFINE.INC. This file is included into all Async Professional 
units. To modify it, load it into a text editor and find the appropriate conditional symbol. 
Insert a period between the ‘{’ and the ‘$’ of a conditional define to deactivate it. With the 
period in place, the compiler sees the line as a plain comment, which has no effect on 
compilation.

After modifying AWDEFINE.INC, save it to disk and use the compiler to rebuild all affected 
files. To be sure the library is rebuilt properly follow these steps:

1.  Delete all *.OBJ, *.HPP, and *.DCU files in the \ASYNCPRO directory. Be careful not 
to delete any other files.

2.  From the C++Builder main menu choose Component|Rebuild Library.

3.  After modifying AWDEFINE.INC, save it to disk and use the compiler to rebuild all 
affected files.

The following paragraphs describe the options that can be controlled through 
AWDEFINE.INC. The default state of each define is also shown.

{.$DEFINE EnableTapi16}

This define enables TAPI components in 16-bit applications. Typically TAPI can’t be used in 
16-bit environments due to a lack of service providers (notably, the lack of UNIMDM.TSP) 
in Windows 3.XX, and due to a bug in Windows 95 that prevents obtaining a 16-bit comm 
handle to a TAPI port. Therefore this define is off by default. You can enable it to use TAPI in 
16-bit environments, but only if you are certain that environment properly supports TAPI.

{.$DEFINE Prot16OpenStrings}

This define activates an Async Professional 1.0 behavior for Async Professional 2.0 
programs. When this define is active, Async Professional 2.0 uses “OpenString” (the same 
type used by Async Professional 1.0) for string parameters passed in the TApdProtocol 
component OnProtocolNextFile and OnProtocolAccept events. When this define is not 
active, Async Professional 2.0 uses TPassString for those events. This define is off by default 
and is intended only to provide backward compatibility with existing Async Professional 1.0 
programs.
20     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
Glossary
This glossary contains a combination of industry accepted definitions and, where noted, 
definitions that are unique to Async Professional.

ANSI

American National Standards Institute. In Async Professional, references to ANSI usually 
refer to the ANSI standard for terminal control as exemplified by the DOS ANSI.SYS device 
driver.

asynchronous serial communication

Serially transmitted data in which each character is surrounded by start and stop bits. That 
is, each character can be extracted from the data stream without making assumptions, based 
on time, about when characters start and stop.

AT commands

An industry-standard set of commands for controlling modems introduced with the Hayes 
SmartModem.

baud rate 

A measure of modulation rate, not communication speed. Technically, baud rate means the 
number of signal changes per second. At the UART, baud rate is generally equal to bps (bits 
per second), since each signal change represents one bit. When using modems, however, 
baud rate is generally different than bps, since the modulation schemes used by modems 
typically encode more than one bit per signal change. That’s why modem speeds are 
typically rated in terms of bps.

Bell 103

The AT&T modem standard for asynchronous communication at speeds up to 300 bps.

Bell 212A

The AT&T modem standard for asynchronous communication at speeds up to 1200 bps on 
dial-up telephone lines.

bps

Bits per second, a measure of raw communications speed, which quantifies how fast the bits 
within a character are being transmitted or received. It is not a measure of overall 
throughput, but rather a measure of the speed with which a single character can be 
processed.
Glossary     921

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
break

A signal that can be transmitted or received over serial communication links. A break is not 
a character, but rather a condition in which the serial line is held in the “0” state for a least 
one character-time.

client

An application that connects to a server for the purpose of exchanging of data.

CCITT

Comité Consultatif International de Télégraphique et Téléphonique (International 
Telegraph and Telephone Consultative Committee). A European communications standards 
committee, which has recently been renamed to ITU-TSS.

character-time

This term is used to mean the amount of time between the start bit and stop bit of a serial 
byte (inclusive). This is the smallest period of time between successive received or 
transmitted characters (of course, the elapsed time between characters can be longer than 
one character-time).

checksum

A byte, or bytes, appended to the end of a block of data that is used to check the integrity of 
that block. A checksum is the sum of all the bytes in the block.

comport

In this manual, refers to a TApdComport component, or a component derived from 
TApdCustomComport (such as TApdWinsockPort). This convention is used to reduce 
confusion between the physical port and the comport component. Outside of Async 
Professional’s documentation, it is not uncommon to see “comport”, “com port” and “serial 
port” being used synonymously.

COMM.DRV

The Windows device driver that performs all of the low-level work required to send and 
receive using the PC’s UART chip in 16-bit Windows.

CRC

A byte, or bytes, appended to the end of a block of data that is used to check the integrity of 
the data. CRC is short for cyclical redundancy check, a data checking algorithm that 
provides a much higher level of protection than a simple checksum.
22     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
CTS

Clear to send. This is a modem control signal that is raised by the modem when it is ready to 
accept characters. The modem may lower this line when it cannot accept any more 
characters (this usually means that its receive buffer is nearly full). This behavior is called 
hardware handshaking or hardware flow control.

data bits

The bits in a serial stream of data that hold data as opposed to control information. The 
number of data bits is one of the line parameters needed to describe a serial port 
configuration. The acceptable values are 5 through 8.

data compression

Refers to the ability of some modems to compress data before passing it to the remote 
modem. There are two standards that describe data compression methods, MNP and 
V.42bis.

DCB

Device control block. A structure passed from a Windows program to the communications 
driver. It contains the line parameters and other configuration information that the 
communication driver uses to configure the UART.

DCD

Data carrier detect. A signal provided by a modem to indicate that it is currently connected 
to a remote modem.

DCE

Data communications equipment. Generally, this refers to a modem.

device layer

This layer of Async Professional provides the physical connection between the software and 
the hardware.

DNS

A remote database that contains a list of host names and their corresponding IP addresses.

dot notation

A way of specifying an IP address (e.g., 165.212.210.12).

DSR

Data set ready. This is a modem control input signal to a UART that tells the UART that the 
remote device (usually a modem) is active and ready to transmit data.

DTE

Data terminal equipment. Generally, this refers to a terminal or a PC emulating a terminal.
Glossary     923

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
DTR

Data terminal ready. This is a modem control signal raised by a UART to notify the remote 
(usually a modem) that it is active and ready to transmit.

error correction

Refers to the ability of some modems to check the integrity of data received from a remote 
modem. There are two standards that describe error correction protocols, MNP and V.42.

FIFO mode

A mode of operation for 16550 UARTs that takes advantage of the UART’s first-in-first-out 
buffers.

flow control

A facility that allows either side of a serial communication link to request a temporary pause 
in data transfer. Typically, such pauses are required when data is being transferred faster 
than the receiver can process it. Hardware flow control is implemented via changes in the 
CTS and RTS signals. Software flow control is implemented via the exchange of XOn and 
XOff characters.

full duplex

1. A mode of communication in which the receiving computer automatically echoes all data 
it receives back to the transmitter. 2. A communications link that can pass data both 
directions (receive and transmit) at the same time.

half duplex

1. A mode of communication in which the receiving computer does not echo any data back 
to the transmitter. 2. A communications link that can pass data in only one direction at a 
time.

handshaking

Refers to the initial transfers of data between two processes. Usually this term is used to 
describe the start of a protocol file transfer or the exchange of data that occurs when two 
modems first connect.

host name

The text description of an IP address (e.g., joeb.turbopower.com).

interface layer

The layer of Async Professional that contains the majority of the applications programming 
interface (API). This layer is implemented by the TApdComPort component.

IP address

The 32-bit address of a network computer. All IP addresses are unique.
24     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
IRQ

One of the lines on the PC or PS/2 bus that is used to request a hardware interrupt. Any 
device that needs to interrupt the CPU (such as a UART) does so via an IRQ line.

ITU-TSS

International Telecommunications Union-Telecommunications Standardization Sector. A 
European communications standards committee, formerly known as CCITT.

LAP M

An error-correction protocol included with the most recent CCITT communications 
standard V.42.

line error

Refers to one of the following errors: UART overrun, parity error, or framing error. Such 
errors are due either to interference picked up by the physical connection (cable, phone line, 
etc.) or to a mismatch in line parameters between the two ends of a serial link.

lookup

An action that Winsock performs to retrieve the IP address for a host name, or to retrieve 
the port number for a service name (and vice versa).

MNP

Microcom Networking Protocol. A communications protocol designed by Microcom, Inc. 
and placed in the public domain. MNP defines several service levels that provide error 
control and data compression facilities between two modems. MNP is of interest only if you 
are using modems that support it. See the modem manual for more information about the 
details of MNP.

modem

A device that facilitates serial communication over phone lines. The term is derived from the 
phrase MOdulation/DEModulation device.

network shared-modem pool

A collection of modems in a network that are available to any PC in the network. In a typical 
situation, several modems are attached to one PC (a “modem server”) and other PCs on the 
network use a network protocol to access these modems.

parity

A bit that is used to check the integrity of a byte. The parity bit is set by the transmitter and 
checked by the receiver. If present, the parity bit is set so that the sum of the bits in the 
character is always odd or always even. The parity bit can also be set to a constant value 
(always on or always off).
Glossary     925

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
port (Winsock)

A number from 0 to 32767 that, along with the IP address, is used to create a socket.

protocol

Generally, an agreed upon set of rules that both sides of a communications link follow. This 
term crops up in two places in Async Professional: file transfer protocols and modem 
protocols. A file transfer protocol is a set of rules that two computers use to transfer one or 
more files. A modem protocol describes the modulation technique as well as the error 
control and data compression rules.

remote device

In Async Professional this term is used to describe what’s attached to your serial port. Since 
it can be another PC, a different kind of computer, a modem, an instrument, or another 
device, we often just say “remote” or “remote device.”

RI

Ring indicator. A signal provided by the modem to indicate that a call is coming in (i.e., the 
phone is ringing).

RS-232

An EIA (Electronic Industries Association) standard that provides a physical description 
(voltages, connectors, pin names, and purposes) of a serial asynchronous communications 
link. This is the standard used by the IBM PC’s Asynchronous Communications Adapter 
(and compatibles). The original intent of RS-232 was to describe the link between a 
computer and a modem. However, many devices other than modems (printers, plotters, 
laboratory instruments, and so on) have adopted some of the conventions of RS-232.

RTS

Request to send. This is a modem control signal that the UART uses to tell the modem that it 
is ready to receive data.

S-registers

A register in a Hayes-compatible modem that stores configuration information. Lower 
numbered S-registers are somewhat standardized, but higher numbered S-registers are 
generally used for different purposes by different modem manufacturers.

serial data

Refers to data transmitted over a single wire where bits are represented as either high or low 
signals over a specified period of time. This is in contrast to parallel data, where each bit is 
represented by its own “wire.”

server

An application that listens on a socket for client connection attempts.
26     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
socket

A Windows object that is created using a combination of an IP address and port number. A 
socket is used to make a network connection between two computers.

start bit

The bit in a serial stream that indicates a data byte follows. This value cannot be changed; 
UART communications always uses one start bit.

stop bits

The bits in a serial stream that indicate all data bits were sent. One or two stop bits can be 
used. The number of stop bits is one of the line parameters needed to describe a serial link.

streaming protocol

A file transfer protocol that doesn’t require an acknowledgement for each block. Such 
protocols are usually much faster than non-streaming protocols because the transmitter 
never pauses to wait for an acknowledgement.

Telnet

A network protocol designed to allow two network computers to communicate via a 
terminal screen.

terminal emulator

Software that interprets special sequences of characters as video control information (for 
setting colors, positioning the cursor, etc.) rather than data. This process is referred to as 
“emulation” because it emulates the behavior built into serial terminals (such as the DEC 
VT100 terminal).

terminal

A device (or software) that displays received data to a CRT and transmits keyboard 
characters to a host computer. A “dumb terminal” is one that does no local processing of the 
data it receives from the host. A “smart terminal” is capable of interpreting special “escape 
sequences,” allowing the host to move the terminal’s cursor, change the colors used to 
display text, etc.

trigger

An Async Professional term describing an event or condition noted by the internal 
dispatcher and passed to an application through a VCL event handler.

UART

An acronym for Universal Asynchronous Receiver Transmitter. This is the device (usually 
one integrated circuit) that serializes and deserializes data between the CPU and the serial 
data line.
Glossary     927

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
V.17

CCITT 7200, 9600, 12000, and 14400 bps faxmodem standard.

V.21

CCITT 300 bps faxmodem standard.

V.22

CCITT 1200 bps modem standard.

V.22bis

CCITT 2400 bps modem standard.

V.25bis

CCITT communications command set. Frequently implemented in addition to the AT 
command set.

V.27, V.27 ter

CCITT 2400 and 4800 bps faxmodem standard.

V.29

CCITT 7200 and 9600 bps faxmodem standard.

V.32

CCITT 9600 bps communications standard which describes a standard modem modulation 
technique. Any 9600 baud modem that complies with V.32 can connect to any other V.32 
compliant modem (this is an improvement from the early days of 9600 bps communication 
when only modems from the same manufacturer could connect to each other).

V.32bis

CCITT standard for data modem modulation rates up to 14400 bits per second.

V.34

CCITT 28800 bps communication standard which describes a standard modem 
modulation technique. V.34 includes several advanced features designed to get as much 
performance as possible out of a given telephone connection. The top speed of 28800 bps 
occurs only under optimal conditions; normal telephone conditions usually yield lower 
throughput, but still substantially higher than V.32.

V.42

CCITT error correcting protocol standard. Includes both MNP-4 and LAP-M error 
correction protocols.
28     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
V.42bis

CCITT 4:1 data compression protocol. This data compression scheme generally achieves a 
much higher degree of compression than is possible with MNP.

V.FC/V.Fast

An early unratified version of the V.34 specification. V.34 modems can usually connect to 
V.FC and V.Fast modems, but usually at lower rates than with other V.34 modems.
Glossary     929

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Debugging Windows Communications Programs
This is a list of tips and techniques for debugging Windows communications programs. 
Some of these suggestions are very simple and you probably already use them. However, 
some of them are specific to communications programs and might cover issues you haven’t 
had to deal with before.

First, always make sure that your hardware is set up correctly (check connections, cabling, 
switches, etc.). The best way to verify this is to start with a known, reliable communications 
program such as TCom. If TCom doesn’t work, you know that there’s something wrong with 
the serial port, the cable, the device you are connected to, or the line parameters.

Using the debugger
If you have used the DOS libraries Async Professional or Async Professional for C/C++, you 
may recall cautions about using debuggers with communications programs. DOS debuggers 
tend to interfere with communications interrupt service routines and cause loss of incoming 
data and prevent outgoing data from being transmitted.

Under Windows you can ignore those cautions. The communications interrupt service 
routine is in the Windows device driver and isn’t blocked by Windows debuggers. While in a 
debugger, you can freely step into or over any communications routine without harming 
either the input or output data flow.

Be aware, however, that it is still possible for incoming data to “stack up” in the 
communications driver. While you are leisurely stepping through a routine in the debugger, 
your application won’t be processing timer or communications notification messages. And 
if these messages aren’t processed, data cannot be removed from the communications 
driver. If data is arriving in an uninterrupted stream, the driver’s input buffer will eventually 
fill to capacity. If flow control is in place, the driver will impose flow control, otherwise data 
will certainly be lost.

Using the Async Professional Debugging Tools
Async Professional has several built-in features that aid in the debugging process. The 
simplest, and probably most useful, is the tracing facility. It provides a character-by-
character audit report of all the data transmitted or received by your program. Tracing is 
particularly useful when your program advances to some point and then starts 
misbehaving. After a few minutes of study, a trace of such a program run will generally lead 
you to the problem area.
30     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
Async Professional provides another auditing tool called dispatch logging, which works at a 
much lower level than tracing. Dispatch logging provides an exact chronology (with 
millisecond timestamps) of all events processed by the internal dispatcher. It’s handy for 
figuring out problems with hardware flow control and other control signal situations (e.g., 
“why isn’t my program answering a ringing phone?”). See page 33 for more information on 
this facility.

Getting technical support
TurboPower Software Company offers a variety of technical support options. For details, 
please see the “Product Support News” enclosed in the original package or go to 
www.turbopower.com/support.

Technical support is always a tough job and throwing communications problems into the 
equation makes the task even tougher. For that reason, you should do several things before 
asking for support. These may seem like trivial things (and some of them are indeed trivial) 
but getting them out of the way ahead of time could save you some effort.

First and foremost, if you’re writing an application and “not getting anything” please try the 
supplied, unmodified, precompiled demonstration programs TermDemo or TCom. This is 
a polite way of saying “make sure it’s plugged in” before deciding your application doesn’t 
work. Whether you’re connecting to a piece of data collection equipment, plugging in a new 
plotter, or just trying to send commands to a modem, start from a known, reliable program 
to prove to yourself that the device is hooked up, properly configured, and connected with a 
working cable.

If you’ve proven that all is well with your hardware but your program still isn’t behaving 
properly, be sure to use some of the Async Professional built-in debugging tools, Tracing 
and DispatchLogging, to try to find the problem.

Finally, any Async Professional routine that can fail generates an exception or returns an 
error code if an error occurs. A fair percentage of technical support requests are the result of 
an application program continuing to use an object after an error has been reported. To 
avoid this problem in your programs, be sure to follow up on exceptions and check all error 
codes.

If you tried a “known good program” and applied all the built-in debugging tools and you’re 
still having a problem figuring out what’s going on, then contact us through one of our 
support options and we’ll do our best to help you find a solution. Depending on the problem 
you’re having, we may ask such questions as “What did TCom do in that situation?” or “Did 
you try TermDemo?” or “What error code was returned?”. If you have answers to such 
questions handy, we’ll probably be able to zero in on the problem much faster. We might also 
need to discuss your trace file or event log file. Please be sure to have such files available 
when the problem warrants it.
Debugging Windows Communications Programs     931

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Common problems
Here’s a brief discussion of some of the common problems that popped up during 
development and testing of Async Professional. They are organized in a question and 
answer format.

Nothing works, not even the supplied test programs. What’s wrong?
Probably a hardware or cabling problem that you’ll need to figure out before you go any 
further. Common problems are two or more UARTs using the same IRQ, another board 
(e.g., a mouse or network board) using a serial port IRQ, or two or more UARTs using the 
same I/O address.

Another possibility is misnamed ports if there is a gap in the serial ports in your machine. 
For example, if your machine has serial ports COM1, COM2, and COM4, Windows names 
these ports COM1, COM2, and COM3. If a Windows communication program attempts to 
open COM4, it will fail since Windows doesn’t recognize that COM4 exists.

The simplest solution to this problem is to accept the Windows name for the port and add 
appropriate COMXBASE and COMXIRQ statements to SYSTEM.INI to reflect the actual 
hardware configuration. To make Windows use COM3 in the above example, you would add

COM3BASE = 2E8

COM3IRQ = 4

to SYSTEM.INI.

Why am I getting leOverrun errors?
A UART overrun occurs when a character is received at the serial port before the Windows 
communications driver has a chance to process the previous character. That is, characters 
are coming too fast for the driver to handle them.

There is a finite limit to the speed at which a given machine can receive data. Because of the 
extra layers of overhead in Windows, this limit is substantially lower than under DOS. A 
baud rate that worked under DOS simply may not be achievable under Windows.

A more likely cause, however, is that another Windows task is leaving interrupts off for too 
long. While interrupts are off, the communications driver isn’t notified of incoming 
characters. If interrupts are left off for more than one character-time, it’s very likely that you 
will lose characters due to UART overruns.

One known cause of long interrupts-off time is virtual machine creation and destruction. 
The only solution is to avoid opening or closing DOS boxes during critical communication 
processes.

Interrupts could also be left off by other Windows device drivers or virtual device drivers.
32     Chapter 18: Appendices



13

11

10

12

18

9

3

2

8

4

7

6

15

14

17

16
Why do my protocol transfers seem slow?
This usually means that your status routine is taking too much time. You shouldn’t try to do 
any lengthy calculations, disk I/O, or any other time consuming activities in your status 
procedure. You can test this hypothesis quickly by trying a test run without your status 
procedure or with a very simple status procedure instead.

Why am I getting parity and framing errors?
Either you’re operating with a different set of line parameters than the remote device, or 
your cable is picking up interference. Generally, the higher the baud rate you select, the more 
likely you are to suffer from electrical interference. If you suspect that your cable is picking 
up interference from other electrical sources, consider rerouting the cable run away from 
such sources.

My protocol transfer never gets started. What’s wrong?
This could be due to any of several problems, including mismatched line parameters, wrong 
protocol selected, or the file to transmit could not be found. Your best bet is to generate a 
Trace and see just how far the protocol was able to progress. Also, try one of the 
demonstration programs in the same situation to see if it works. Generally, this should 
provide enough information to find and correct the problem.

My Zmodem file transfer program generates lots of psBlockCheckError errors and psLong-
Packet errors, but other protocols work fine. What’s going on?
The answer in this case is almost always lack of hardware flow control. The problem shows 
up in Zmodem but not other protocols because Zmodem is a streaming protocol. Data is 
sent in a continuous stream without pauses for acknowledgements. Flow control is required 
to prevent the sender from overflowing the modem or the receiver. And remember, flow 
control must be enabled at four places: your software, your modem, the remote software, 
and the remote modem. Consult your modem manual for the hardware flow control enable 
command for your modem.
Debugging Windows Communications Programs     933

1

1



9

13

11

10

12

18

9

3

2

8

4

5

7

6

1

1

15

14

17

16
34     Chapter 18: Appendices



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Id
en

tifier In
d

ex
Identifier Index

A

Abort 562
AbortNoCarrier 526
AbortNoConnect 717, 845
AcceptDragged 656
AcceptSocket 117
Account 562
ActivateDeviceLayer 49
Active 181, 276
ActiveColor 181
ActivePage 656
ActualBPS 526
Add 241, 248
AddDataTrigger 49
AddFaxRecipient 816
AddMessage 876
AddModem 457
AddRecipient 770
Address 104, 873
AddStatusTrigger 50
AddTimerTrigger 51
AddTraceEntry 52
AdXxx 4
aetXxx 520, 527, 529
Age 315
ANSIMode 265
AnswerOnRing 409, 464, 758, 781
apFirstCall 489
ApiVersion 409
apLastCall 489
AppKeyMode 265
AppKeypadMode 265
AproReg 6
APW_XXX 70
Argument 230, 235
ArgumentCount 230

AsciiCharDelay 527
AsciiCRTranslation 527
AsciiEOFTimeout 528
AsciiEOLChar 528
AsciiLFTranslation 529
AsciiLineDelay 529
AsciiSuppressCtrlZ 529
AskAreaCode 352
AskForDate 360
AskForDateEx 360
AskForExtension 361
AskForExtensionEx 362
AskForList 362
AskForListEx 363
AskForPhoneNumber 363
AskForPhoneNumberEx 364
AskForSpelling 365
AskForSpellingEx 365
AskForTime 366
AskForTimeEx 366
AskForYesNo 367
AskForYesNoEx 367
AskLastFour 352
AskNextThree 353
asXxx 631, 657
Attempt 409
Attributes 277
AudioInDevice 302
AudioOutDevice 302
AutoAnswer 410, 464
AutoEnable 138
AutoOpen 52
AutoRepeat 266
AutoScaleMode 631, 657
AvailableTerminalDevices 302
AvgWaveInAmplitude 410
     i 1



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

i

B

BackColor 205, 278
BaseAddress 53
Batch 530
Baud 53
bcmXxx 530
BeginUpdate 657
BGColor 658
BindSocket 117
BlindDial 743, 781, 845
BlinkPaint 256
BlinkTime 278
BlockCheckMethod 530
BlockErrors 531
BlockLength 531
BlockNumber 531
BPSRate 411, 465
BREAKLight 191
BreakOffTimeout 193
Buffer 256
BufferFull 54
BufferMinimum 743, 781
BufferResume 54
BusyCursor 658
BytesRemaining 532
BytesTransferred 532, 562, 717, 782

C

CallBackNumber 374
CallerID 412
CallerIDName 412
CallInfo 303
Cancel 173
CancelCall 303, 413, 465, 845
CancelFax 717, 782
Cancelled 413
CancelProtocol 533
CancelRecipient 771
CancelScript 157

Capacity 876
Caption 480, 680
Capture 278
CaptureFile 279
ChangeDir 563
CharHeight 280
CharReady 54
CharSet 205, 280, 338
CharSetMapping 256
CharWidth 281
CheckLoaded 118
Clear 231, 241, 249, 281, 876
ClearAll 282
ClearAllHorzTabStops 205
ClearAllVertTabStops 206
ClearHorzTabStop 206
ClearVertTabStop 206
CloseFile 604
CloseSocket 118
Col 206
Col132Mode 266
ColCount 207
Columns 282
Command 231
CommDelay 857
ComName 895
ComNumber 55
ComPort 138, 157, 173, 193, 283, 413, 466, 

533, 718, 783, 879
CompressionMode 374
CompressRasterLine 604
ConcatFax 771
ConcatFaxes 744
Conditions 182
ConfigAndOpen 414, 466
Connect 304, 879
Connected 304, 563, 879
Connection 374
ConnectSocket 118
ConnectState 374
ConnectTimeout 563
ConstantStatus 758, 783
i     Identifier Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Id
en

tifier In
d

ex
Convert 605
ConvertBitmapToFile 607
ConvertCover 744
ConvertToFile 607
CopyCallInfo 415
CopyToClipboard 283, 659
Count 241, 249, 315, 325
CoverFile 744
CoverFileName 816
coXxx 619
Create 207, 231, 283
CreateDisplay 441, 580, 691, 824
CreateNewDetailFile 457
CreatePhonebookEntry 375
CreateSocket 119
CreateWnd 284
CTS 55
CTSLight 191
CTSMask 68
CurrentEngine 325
CurrentJobName 783
CurrentJobNumber 784
CurrentPage 719, 784
CurrentPrintingPage 680
CurrentRecipient 784
CurrentState 174
CurrentVoice 316

D

Data 174
DataBits 56
DataSize 174
DataString 174
DCD 56
DCDLight 191
DCDMask 68
dcXxx 299
DefBackColor 207
DefCharSet 208
DefForeColor 208

DefUserExtension 608
DelayBetweenSends 785
DelayTicks 890
Delete 564, 876
DeleteChars 208
DeleteFailed 584
DeleteLines 208
DeleteModem 458
DeleteModemRecord 458
DeletePhonebookEntry 375
DeltaCTS 56
DeltaCTSMask 68
DeltaDCD 57
DeltaDCDMask 68
DeltaDSR 57
DeltaDSRMask 68
DeltaRI 57
DeltaRIMask 68
Description 119
DesiredBPS 719, 785
DesiredECM 720, 785
DestinationDir 759, 786
DestinationDirectory 533
Destroy 284
DestroyDisplay 441, 580, 691, 824
DestroyWnd 284
DetectBusy 745
DeviceClass 299
DeviceCount 415
DeviceInUse 299
DeviceLayer 58, 109
DeviceName 300, 375
DeviceType 376
deXxx 841
dfXxx 584
Dial 376, 415, 467
DialAttempt 745, 786, 846
DialAttempts 746, 786, 846
DialDlg 377
Dialect 316, 325
Dialing 416
DialMode 377
Identifier Index     iii 1



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

i

DialOptions 378
DialPrefix 746, 787, 846
DialRetryWait 746, 847
DialStatusMsg 847
DialTimeout 467
DialWait 747, 787, 847
Dictation 338
Disconnect 848
Display 441, 580, 691, 824
DisplayToTerminal 157
dlXxx 58, 109
DoBackHorzTab 209
DoBackspace 209
DoBackVertTab 209
DoCarriageReturn 209
DocName 835
DocumentFile 608
DoHorzTab 210
DoLineFeed 210
Domain 378
DoVertTab 210
DSR 58
DSRLight 191
DSRMask 68
dsXxx 842
DTR 59

E

ecXxx 706, 901
EditPhonebookEntry 378
ElapsedTicks 534
ElapsedTime 890
ElapsedTimeInSecs 891
Emulator 284
Enabled 138
EnableVoice 417
EndCond 139
EndString 140
EndUpdate 659
EngineFeatures 316, 326

EngineID 317, 326
EnhFont 609, 747, 787
EnhHeaderFont 747, 788
EnhTextEnabled 748, 788
EntryName 378
EraseChars 211
EraseFromBOL 211
EraseFromBOW 211
EraseLine 211
EraseScreen 212
EraseToEOL 212
EraseToEOW 212
ErrorCode 880, 900
ERRORLight 191
ErrorMsg 895
ErrorOffTimeout 193
EstimateTransferSecs 534
EventTimer 890
ExitOnError 720, 788, 848
ExtractAPF 772
ExtractCoverFile 773
ExtractPage 631
EXxx (exception) 901

F

FailureCode 468
FailureCodeMsg 468
Fax 824, 829
FaxAndData 759
FaxClass 721, 789
FaxFile 721, 789
FaxFileExt 721, 789
FaxFileList 748
FaxFileName 816
FaxFooter 680
FaxHeader 681
FaxHistoryName 829
FaxLog 722, 790
FaxNameMode 760, 790
FaxPrinter 691, 696, 790
v     Identifier Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Id
en

tifier In
d

ex
FaxPrinterLog 681
FaxProgress 722, 791
FaxResolution 632, 682
FaxWidth 633, 682
fcXxx 59, 721, 734, 789
Features 317, 326
ffXxx 610
FGColor 659
FileDate 535
FileLength 536, 564
FileMask 536
FileName 536, 660, 682, 835
FileType 565
FilterUnsupportedDevices 419
Find 318
FinishWait 537
FirstPage 660
FirstPageToPrint 683
FlowState 59
FlushInBuffer 60
FlushOutBuffer 60
fnXxx 755, 760
FontFile 609
FontType 610
ForceSendQuery 791
ForeColor 212, 285
fpXxx 709
frXxx 621, 632, 682
FtpLog 565
fwXxx 633, 682
fwXxx (fax converter) 623

G

Gender 320
GenDevConfig 419
GenerateDrawScript 249
Get 242
GetBlock 61
GetChar 62
GetCharAttrs 213

GetCursorPos 257
GetDefCharAttrs 213
GetDevConfig 468
GetDialParameters 379
GetErrorText 379
GetInvalidRect 214
GetJob 810
GetJobHeader 773
GetLineAttrPtr 214
GetLineBackColorPtr 215
GetLineCharPtr 215
GetLineCharSetPtr 215
GetLineForeColorPtr 215
GetModem 458
GetModems 459
GetNextDrawCommand 250
GetNextFax 810
GetRasterLine 610
GetRecipient 774
GetSchedTime 811
GetStatusText 379
Glyph 182, 189
GlyphCells 183
GPOMode 266
Grammars 328
GSMState 881
gsXxx 881

H

HalfDuplex 286
Handle 119
HandshakeRetry 538
HandshakeWait 538
Hangup 380
HangupCode 722, 791
HangupOnDestroy 380
HasCursorMoved 216
HasDisplayChanged 216
HeaderLine 748, 816
HeaderRecipient 749, 817
Identifier Index     v 1



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

v

HeaderSender 749
HeaderTitle 750, 817
Help 353, 566
Help2 353
HighVersion 119
HistoryName 584, 864
HonorDirectory 538
HorizDiv 633, 661
HorizMult 634, 661
HorizScroll 661
htonl 120
htons 120
HWFlowOptions 62
hwXxx 62

I

idXxx 608, 611
IgnoreCase 140
InactiveColor 183
InBuffFree 63
InBuffUsed 64
IncludeDirectory 539
IncludeStrings 140
InFileName 634
InitBaud 724, 793
InitialPosition 539
InitModemForFaxReceive 760
InProgress 158, 540, 566
InputDocumentType 611
InsertLines 216
InSize 64
Interfaces 320, 329
Interlace 266
InterruptWave 420
InVT52Mode 236
itXxx 339

J

JobFileExt 811

JobFileName 818
JobName 818

K

KermitCtlPrefix 540
KermitHighbitPrefix 540
KermitLongBlocks 541
KermitMaxLen 541
KermitMaxWindows 541
KermitPadCharacter 542
KermitPadCount 542
KermitRepeatPrefix 542
KermitSWCTurnDelay 543
KermitTerminator 543
KermitTimeoutSecs 544
KermitWindowsTotal 544
KermitWindowsUsed 544
KeyboardMapping 257
KeyDown 258
KeyPress 258

L

LanguageID 321, 329
LastError 120
LastErrorCode 175
LastPage 662
LastPageToPrint 683
LazyByteDelay 286
LazyPaint 259
LazyTimeDelay 286
lcXxx 684, 696, 697
LEDs 267
LeftMargin 613
leXxx 65
lfaxXxx 713, 729
lfXxx 547
Lights 193
Line 287
LineBreak 64
i     Identifier Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Id
en

tifier In
d

ex
LineError 65
LinesPerPage 613
ListConnections 380
ListDir 566
Listen 338
ListenSocket 121
ListEntries 381
Lit 189
LitColor 189
LoadFromFile 242, 250
LoadFromRes 243, 252
LoadWholeFax 662
LocalAddress 121
LocalHost 121
LogFileName 696
Logging 66
LogHex 67
Login 567
LogName 67
Logout 568
LogSize 67
LookupAddress 122
LookupName 122
LookupPort 123
LookupService 124
lsXxx 89
ltapiXxx 399, 446

M

Main 354
Main2 354
MakeDir 568
MakeEndOfPage 614
MakeFaxJob 818
MakeJob 775
MaxAttempts 420
MaxMessageLength 420, 848
MaxSendCount 750, 794
MaxSockets 124
MaxWordsState 329

MaxWordsVocab 330
mdXxx 300
MediaDirection 300
MediaType 300
Message 840, 848, 873
MessageIndex 873
Messages 877
MessageStore 882
MfgName 321, 330
mlXxx 474
ModeID 321, 330
ModemBPS 725, 795
ModemCapFolder 459, 469
ModemChip 726, 795
ModemECM 726, 795
ModemInit 726, 796, 849
ModemLogToString 469
ModemModel 727, 796
ModemRevision 727, 796
ModemState 469
ModemStatus 68
ModeName 322, 331
MonitorDir 811
MonitorDlg 381
Monitoring 194, 797
MoveCursorDown 217
MoveCursorLeft 217
MoveCursorRight 217
MoveCursorUp 218
msXxx 88, 470
MultiPage 683

N

NeedsUpdate 259
NegotiationResponses 470
NetAddr2String 124
NewLineMode 267
NewTimer 891
NewTimerSecs 892
NextPage 663
Identifier Index     vii 1



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

v

NoAnswerMax 368
NoAnswerTime 368
NormalBaud 727, 797
NotifyOnNewMessage 882
NotLitColor 190
ntohl 125
ntohs 125
Number 421
NumDigits 368
NumPages 635, 663

O

OnCloseUserFile 614
OnConnect 304
OnConnected 382
OnDialError 382, 849
OnDialStatus 383, 850
OnDisconnect 305
OnDisconnected 383
OnDocEnd 835
OnDocStart 836
OnDropFile 664
OneFax 761
OnFail 305
OnFaxAccept 761
OnFaxError 728
OnFaxFinish 728
OnFaxLog 729
OnFaxName 762
OnFaxNext 751
OnFaxPrintLog 684
OnFaxPrintStatus 684
OnFaxServerAccept 797
OnFaxServerFatalError 798
OnFaxServerFinish 799
OnFaxServerLog 799
OnFaxServerName 800
OnFaxServerPortOpenClose 800
OnFaxServerStatus 800
OnFaxStatus 729

OnFtpError 568
OnFtpLog 569
OnFtpReply 569
OnFtpStatus 569
OnGSMComplete 882
OnIncomingCall 306
OnInterference 339
OnLogin 857
OnLogout 857
OnModemCallerID 471
OnModemConnect 472
OnModemDisconnect 472
OnModemFail 473
OnModemLog 473
OnModemStatus 474
OnNewMessage 883
OnNextMessage 883
OnNextPage 685
OnOpenUserFile 615
OnOutputLine 616, 635
OnPacket 141
OnPageChange 665
OnPhraseFinish 340
OnPhraseHypothesis 340
OnProtocolAccept 545
OnProtocolError 545
OnProtocolFinish 546
OnProtocolLog 546
OnProtocolNextFile 547
OnProtocolStatus 548
OnReadUserLine 617
OnScriptCommandFinish 158
OnScriptCommandStart 159
OnScriptDisplay 159
OnScriptFinish 160
OnScriptParseVariable 160
OnScriptUserFunction 161
OnSNPPError 858
OnSNPPSuccess 858
OnSpeakStart 340
OnSpeakStop 340
OnSRError 341
iii     Identifier Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Id
en

tifier In
d

ex
OnSRWarning 341
OnSSAttributeChanged 341
OnSSError 342
OnSSWarning 342
OnStateActivate 184
OnStateChange 175
OnStateFinish 184
OnStateMachineFinish 176
OnStatus 617, 636
OnStringPacket 142
OnTAPFinish 850
OnTapiCallerID 422
OnTapiConnect 422
OnTapiDTMF 423
OnTapiFail 423
OnTapiLog 424
OnTapiPortClose 424
OnTapiPortOpen 425
OnTapiStatus 425
OnTapiWaveNotify 426
OnTapiWaveSilence 427
OnTAPStatus 842, 851
OnTimeout 141
OnTrainingRequested 342
OnTrigger 26, 69
OnTriggerAvail 71
OnTriggerData 73
OnTriggerLineError 73
OnTriggerModemStatus 74
OnTriggerOutbuffFree 75
OnTriggerOutbuffUsed 76
OnTriggerOutSent 77
OnTriggerStatus 25, 78
OnTriggerTimer 79
OnViewerError 665
OnVUMeter 343
OnWsAccept 109, 126
OnWsConnect 110, 126
OnWsDisconnect 111, 126
OnWsError 111, 127, 571
OnWsRead 127
OnWsWrite 127

Open 80, 112
OpenFile 619
Options 368, 619, 637
OriginCol 218
OriginRow 218
OutBuffFree 80
OutBuffUsed 81
OutFileName 620, 638
Output 81
OutputOnActivate 185
OutSize 82
Overhead 548

P

PacketSize 142
PageBitmaps 666
PageHeight 667
PageLength 730, 801
Pager 864
PagerID 840
PagerLog 851
PageWidth 667
Paint 260
Parity 82
Parser 260
Password 104, 383, 571
Paused 813
PauseListening 343
PauseSpeaking 343
Phonebook 384
PhonebookDlg 384
PhoneNumber 384, 752, 819, 851
PlatformID 385
PlayWaveFile 427
Port 104, 852, 858
ppXxx 685, 686
PrepareConnectInProgress 762
PrepareScript 161
PrevPage 667
PrintAbort 685
Identifier Index     ix 1



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

x

PrintFax 686
PrintOnReceive 801
PrintProgress 686
PrintScale 687
PrintSetup 687
ProcessChar 232, 236
ProcessCommunications 82
ProcessWideChar 233
ProductName 322, 331
PromptForPort 83
Prompts 369
Protocol 162, 580, 585
ProtocolError 549
ProtocolLog 549
ProtocolName 897
ProtocolStatus 549
ProtocolType 550
prXxx 356
psXxx 369, 491, 687, 842
ptXxx 550
ptXxx (protocol type) 897
PutBlock 84
PutChar 84
PutString 84
pXxx 82

Q

QuickConnect 884

R

ReadSocket 127
Recipient 820
RelOriginMode 267
RemainingTime 892
RemainingTimeInSecs 892
RemoteID 730, 802
RemoveAllTriggers 85
RemoveTrigger 85
Rename 571

ReplyCode 572
ReSend 852
Reset 219
Resolution 621
RestartAt 572
ResumeListening 343
ResumeSpeaking 344
Retrieve 572
RetryWait 428
RevScreenMode 268
RI 86
RIMask 68
RingCount 474
RINGLight 191
RingOffTimeout 194
RingWaitTimeout 475
Rotation 668
Row 219
RowCount 219
Rows 287
RS485Mode 86
RTS 86
RTSLowForWrite 550
RXDLight 191
RXDOffTimeout 194

S

SafeMode 752, 802
SapiEngine 369
SaveWaveFile 428
Scaling 638, 669
ScheduledDateTime 820
ScriptCommands 162
ScriptFile 162
Scrollback 288
ScrollbackRows 289
scXxx 143, 570
Secs2Ticks 893
SelectDevice 429, 475
SelectedDevice 429, 476
     Identifier Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Id
en

tifier In
d

ex
SelectImage 669
SelectModem 459
SelectRegion 670
Send 840, 852, 859
SendAllMessages 884
SendBreak 87
SendCommand 476
Sender 821
SendFtpCommand 573
SendMessage 884
SendQueryInterval 802
SendTone 429
Sequence 233
Sequencing 331
ServerAddress 574
ServerDataInput 859
ServerDoneString 860
ServerInitString 860
ServerManager 803
ServerResponseFailContinue 860
ServerResponseFailTerminate 861
ServerSuccessString 861
SessionBPS 730, 803
SessionECM 731, 803
SessionResolution 731, 804
SessionWidth 732, 804
SetAsyncStyles 128
SetCharAttrs 220
SetCursorPosition 220
SetDefCharAttrs 221
SetDevConfig 430, 477
SetDialParameters 385
SetHorzTabStop 221
SetRecordingParams 430
SetScrollRegion 221
SetStatusTrigger 88
SetTimerTrigger 90
SetVertTabStop 221
sfXxx 327
sgXxx 328
ShowAboutDlg 344
ShowConfigDialog 430

ShowConfigDialogEdit 431
ShowFaxJobInfoDialog 778
ShowGeneralDlg 344
ShowLexiconDlg 344
ShowMediaSelectDialog 306
ShowPorts 431
ShowTapiDevices 432
ShowTrainGeneralDlg 345
ShowTrainMicDlg 345
SilenceThreshold 432
SmoothScrollMode 268
SMSAddress 885
smXxx 575
SocksVersion 104
SoftwareFlow 732, 805
Speak 345, 369
Speaker 322
SpeakerMode 385
SpeakFile 346
SpeakFileToFile 347
SpeakStream 347
SpeakToFile 348
SRAmplitude 349
SRAutoGain 349
SREngines 338, 349
SSVoices 349
ssXxx 332, 866, 874
Start 176
StartCond 143
Started 480
StartManualReceive 762
StartManualTransmit 752
StartReceive 551, 763
StartScript 163
StartState 176
StartString 143
StartTransmit 551, 753
StartWaveRecord 432
StateNames 177
StationID 621, 733, 805
Status 574, 874
StatusDialog 481
Identifier Index     xi 1



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

x

StatusDisplay 386, 433, 477, 552, 687, 733, 
806

StatusInterval 552, 734, 806
StatusMsg 553, 734, 806
StopBits 91
StopListening 349
StopSpeaking 350
StopWaveFile 434
StopWaveRecord 434
Store 575
StoreToBinFile 244, 252
String2NetAddr 128
stXxx 775, 777
Style 323
SupportedFaxClasses 734, 807
SVRowCount 222
svXxx 104
SWFlowOptions 91
swfXxx 91
SystemStatus 129

T

TabStop 622
TAdCharSetMapping 245
TAdKeyboardMapping 238
TAdKeyString 241, 248
TAdModem 461
TAdModemStatus 478
TAdParserCmdType 232, 233
TAdTerminal 269
TAdTerminalBuffer 201
TAdTerminalCharAttr 213, 220
TAdTerminalCharAttrs 213, 220
TAdTerminalEmulator 253
TAdTerminalParser 224, 229
TAdTTYEmulator 262
TAdVT100Emulator 263
TAdVT100Parser 225, 234
TApdAbstractFax 715
TApdAbstractFaxPrinterStatus 689

TApdAbstractFaxStatus 822
TApdAbstractPager 839
TApdAbstractStatus 578
TApdAbstractTapiStatus 440
TApdAudioInDevice 324
TApdAudioOutDevice 314
TApdBaseComponent 8
TApdBaseDispatcher 49
TApdBaseXxx 8
TApdComPort 22
TApdCustomModemPager 841
TApdCustomSapiEngine 333
TApdCustomSapiPhone 356
TApdDataPacket 132
TApdFaxClient 815
TApdFaxConverter 594
TApdFaxDriverInterface 834
TApdFaxJobHandler 769
TApdFaxLog 828
TApdFaxPrinter 674
TApdFaxPrinterLog 695
TApdFaxPrinterMargin 680, 681
TApdFaxPrinterStatus 693
TApdFaxServerManager 809
TApdFaxStatus 826
TApdFaxUnpacker 624
TApdFaxViewer 649
TApdFtpClient 559
TApdGSMPhone 865, 878
TApdLibModem 449
TApdMessageStore 875
TApdPagerLog 862
TApdProtocol 523
TApdProtocolLog 583
TApdProtocolStatus 582
TApdRasCompressionMode 374
TApdRasConnectedEvent 382
TApdRasDialer 372
TApdRasDialMode 377
TApdRasErrorEvent 382
TApdRasSpeakerMode 385
TApdRasStatus 387
ii     Identifier Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Id
en

tifier In
d

ex
TApdRasStatusEvent 383
TApdReceiveFax 754
TApdSapiEngine 337
TApdSapiPhone 359
TApdSapiPhonePrompts 351
TApdSendFax 736
TApdSLController 191
TApdSMSMessage 872
TApdSNPPPager 856
TApdSocket 115
TApdState 178
TApdStateMachine 172
TApdStatusLight 188
TApdTapiDevice 407
TApdTapiLog 445
TApdTapiStatus 443
TApdTAPPager 841
TApdVoIP 301
TApdVoIPTerminal 298
TApdWinsockPort 106
TapiDevice 441, 446, 735, 807
TapiHistoryName 446
TapiLog 434
TapiMode 92
TapiState 435
TapiStatusMsg 436
TAPStatusMsg 853
TApxScript 146
TAsciiEOLTranslation 527, 529
TAutoScaleMode 631, 657
TBlockCheckMethod 530
TCallInfo 415
TDeleteFailed 584
TDeviceLayer 58, 109
TDialError 841, 849
TDialErrorEvent 849
TDialingCondition 841, 847, 849, 850
TDialingStatus 841, 850
TDialStatusEvent 850
Terminal 163, 261
TerminalState 177
Terminate 185

TFaxAcceptEvent 761, 797
TFaxClass 721, 734, 789, 807
TFaxClassSet 807
TFaxCloseFileEvent 614
TFaxCvtOptions 619
TFaxErrorEvent 728
TFaxFinishEvent 728
TFaxFont 610
TFaxInputDocumentType 611
TFaxLogCode 729, 799, 829
TFaxLogEvent 729, 799
TFaxNameEvent 762, 800
TFaxNameMode 760, 790
TFaxNextEvent 751
TFaxOpenFileEvent 615
TFaxOutputLineEvent 616
TFaxPLCode 684, 696
TFaxPLEvent 684
TFaxPrintProgress 684, 686
TFaxPrintScale 687
TFaxPrintStatusEvent 684
TFaxPrnNextPageEvent 685
TFaxReadLineEvent 617
TFaxRecipientRec 770, 784, 820
TFaxResolution 621, 632, 682
TFaxServerFatalErrorEvent 798
TFaxServerFinishEvent 799
TFaxServerMode 798, 799
TFaxServerPortOpenCloseEvent 800
TFaxServerStatusEvent 800
TFaxStatusEvent 617, 729
TFaxWidth 623, 633, 682
TFlowControlState 59
TFtpErrorEvent 568
TFtpLogCode 569
TFtpLogEvent 569
TFtpReplyEvent 569
TFtpStatusCode 568, 569
TFtpStatusEvent 569
tfXxx 317
THWFlowOptions 62
Ticks2Secs 893
Identifier Index     xiii 1



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

x

TimeOut 144
TimerExpired 893
TimeStamp 874
TimeStampStr 874
TLightSet 191
TLineDialParams 415
tlXxx 35, 45, 66, 94
TModemString 746, 787, 796, 846, 849
tmXxx 92
ToneDial 753, 807, 853
TooFewDigits 354
TooManyDigits 354
TopMargin 623
TotalErrors 553
TotalFaxPages 688
TotalPages 735, 808
TPacketEndSet 139
TPacketStartCond 143
TParity 82
TProtocolAcceptEvent 545
TProtocolErrorEvent 545
TProtocolFinishEvent 546
TProtocolLogEvent 546
TProtocolNextFileEvent 547
TProtocolStatusEvent 548
TProtocolType 550, 897
TraceHex 93
TraceName 93
TraceSize 94
Tracing 94
TransferTimeout 576
TranslateAddress 437
TransmitTimeout 553
TrimSeconds 437
TStationID 730, 733, 802, 805
TStringPacketNotifyEvent 142
TSWFlowOptions 91
tsXxx 315, 435
TTapiLogCode 446
TTapiLogEvent 424
TTapiMode 92
TTapiState 435

TTapiStatusEvent 425
TTAPStatus 842, 851
TTAPStatusEvent 851
TTraceLogState 66, 94
TTriggerAvailEvent 71
TTriggerDataEvent 73
TTriggerEvent 69
TTriggerLineErrorEvent 73
TTriggerStatusEvent 78
TTriggerTimerEvent 79
TTSOptions 350
TUnpackerOptions 637
TUnpackOutputLineEvent 635
TUnpackStatusEvent 636
TurnDelay 554
TViewerErrorEvent 665
TViewerFileDropEvent 664
TViewerRotation 668
TWriteFailAction 555
TWsAcceptEvent 109
TWsErrorEvent 111
TWsNotifyEvent 126, 127
TWsSocketErrorEvent 127
TXDLight 191
TXDOffTimeout 194
TZmodemFileOptions 556

U

UnpackFile 639
UnpackFileToBitmap 640
UnpackFileToBmp 641
UnpackFileToDcx 641
UnpackFileToPcx 642
UnpackFileToTiff 642
UnpackPage 643
UnpackPageToBitmap 644
UnpackPageToBmp 644
UnpackPageToDcx 645
UnpackPageToPcx 645
UnpackPageToTiff 646
iv     Identifier Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Id
en

tifier In
d

ex
Unrecognized 355
uoXxx 637
UpcaseFileNames 554
UpdateDisplay 442, 481, 581, 692, 825
UpdateLog 446, 585, 696, 829, 864
UpdateStatus 814
UseAutoWrap 222
UseEscapes 854
UseEventWord 95
UseLazyDisplay 289
UseNewLineMode 222
UserCode 105
UserLoggedIn 576
UserName 386, 577
UseScrollRegion 223
UseSoundCard 438
UseTapi 855
UseWideChars 223

V

VER_PLATFORM_WIN32_NT 385
VER_PLATFORM_WIN32_WINDOWS 

385
Version 8
VertDiv 646, 670
VertMult 646, 671
VertScroll 671
VideoInDevice 307
VideoOutDevice 307
VoIPAvailable 307
vrXxx 668

W

WaitingForCall 308
WantAllKeys 290
WaveFileName 438

WaveState 439
waXxx 426
wfXxx 555
Where 355
Where2 355
WhitespaceCompression 647, 671
WhitespaceFrom 647, 672
WhitespaceTo 648, 673
Width 623
WordList 350
WrapAround 268
WriteChar 223, 291
WriteFailAction 555
WriteSocket 129
WriteString 223, 291
WsAddress 112
WsMode 113
WsPort 114
WsTelnet 114
WsVersion 129
wsXxx 439

X

XOffChar 97
XOnChar 97
XYmodemBlockWait 555

Z

zfoXxx 510, 556
Zmodem8K 556
ZmodemFileOption 556
ZmodemFinishRetry 557
ZmodemOptionOverride 557
ZmodemRecover 558
ZmodemSkipNoFile 558
Identifier Index     xv 1



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

x
vi     Identifier Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
Subject Index

A

AcceptFile processing 495
accepting connection 126
accessing terminal parser 260
adding

commands 162
data trigger 49
keyboard mapping instance 241
recipient to job file 770

AddModemRecord 457
AdLibMdm 447
AdMdm 447
AdMdmDlg 447
Alphanumeric pager See Pager
ANSI, definition of 921
answering

call 464, 759
data calls 759, 762

APF file format 591
APJ  See  Async Professional Job File
APRO.HLP 4
APRO.XXX 4
APROBCB.HLP 4
ASCII protocol

See also protocol
delay settings 527, 529
end of file settings 529
end of line character 528
end of line translation 519, 527, 529
overview 519
timeout settings 528

ASCII text documents 594
assigning pager port 858
Async Professional Job File (APJ) 766
asynchronous serial communication 921
AT commands 921
AWDEFINE.INC 920

B

batch file transfer 494
baud rate

defined 921
setting 53

Bell 103 921
Bell 212A 921
Berkley Sockets API 99
blinking text, painting 256
block size control 511
BMP files 595
bps 921
break 922
break signal 87

C

cancelling
fax session 782
pager call 845
protocol transfer 533
script 157
state machine 173

CCITT 922
character map

adding new instance 248
clearing 249
count 249
data source 246
emulator and 256
loading from file 250
loading from resource 252
overview 245
storing to file 252

character quoting 513
character set

glyph 202
     xvii 1



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x

mapping 199
special graphics 199
USASCII 199

character-time 922
checking

CTS signal 55
DCD signal 56
DSR signal 58
DTR signal 59
for received data 95
for syntax errors 161

checksum 922
client

connecting to server 109
defined 922

clock tick 888
collecting data 138, 748
COMM.DRV 922
command

list of 162
script 162

common problems 932
component hierarchy 8
comport

activating triggers 88, 90
adding triggers 49, 50, 51
baud rate 53
buffer space 64
character ready 54
CTS signal 55
data bits 56
DCD signal 56
defined 922
DeltaCTS signal 56
DeltaDCD signal 57
DeltaDSR signal 57
DeltaRI signal 57
determining number of stop bits 91
device layer 49
device type 58
DSR signal 58
DTR signal 59

flow control 54, 59, 62, 91, 97
flushing buffer 60
input buffer space 63, 64
line break 64
line errors 65
modem status byte 68
name 895
number 83
opening 52, 80
output buffer space 80, 81, 82
overview 22
parity 82
port number 55
processing messages 82
reading data 61, 62
removing triggers 85
RI signal 86
RS-485 support 86
RTS signal 86
sending data 81, 84
XOff character 97
XOn character 97

conditional defines 920
connecting

socket 126
TAPI 422

control character
escaping 508
pager 854

control sequence
terminal buffer 202
terminal parser 233
VT100 terminal 265

conversion
closing file event 614
closing image files 604
compressing raster line 604
converting bitmap 607
converting image files 605, 607
file extension 608
generating end-of-page code 614
lines per page 613
viii     Subject Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
opening file 619
opening image file 615
outputting line 616
reading line 617
reading raster line 610
setting options 619
specifying fax width 623
specifying font file name 609
specifying font size 610
specifying input image file name 608
specifying input image file type 611
specifying left margin width 613
specifying output fax file name 620
specifying resolution 621
specifying tab size 622
specifying top margin size 623
station ID 621
status 617

cover pages 738
CRC 922
creating fax job file 775
CTS signal

checking 55
defined 923

cursor
displayed during waits 658
movement sequences 265
moving left to tab stop 209
moving right 210
moving to new line 222
retrieving position 257
status 216
terminal column 206

D

data
adding trigger 49
answering calls 759
bits 923
checking for received 95

collecting 138, 748
compression 923
ownership 134
reading 127
transfer rate 526

data packet
availability 141, 142
case sensitivity 140
collecting data 138, 748
data ownership 134
defined 132
determining port 138
determining size 142
end condition 135
end string 140
example 136
including start and end strings 140
receiving 139
re-enabling 138
start condition 134
starting data collection 143
starting string 143
timeout 141, 144
wild-card characters 144

DCB 923
DCD signal 923
DCD signal, checking 56
DCE 923
DCX files 595
debugging

dispatch logging 36
overview 33
tracing 33
Windows communications programs 930

DEC VT100 standard 195
defining

state bitmap 182
state condition 182
state string 185
terminal component 261
terminal display status 259

DeltaCTS signal 56
1Subject Index     xix



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x

DeltaDCD signal 57
DeltaDSR signal 57
DeltaRI signal 57
demonstration programs 6
deprecated components 3
destination directory 533
detecting

active protocol 540
batch transfers 530
dial tone 743, 845
DTMF tone 423

determining
data packet size 142
default fax font 788
emulator display width 266
fax error action 720
fax font 747, 787
fax header font 788
fax job file directory 811
fax port used 783
fax send count 750
fax serial port 718
logging state 66
media terminal device to use 307
modem serial port 466
number of dial attempts 786
number of glyph cells 183
number of mappings 241
number of rings 758, 781
number of stop bits 91
port 138
protocol log file name 584, 585
script protocol 162
serial port 173
state color when not active 183
state component color 181
terminal component 163
whether state is active 181

device layers
defined 923
setting 58, 109

dial status of pager 850

dialing 745, 747
dialing error 849
Dialup Networking 10, 371
disconnecting

pager 848
socket 126
Winsock 111

dispatch logging 36
dispatcher, processing messages 82
displaying

data 157
script 159

DNS 99, 923
document conversion 588
Domain Name Service 99
dot notation 99, 923
drag and drop 651
DSR signal 923
DSR signal, checking 58
DTE 923
DTMF

detecting tone 423
send tone 430
sending tone 429

DTR signal
checking 59
defined 924

dumb terminal 927

E

EAPDException 900
editing commands 162
emulator

accessing parser 260
auto repeat 266
character set map 256
cursor position 257, 265, 267
defined 927
defining terminal component 261
defining terminal display status 259
x     Subject Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
determining display width 266
extensibility 196
keyboard 195, 196
overview 253
painting blinking text 256
processing key down message 258
processing key press message 258
processing lazy paint request 259
processing paint request 260
repainting 259
retrieving keyboard map 257
retrieving terminal buffer 256
terminal 195
TTY nil properties 262
TTY overview 253
VT100 escape sequence responses 264
VT100 graphics processor option 266
VT100 LED state 267
VT100 line feed character 267
VT100 numeric keypad sequence 265
VT100 overview 253, 263
VT100 scanlines 266
VT100 smooth scroll 268
VT100 standard 196
VT100 support 195
VT100 terminal control sequences 265
VT100 text display 268
VT100 wordwrap 268
writing a terminal component 199

encountering user function 161
end of page code, generating 614
error

codes 900
correction 924
exceptions 900
fax 728
handling in protocol transfers 488
message string 895
protocol code 549
Winsock 111

example programs 6
exceptions 900

executing script 158, 163
extension, image file 608

F

FAQs 932
fax

See also fax server, fax server manager, fax 
job handler, fax engine

accepting 761
answering data calls 759, 762
assigning file extension 721
bps 719, 725, 730
cancelling 717
classes supported 734
combining files 744
connecting files 748
converting font 609
cover file name 744
current page number 719
detecting busy signal 745
detecting dial tone 743
determing number of rings 758
determing send count 750
determining error action 720
determining font 747
determining serial port 718
dial retry 746
dialing 745, 746, 747
directory 759
error 728
file format 591
file name 721, 760, 789
hangup code 722
header line 748, 816
indicating class 721
initialization baud rate 724
initialization string 726
initializing modem 760
log 729
log component 829
1Subject Index     xxi



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x

log file name 829
logging component 722
manual receive 762
manual transmit 752
modem chip 726
modem model 727
modem revision 727
next fax 751
no connect 717
normal baud 727
number of pages 735
one fax receive 761
output buffer 743
output file name 835
page length 730
print job end 835
print job name 835
print job start 836
printer driver 830
progress 722
receiving 698, 763
receiving status 758
recipient name 749, 817
remote ID 730
resolution 731
retrieving file name 762
sender name 749
sending 698
server status 800
session end 728
software flow control 732
specifying phone number 752
station ID 733
status 729
status interval 734
status message 734
status window 733
supporting error correction 726, 731
title 750, 817
tone dialing 753
transferring bytes 717
transmitting 753

updating log 829
using error control 720
width 732
yielding 752

fax client
See also fax server, fax server manager, fax 

job handler, fax engine, fax
fax engine

See also fax server, fax client, fax server 
manager, fax job handler, fax

automatic queries 802
bps 785, 795, 803
bytes transferred 782
class 789
classes supported 807
current page 784
determining number of dial attempts 786
determining number of rings 781
determining port used 783
dialing 781, 786, 787
directory 786
error response 788
fatal error 798
fax end 799
fax log 799
fax name 800
file extension 789
file name 790
initialization baud rate 793
initialization string 796
job name 783
job number 784
logging component 790
minimum delay 785
modem model 796
modem revision 796
monitoring calls 797
normal baud 797
opening/closing port 800
output buffer 781
print on receive 801
printer 790
xii     Subject Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
query interval 802
receiving status events 783
recipient information 784
remote ID 802
scheduling fax jobs 791
server manager 803
software flow control 805
station ID 805
status interval 806
status window 806
TAPI device 807
tone dialing 807
yield 794, 802

fax job handler
See also fax server, fax client, fax server 

manager, fax engine, fax
adding recipient 770
concatenate APF files 771
creating job file 775
extracting APF data 772
extracting cover file 773
information dialog 778
overview 769
recipient record 774
retrieving job header record 773

fax server
See also fax client, fax server manager, fax 

job handler, fax engine, fax
cancelling session 782
configuration 765
determining default font 788
determining font 787
determining header font 788
dialing 787
error control 785
error correction 803
hangup code 791
integration with other components 768
job header record 766
modem chip 795
number of pages 808
overview 764, 779

page length 801
page width 804
process 764
progress 791
recipient record 767
resolution 804
status 800
status message 806
supporting error correction 795

fax server manager
See also fax server, fax client, fax job han-

dler, fax engine, fax
determining directory 811
filter files 811
next time 811
pausing queueing 813
queueing 813
retrieving next fax 810
retrieving next job 810
updating status 814

fax status
creating form 824
destroying form 824
fax component 824
form 824
updating form 825

FIFO mode 924
file

assigning extension 721
font 609
script commands 162

File Transfer Protocol See  FTP
file transfers 526
files supplied 4
finishing print job 835
flow control

buffer level 54
current state 59
defined 924
hardware options 62
software options 91
XOff character 97
1Subject Index     xxiii



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x

XOn character 97
font

file 609
size 610
specifying size 610

footers 674
FTP

account information 562
active session 576
bytes transferred 562
changing directory 563
client 559
client support 521
closing port 568
commands supported 566
connecting 563
controlling connection 521
deleting file 564
error codes 522
file format 565
file length 564
help 566
list of files 566
log auditing 569
log in 567
log out 568
logging component 565
making new directory 568
opening port 567
operation in progress 566
overview 521
password 571
protocol error 568
renaming file 571
restarting byte location 572
resuming start 572
retrieving file 572
returning a reply 569
sending command 573
sending file 575
server address 574
server status 574

status 569
status codes 570
store mode 575
terminating transfer 562
timeout value 576
user name 577

full duplex 924

G

generating end of page code 614
glossary 921
glyph, in character set 202

H

half duplex 924
handshaking 499, 924
headers 674
host name 924

I

image file, opening 615
including start and end strings 140
initializing modem 760
installation 4
interface layer 924
Internet communications 99
IP address 99, 924
IRQ 925
ISDN

overview 29
support 30

K

Kermit protocol
See also protocol
character quoting 513
xiv     Subject Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
long blocks 541
long packets 517
overview 513
packet length 541
packet padding 542
prefix characters 540, 542
protocol options 515
sliding windows 518, 541, 543, 544
terminator character 543
timeout settings 544

keyboard emulator 196
keyboard map

adding instance 241
clearing 241
custom 238
determining number of 241
extensibility 198
loading 198
loading from file 239, 242
loading from resource 239, 243
overview 238
retrieving 257
sequence definition 238
storing 244
storing as resource 198
value 242
virtual keys 238

KnowledgeBase 19

L

LAP M 925
large block support 512
lazy paint, processing request 259
left margin, specifying width 613
libmodem 448
line

break signal 64
error 65, 925
number per page 613
outputting 616

parameters 53, 56, 82, 91
reading 617

line-draw characters 202
log, updating 829
logging

buffer size 67
control of 66
determining state 66
fax 799
file format 37
file name 67
hex format 67
overview 36
protocol 493

long packet support 517
lookup 925

M

margin, fixed left 613
media terminal

audio input 300, 302
audio outuput 302
available devices 302
class 299
connecting 304
connection established 304
details about call 303
detecting incoming call 306
determining control 307
determining device to use 307
direction 300
disconnecting 305
displaying device dialog 306
establishing VoIP connection 304
instantiated 300
name 300
supporting Voice over IP 307
terminating call 303
using 299
VoIP fail 305
1Subject Index     xxv



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x

waiting for incoming call 308
memory bitmaps 625
messages

APW_TRIGGERAVAIL 26, 70
APW_TRIGGERDATA 70
APW_TRIGGERSTATUS 26, 70
APW_TRIGGERTIMER 70

Microcom 925
MNP 925
modem

adding definition 457
adding record 457
answer attempt 473
answering 464
answering call 464
bps rate 465
cancelling connect attempt 465
changing state component 474
configuration structure 468, 477
configuring 466
connection parameters 470
creating detail file 457
currently selected 476
defined 925
defining location 459
deleteing record from index 458
deleting detail record 458
detecting caller ID information 471
detecting failure 473
detecting number of rings 474
determining serial port 466
dial attempt 473
dialing 467
directory 469
disconnecting 472
displaying selection dialog 475
displaying selection dialog box 459
error code 469
establishing connection 472
failure code 468
failure code message 468
opening 466

resetting answer attempt 475
retrieving all from detail file 459
retrieving from detail file 458
selection 461
sending command 476
state 469
status dialog box 477
time out 467

modem status
byte 68
creating dialog box 480
determining caption 480
determining form to display 481
updating 481

modemcap 448

N

naming conventions 18
network address 112
network shared-modem pool 925
newsgroups 19
NextFile processing 494

O

on-line help 18
opening image file 615
option

for conversion 619
setting 619

output
line 616
request trigger 26, 77
unpacked line 635

P

packet
end condition 135
xvi     Subject Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
start condition 134
pager

assigning port 858
cancelling call 845
choosing port 855
connecting 859
connection failure 845
control characters 854
creating text 840, 848
detecting dial tone 845
dial prefix 846
dial retry 847
dial status 847, 850
dialing 846, 852
dialing error 849
dialing error handling 841
dialing events 841
dialing options 853
disconnecting 848
error 858
error action 848
error values 841
fatal error 861
identification string 840
initializing modem 849
initializing serial port 852
initializing server event 857
log 851
log on 857
log out 857
login success indicator 860
message length 848
multi-line request 859
non-fatal error 860
paging status 842
phone number 851
phone number prefix 846
port properties 852
processing command 861
requirements 838
resending message 852
send 840

sending 852, 859
server access 851
server log out 860
server response delay 857
status 851
status message 853
successful response 858
terminating connection 850
tone dial 853
using TAPI 855
waiting for connection 847

pager log
component 864
name 864
updating 864

paint, processing request 260
painting blinking text 256
parity 925
parser See terminal
PCX files 595
phone number

pager 851
pager prefix 846
RAS 384
TAPI 421

port
closing 424
determining 138
establishing a network connection 114
opening 425

print job
finishing 835
starting 836

printer
cancelling 685
caption 680
current page 680
fax width 682
file name 682
first page 683
footer 680
header 681
1Subject Index     xxvii



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x

last page 683
logging component 681
multi page 683
next page 685
number of pages 688
options 687
print fax 686
print log event 684
print status 684
progress 686
resolution 682
scaling 687
status 687

printer driver
defined 830
installation 830
recompiling 833

printer log
fax component 696
file name 696
updating 696

printer status
creating form 691
destroying form 691
printer component 691
referencing form 691
updating 692

processing
key down message 258
key press message 258
messages 82
pager command 861
paint request 260

protocol
See also  ASCII protocol, Kermit protocol, 

Xmodem protocol, Ymodem protocol, 
Zmodem protocol

aborting 487
aborting on carrier drop 488, 526
accept file 486, 545
accepting file event 545
ASCII overview 519

background operation 485
batch file transfer 494
block check method 530
block length 531
block number 531
buffer size 485
bytes remaining 532
bytes transferred 532
cancelling transfer 533
comport 533
data transfer rate 526
defined 926
destination directory 533
detecting active 540
detecting batch transfers 530
determining 162
elapsed time 534
error code 549
error count 531, 553
error handling 488
estimating transfer time 526, 534, 543, 548, 

554
events 486
fatal error 487, 545
file date and time 535
file length 536
files to send 536, 539
initial file offset 539
internal logic 496
Kermit overview 513
list of files to send 495
logging 487, 493, 546
logging component 549
name string 897
next file 487, 547
overhead per block 548
overwriting files 555, 556
partial files 584
receive files 551
received file name 536, 538, 539
reject file 495
retry settings 538
xviii     Subject Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
RTS low during write 550
sending files 551
state code 492, 549
state string 553
status 487, 489, 548
status event 548
status interval 552
status properties 490
status window component 492, 552
timeout settings 537, 553, 554
transfer complete 487, 546
transfer complete event 546
turnaround delay 554
type setting 550
Xmodem overview 501
Ymodem overview 504
Zmodem overview 507

protocol log
See also protocol
determining file name 584, 585
file format 583
overview 583
updating file 585

protocol status
See also protocol
abstract status class 578
creating form 580
destroying form 580
form instance 580
protocol component 580
standard component 582
updating form 581

proxy server
address 104, 105
password 104
port number 104
specifying user name or code 105
version 104

R

RAS
active connections 380
asynchonous dialing 377
authenticate access 383, 386
authentication 378
callback number 374
compression mode 374
connecting 382
connection handle 374
connection status 374
connection status dialog 381
connection status text 379
create phonebook entry 375
delete phonebook entry 375
device name 375
device type 376
dial 376
dial dialog 377
dial error 382
dial mode 377
dial options 378
dial status 383
dialer overview 372
dialing parameters 379, 385
disconnecting 383
domain 378
edit phonebook entry 378
entry name 378
entry names 381
error text 379
establish connection 376
hangup 380
override phonebook entry 384
overview 371
password 383
phone number 384
phonebook dialog 384
phonebook path 384
platform supported 385
release resources 380
1Subject Index     xxix



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x

speaker mode 385
status component 387
status dialog 386
synchronous dialing 377
terminate connection 380
update dialing parameters 385
user name 386
Windows NT dial options 378
WinNT connection 377

raster line, reading 610
README.TXT 4
received data, checking for 95
receiving

data 157
data packet 139
fax 698, 763
file 551

references 115
register components 6
Remote Access Service See RAS
remote device 926
resending pager message 852
resolution, specifying 621
retrieving

cursor position 257
fax file name 762
job header record 773
keyboard map 257
next fax job 810
terminal buffer 256

RI signal 86
ring indicator (RI) 926
rotation 651
RS-232 926
RS-485

base address 53
overview 31
RTS control 32

RTS signal
checking 86
defined 926

S

SAPI
components 309
overview 310

scaling
fax printer 675
fax unpacker 626
fax viewer 649

script
active 158
adding commands 162
cancelling 157
checking for syntax errors 161
command finish event 158
command start event 159
commands 146, 162
comport 157
debugging 154
defined 145
definition 145
determining protocol 162
determining terminal component 163
display event 159
displaying data 157
editing commands 162
encountering user function 161
error handling 160
example 155
executing 153, 158, 163
file 162
list of commands 162
options 149
parsing variable 160
preparing 161
protocol component 154
receiving data 157
required components 154
sending data 157
starting 163
syntax 146
syntax error handling 161
xx     Subject Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
terminal component 154
tracking progress 158, 159
user functions 152
user variables 153

sending
data 81, 84, 157
DTMF tone 429
file 551
page 859

serial data 926
server 99, 926
setting

device layers 58, 109
options 619

Simple Network Paging Protocol See Pager
Sliding Windows Control 518
smart terminal 927
SNPP server error 858
socket

accepting connection 126
connecting 126
defined 927
disconnecting 126
error 127
overview 100
reading data 127
writing to 127

specifying
fax phone number 752
font file name 609
font size 610
input image file name 608
input image file type 611
left margin width 613
output fax file name 620
resolution 621
tab size 622
top margin size 623

speech
considerations for recognition 312
considerations for synthesis 312
recognition 311

requirements for recognition 312
requirements for synthesis 312
synthesis 310
synthesis tags 334

S-registers 926
start bit 927
starting

data collection 143
data packet string 143
print job 836
script 159

state
activating 184
defining bitmap 182
defining condition 182
defining string 185
determining color when not active 183
determining component color 181
determining number of glyph cells 183
determining whether active 181
satisfying conditions 184
terminating 185

state machine
activating 176
cancelling 173
changing 175
collected data 174
component name 177
currently active 174
data size 174
determining serial port 173
error code 175
pointer 174
starting 176
terminating 176, 177

station ID 621
status

activating trigger 88
adding trigger 50
conversion operation 617
creating fax form 824
defining terminal display 259
1Subject Index     xxxi



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x

destroying fax form 824
fax engine 806
fax server 800
FTP codes 570
modem 68
pager 851
printer 687
protocol 489
RAS 386
RAS dialing 383
receiving fax 758
TAPI 397
TAPI dialing 425
trigger 25
unpack operation 636

status lights
bitmaps 189
break light 191
CTS light 191
DCD light 191
DSR light 191
error light 191
lights to display 191, 193
lit color 189
lit state 189
overview 188
ring light 191
RXD light 191
serial port 193
start triggers 194
timeout settings 193, 194
TXD light 191
unlit state 190

stop bits
defined 927
determining number 91

streaming protocol 927
success response 858
SuperKermit 518
supporting

error correction 795
fax error correction 726, 731

T

tab, specifying size 622
TAPI

answering calls 402
auto answer 410
bps rate 411
call info 415
caller ID 412
closing port 424
comport 413
configuration record 431
connect event 422
connect fail 423
connect fail event 423
connecting 422
create status display 441
destroy status display 441
determining an instance 735
device 441
device configuration 419, 430
device selection 429
dial 415, 416
dial attempts 409
dial retry 420
disconnect 413
disconnect check 413
display comports 431
DTMF 406
fax server device 807
log 424
log event 424
log file name 446
logging 400, 434, 446
logging overview 397
making calls 400
number of devices 415
opening port 425
overview 389
passthrough mode 414
phone number 421
port close event 424
xxii     Subject Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
port open event 425
property sheets 430
retry wait 428
rings 409
service providers 404
state 435
status 425
status display 397
status display form 441
status event 425
status message 436
status processing 394
status window 432, 433
translate address 437
unimodem 404
unimodem/v 404, 406
update status display 442
version 409
wave file 428
wave file support 405
wave message length 420
wave record 432

TAPI integration 389
technical support 931
Telelocator Alphanumeric Protocol See Pag-

er
Telephony Application Programming Inter-

face 389
Telnet 106, 114, 927
terminal

accepting serial events 276
adding character map 248
adding keyboard mapping instance 241
background color 201, 205, 278
background/foreground color 215
blinking text cycle 278
buffer overview 197, 201
capturing data to file 278
character height 280
character mapping 249
character mapping overview 245
character set 201, 205, 280

character set mapping table 199
character sets 215
character width 281
clearing buffer 282
clearing character mapping 249
clearing display 281
clearing keyboard mapping 241
client window 271
clipboard 273
column count 207, 282
column origin 218
comport component 269
control sequences 195, 224
copying displayed text 273
copying to clipboard 283
creating 283
creating buffer 207
cursor position 202, 216, 217, 218, 219
custom keyboard mapping 238
data source 246
default color 207
defining column cursor 206
delay repaint 286
deleting character 208
deleting line 208
design considerations 196
destroying 284
determining number of mappings 241
display 201
display characters 201
display options 213
display status 216
display view 203
draw command 250
draw script 249
emulation 195
emulation mode 195
erasing character 211
erasing display 212
erasing line 211
escape sequences 224
forced repaint 286
1Subject Index     xxxiii



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x

foreground color 201
inserting line 216
keyboard mapping 238
keyboard mapping overview 238
keyboard mapping return value 242
keyboard mapping sequence definition 

238
line attributes 214
loading character map from file 250
loading keyboard mapping 198
loading keyboard mapping from file 239
moving cursor 220
moving cursor left 209, 217
moving cursor right 210
moving cursor to new live 222
overview 195
parser class 198
removing tab stops 205
removing vertical tab stops 206
repainting 202, 214
resetting defaults 219
row count 219
row origin 218
scrollback buffer size 222
scrollback view 203
scrolling region 203, 221
scrolling region active 223
setting default 208
setting tab stops 221
setting text options 220
storing character map 252
storing keyboard mapping 244
teletype mode 195
text 215
text color 212
text defaults 221
text options 201
VT100 parsing 198
wordwrap 222
writing character 223
writing string 223

terminal buffer

control sequences 202
retrieving 256

terminal component
defining 261
determining 163
displaying local data 286
emulator 269, 284
file name 279
font handling 272
hook keystrokes 290
lazy write mode 272, 289
line 287
overview 269
proportional fonts 272
row count 287
scrollback buffer size 289
scrollback mode 288
serial device attached 283
text color 285
text options 277
text size 272
window handle 284
write character 291
write string 291

terminal parser
accessing 260
ancestor class 224
ANSI escape sequences 225
ANSI mode 225
argument 230, 235
argument count 230
Arguments property 225
clearing 225, 231
control characters 226
control sequence 233
creating 231
current command 231
escape sequences 226
one-byte control characters 226, 236
operations 224
overview 224
process character 232
xxiv     Subject Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
process single character 224
sequence 225
unicode character 233
VT100 225
VT100 escape sequences 235
VT52 mode 225, 236

TIFF files 595
timer

clock tick 888
converting units 893
delay 890
detecting expired 893
elapsed time 890, 891
overview 888
remaining time 892
starting 891, 892

timer trigger 25, 51, 79, 90
top margin, specifying size 623
tracing

adding entry 52
buffer size 94
control of 94
defined 33
file format 34
file name 93
hex format 93
overview 33

transmitting fax 753
trigger

activating 88, 90
adding 49, 50
data availability 71
defined 927
general event 69
line error 73
line status change 78
modem status change 74
output buffer space 75
output buffer space event 76
output request 77
overview 22, 23
removing 85

status 25
timer 79

TTY
nil properties 262
overview 253

U

UART 927
unpacking

all pages 639
auto scaling 631
file name 634
number of pages 635
options 637
output file name 638
output line event 635
page 643
resolution 632
scaling 633, 634, 638, 646
status 636
status event 636
to APF 631
to bitmap 640, 644
to BMP 641, 644
to DCX 641, 645
to PCX 642, 645
to TIF 646
to TIFF 642
white space compression 647, 648
width 633

updating printer log 696
using fax error control 720

V

V.17 928
V.21 928
V.22 928
V.22bis 928
V.25bis 928
1Subject Index     xxxv



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x

V.27 928
V.29 928
V.32 928
V.42 928
variable parsing 160
viewer

active page 656
auto scaling 657
background color 658
bitmaps 666
copying to clipboard 659
cursor 658
displaying first page 660
displaying last page 662
drag and drop 656
dropping file 664
error 665
file name 660
foreground color 659
loading entire fax 662
next page 663
number of pages 663
page change 665
page height 667
page width 667
previous page 667
rotation 668
scaling 661, 669, 670, 671
scrolling 661, 671
selection 669, 670
updating scaling properties 657, 659
white space compression 671, 672, 673

voice telephony 311
VT100 927

See also terminal
ASCII value 202
escape sequence responses 264
parser 225
standard 196

W

wave file
current state 439
interrupting 420
name 438
playing 427
sound card 438
status 426, 427
stop recording 434
stopping 434
supported 417

wave, average relative amplitude 410
white space compression

fax unpacker 628
fax viewer 651

Windows printer driver 830
Winsock

disconnecting 111
error 111
overview 99

Winsock port
connecting to server 109
definition of 106
device type 109
disconnecting 111
error 111
establishing connection 110
mode 113
network address 112
opening 112
port number or name 114
telnet 114

Winsock socket
attaching client to listening socket 117
bind 117
close 118
connecting 126
creating 119
disconnecting 126
DLL description 119
DLL loaded 118
xxvi     Subject Index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
DLL status 129
DLL version 119, 129
error 127
error code 120
establishing network connection 118
handle 119
host byte order 125
listening for connect 121
local address 121
local name 121
lookup address 122
lookup name 122
lookup port 123
lookup service 124
network address 124, 128
network byte order 120
number of sockets 124
read data 127
read event 127
send data 129
send notification 128
writing to 127

X

Xmodem protocol
See also protocol

extensions 503
overview 501
timeout settings 555

XOff character 97, 924
XOn character 97, 924

Y

Ymodem protocol
See also protocol
extensions 506
overview 504

Z

Zmodem protocol
See also protocol
block size control 511
control character escaping 508
file management options 510
long blocks 512, 556
overview 507
overwriting files 556, 557, 558
protocol options 509
resume transfer 510, 558
retry settings 557
1Subject Index     xxxvii



VCL components for advanced communications

REFERENCE GUIDE
The comprehensive guide to using Async Professional

Reference Guide
TM

F

©2001,TurboPower Software Company

For over fifteen years you’ve depended on TurboPower to provide the best

tools and libraries for your development tasks. Now try SysTools 3 and

XMLPartner Professional—two of TurboPower’s best selling products—

risk free. Both are fully compatible with Borland Delphi and C++Builder,

and are backed with our expert support and 60-day money back guarantee.

S YS TO O L S  3™

SysTools 3 means never having to write the same

old routines again. That’s because it’s the only

library with more than 1000 reliable, optimized,

time-tested routines you’ll use in virtually every

project you build. For everything from low-level

system access to high-level financial calculations,

SysTools is a product that will easily pay for itself

the first time you use it.

X M L PA RT N E R  P R O F E S S I O N A L™

TurboPower’s newest cross-platform toolkit for XML (supporting Linux as

well as Windows) provides all the reading, writing, and editing power of

our entry-level product, XMLPartner, then adds advanced manipulation,

transformation, and presentation components—all in a single package!

Our new XSL Processor with XPath support, filter set, and EXMLPro utility

make it easy to add XML capabilities to your applications.

D E V E LO P, D E B U G , O P T I M I Z E

F R O M S TA R T T O F I N I S H , T U R B O P O W E R

H E L P S Y O U B U I L D Y O U R B E S T

Try the full range of     
TurboPower products.

Download free Trial-Run Editions 
from our Web site.

www.turbopower.com

The TurboPower family of tools—
Winners of 6 Delphi Informant Readers’ Choice Awards
for 2001! Company of the Year in 2000 and 2001.

Async Professional 4 requires Microsoft Windows (9x, Me, NT, 2000 or XP)  and Borland Delphi 3 and above, or C++Builder 3 and above

Async ProfessionalTM Async 
Professional


	License Agreement
	This software and accompanying documentation are protected by United States copyright law and als...
	Copyright © 1998-2001 by TurboPower Software Company, all rights reserved.
	TurboPower Software Company authorizes you to make archival copies of this software for the sole ...
	You may distribute, without runtime fees or further licenses, your own compiled programs based on...
	Note that the previous restrictions do not prohibit you from distributing your own source code, u...
	The supplied software may be used by one person on as many computer systems as that person uses. ...
	This software and accompanying documentation is deemed to be “commercial software” and “commercia...
	With respect to the physical media and documentation provided with Async Professional, TurboPower...
	TurboPower Software Company warrants that the software will function as described in this documen...
	TurboPower Software Company further warrants that the purchaser will remain fully satisfied with ...
	TURBOPOWER SOFTWARE COMPANY DOES NOT ASSUME ANY LIABILITY FOR THE USE OF ASYNC PROFESSIONAL BEYON...
	By using this software, you agree to the terms of this section and to any additional licensing te...
	All TurboPower product names are trademarks or registered trademarks of TurboPower Software Compa...
	™

	Table of Contents
	Chapter 1: Introduction
	Async Professional is a collection of native Visual Component Library (VCL) components that provi...
	A communications port component with standard serial port properties (port number, baud rate, and...
	A flexible data packet component that informs you when data that meets your criteria arrives at t...
	New state machine components that let you design and implement protocols.
	New SAPI components to add Speech to your applications. Now your applications can speak (Text to ...
	New IP Telephony components to implement full streaming audio and video over your network.
	New Non-TAPI modem database using TurboPower’s NEW modemcap XML format. Use the TAPI modem defini...
	New SMS pager component to take advantage of the Short Message System.
	A scripting component that contains properties and methods for automating basic communication ope...
	A communications port component that provides network and Internet communications using Winsock, ...
	A RAS dialing component to that gives you more control over your Dial-Up Networking via the Remot...
	File Transfer Protocol (FTP) components that take care of the FTP protocol details and present a ...
	TAPI components for working with modems in TAPI environments like Windows 95/98, Windows NT 4.0, ...
	A new modem component that provides a simple interface for accessing the most commonly used modem...
	An advanced terminal the provides full support for VT100 protocol.
	StatusLight components that react to changes in serial port status and reflect the status of the ...
	A file transfer protocol component for transferring files using an Xmodem, Ymodem, Zmodem, Kermit...
	File transfer status and file transfer logging components to display the progress of a file trans...
	Paging components for sending alphanumeric pages with Telelocator Alphanumeric Protocol (TAP), Pe...
	Fax Client and Server components that make it easy to create a distributed fax server system.
	A fax conversion component that converts color BMP, monochrome PCX, DCX, TIFF and text files to a...
	Fax printer drivers and an interface component that provide a print-to-fax feature from any Windo...
	Fax send and receive components for transmitting and receiving fax files using Class 1, Class 1.0...

	Deprecated components
	As Async Professional has matured through the years, several components have become obsolete, or ...
	Previous version of APRO have moved the deprecated components to a separate tab on the component ...
	We do not plan to make any enhancements to these components, and technical support for these prod...
	The following components are now deprecated:
	TApdIniDBase, TApdModemDBase, AwModem.ini: These components and files were used for modem configu...
	TApdModem, TApdSModem: These files were used for non-TAPI modem control using the TApdModemDBase ...
	Modem dialer and status components using the TApdModem and TApdSModem components.
	Phonebook and phonebook editor components.
	Terminal window, terminal emulator and keyboard emulator components that allow you to add ANSI, V...

	Each of the units containing installable deprecated components are duplications of the distribute...
	Documentation for the deprecated components is included in the APRODEP.HLP file, installed in the...

	Files Supplied
	Installation information is provided in the Async Professional Developer’s Guide.
	Async Professional includes Delphi components, demonstration programs, example programs, and a he...
	README.HLP
	A help file that describes changes to the manual and new features added after the manual was prin...

	APRO.XXX
	A text file that summarizes changes between successive versions of Async Professional. “XXX” is r...

	APRO.HLP or APROBCB.HLP
	A Windows help file containing information about Async Professional. The help system is generated...

	Units supplied
	The Async Professional components depend on several low-level units that are not documented in th...
	The AdXDial, AdXDown, AdXPort, AdXProt, and AdXUp bonus units provide example dialogs for dialing...
	Table 1.1: Async Professional units (continued)
	AproReg is the unit used to register all of the Async Professional components and to add them to ...


	Demonstration and example programs
	Async Professional includes many demonstration programs and small example programs. The demonstra...
	Table 1.2 briefly describes the demonstration programs. These programs are described fully in the...
	Table 1.2: Async Professional demonstration programs (continued)
	The example programs are discussed fully in the “Example” section for each of the components thro...



	The Component Hierarchy
	In order to provide the user easy access to a product version number, a Version property is assoc...
	Version read-only property
	property Version : string

	Show the current version of Async Professional.
	Version is provided so you can identify your Async Professional version if you need technical sup...
	On the following pages are diagrams showing the Async Professional component hierarchy. All of th...
	Some of the classes, such as TApdCustomComPort, include the word “Custom” in their names. These c...

	ComPort, Winsock, FTP, Data Packet, Socket
	TComponent (VCL)
	TApdBaseComponent (OOMisc)
	TApdCustomComPort (AdPort)
	TApdComPort (AdPort)
	TApdCustomWinsockPort (AdWnPort)
	TApdWinsock Port (AdWnPort)
	TApdCustomFtpClient (AdFtp)
	TApdFtpClient (AdFtp)
	TApdFtpLog (AdFtp)
	TApdDataPacket (AdPacket)
	TApdSocket (AdSocket)
	The TApdComPort component is the foundation of Async Professional. It allows you to access your P...


	Scripting component
	TComponent (VCL)
	TApdBaseComponent (OOMisc)
	TApdCustomScript (AdScript)
	TApdScript (AdScript)
	This diagram shows the hierarchy of the TApdScript component which contains properties and method...


	RAS dialing
	TComponent (VCL)
	TApdBaseComponent (OOMisc)
	TApdCustomRasDialer (AdRas)
	TApdRasDialer (AdRas)
	TApdCustomRasStatus (AdRas)
	TApdRasStatus (AdRStat)
	This diagram shows the components used to establish and monitor a connection to another computer ...


	TAPI modem management
	TComponent (VCL)
	TApdBaseComponent (OOMisc)
	TApdCustomTapiDevice (AdTapi)
	TApdTapiDevice (AdTapi)
	TApdAbstractTapiStatus (AdTapi)
	TApdTapi Status (AdTapi)
	TApdTapiLog (AdTapi)
	This diagram shows the family of components used for Telephony Application Programming Interface ...


	Modem operations
	TComponent (VCL)
	TApdBaseComponent (OOMisc)
	TApdCustomSModem (AdSModem)
	TApdSModem (AdSModem)
	This diagram shows the ancestry of the TApdSModem (simple modem) component. It provides a simple ...


	Terminal
	TObject (VCL)
	TAdTerminalBuffer (ADTrmBuf)
	TAdKeyboardMapping (ADTrmMap)
	TAdCharSetMapping (ADTrmMap)
	TAdTerminalParser (ADTrmPsr)
	TAdVT100Parser (ADTrmPsr)
	TComponent (VCL)
	TApdBaseComponent (OOMisc)
	TAdTerminalEmulator (ADTrmEmu)
	TAdTTYEmulator (ADTrmEmu)
	TAdVT100Emulator (ADTrmEmu)
	TWinControl (VCL)
	TApdBaseWinControl (OOMisc)
	TAdTerminal (ADTrmEmu)
	This diagram shows the family of components and classes used for terminals and emulators. The TAd...
	The TAdKeyboardMapping class provides a simple, convenient method to specify the PC keystrokes th...
	The TAdTerminalEmulator class is the base class for all terminal emulators. The TAdTTYEmulator cl...
	The TAdTerminal component represents the visual part of a terminal. It is the only visual compone...


	Modem status lights
	TComponent (VCL)
	TApdBaseComponent (OOMisc)
	TApdCustomSLController (AdStatLt)
	TApdSLController (AdStatLt)
	TControl (VCL)
	TGraphicControl (VCL)
	TApdCustomStatusLight (AdStatLt)
	TApdStatusLight (AdStatLt)
	This diagram shows the family of components used for modem status lights. TApdStatusLight is a gr...


	Paging
	TComponent (VCL)
	TApdBaseComponent (OOMisc)
	TApdAbstractPager (AdPager)
	TApdCustomModemPager (AdPager)
	TApdTAPPager (AdPager)
	TApdCustomINetPager (AdPager)
	TApdSNPPPager (AdPager)
	This diagram shows the family of components used for sending alphanumeric pages. TApdAbstractPage...


	Faxes: conversion, unpacking, viewing, printing
	TComponent (VCL)
	ƒTApdBaseComponent (OOMisc)
	ƒTApdCustomFaxConverter (AdFaxCvt)
	ƒTApdFaxConverter (AdFaxCvt)
	ƒTApdCustomFaxUnpacker (AdFaxCvt)
	ƒTApdFaxUnpacker (AdFaxCvt)
	ƒTApdCustomFaxPrinter (AdFaxPrn)
	ƒTApdFaxPrinter (AdFaxPrn)
	ƒTApdAbstractFaxPrinterStatus (AdFaxPrn)
	ƒTApdFaxPrinterStatus (AdFaxPrn)
	ƒTApdCustomFaxPrinterLog (AdFaxPrn)
	ƒTApdFaxPrinterLog (AdFaxPrn)
	ƒTControl (VCL)
	ƒTWinControl (VCL)
	ƒTApdCustomFaxViewer (AdView)
	ƒTApdFaxViewer (AdView)
	This diagram shows the family of components used for fax conversion, unpacking, viewing, and prin...


	Faxes: sending, receiving
	TComponent (VCL)
	ƒTApdBaseComponent (OOMisc)
	ƒTApdCustomAbstractFax (AdFax)
	ƒTApdAbstractFax (AdFax)
	ƒTApdCustomSendFax (AdFax)
	ƒTApdSendFax (AdFax)
	ƒTApdCustomReceiveFax (AdFax)
	ƒTApdReceiveFax (AdFax)
	ƒTApdCustomFaxServer
	ƒTApdFaxServer
	ƒTApdFaxJobHandler
	ƒTApdFaxServerManager
	ƒTApdFaxClient
	ƒTApdAbstractFaxStatus (AdFax)
	ƒTApdFaxStatus (AdFax)
	ƒTApdFaxLog (AdFax)
	ƒTApdFaxDriverInterface (AdFaxCtl)
	This diagram shows the family of components used for fax sending and receiving. TApdAbstractFax p...
	TApdFaxJobHandler provides methods to manipulate the Async Professional Job file format. TApdFaxS...
	TApdAbstractFaxStatus is an abstract class that can be attached to a TApdSendFax, TApdReceiveFax ...



	Organization of this Manual
	This manual is organized as follows:
	Chapter 1 is an introduction to Async Professional.
	Chapters 2 through 16 describe the Async Professional components.
	Chapter 17 describes a few general non-communication components.
	The appendices provide a discussion of error handling, a description of the Async Professional co...
	An identifier index and a conventional subject index are provided.

	Each chapter starts with an overview of the classes and components discussed in that chapter. The...
	Overview
	A description of the class or component.

	Hierarchy
	Shows the ancestors of the class being described, generally stopping at a VCL class. The hierarch...

	Properties, methods, and events lists
	The properties, methods, and events for the class or component are listed. Some of these may be i...

	Reference section
	Details the properties, methods, and events of the class or component. These descriptions are in ...
	Declaration of the property, method, or event.
	Default value for properties, if appropriate.
	A short, one-sentence purpose. A ƒsymbol is used to mark the purpose to make it easy to skim thro...
	Description of the property, method, or event. Parameters are also described here.
	Examples are provided in many cases.
	The “See also” section lists other properties, methods, or events that are pertinent to this item.

	Throughout the manual, the Msymbol is used to mark a warning or caution. Please pay special atten...

	Naming conventions
	To avoid class name conflicts with components and classes included with the compiler or from othe...
	“Custom” in a component name means that the component is a basis for descendant components. Compo...

	On-line help
	Although this manual provides a complete discussion of Abbrevia, keep in mind that there is an al...


	Technical Support
	The best way to get an answer to your technical support questions is to post it in the Async Prof...
	To get the most from the newsgroups, we recommend that you use dedicated newsreader software. You...
	Newsgroups are public, so please do NOT post your product serial number, 16-character product unl...
	The TurboPower KnowledgeBase is another excellent support option. It has hundreds of articles abo...
	Other support options are described in the product support brochure included with Async Professio...


	Chapter 2: Port Component
	The Async Professional port component builds the foundation for all communications applications. ...
	This chapter describes the TApdComPort component, which contains properties and methods for the f...
	Configuring the serial port hardware and Windows communications driver (buffer sizes, line parame...
	Providing information about the state of the serial port (modem signals, line errors).
	Transmitting and receiving data.
	Interfacing with the TApdDataPacket component (see page 132) to identify and handle received data.
	Assigning VCL events to handle received data, matched strings, status changes, and timers.

	In addition to its support for standard serial ports, the TApdComPort includes specialized suppor...
	If you need to support network or Internet communications using Winsock, you should consider usin...
	TApdComPort Component
	An application uses the TApdComPort component to control serial port hardware. All serial port I/...
	Sending and receiving data through the serial port is obviously part of the process, but most com...
	In addition to such common and well-defined tasks, a flexible component is provided that allows y...
	Triggers and trigger handlers
	Async Professional uses the term “trigger” for any serial port action that can cause its communic...
	Data available—received data is available.
	Data match trigger—a particular character or character string was received.
	Status trigger—a status event occurred (details later in this section).
	Timer trigger—a timer expired.

	Note: In 32-bit applications, TApdComPort events are synchronized to the thread that sets Open to...
	The TApdComPort component contains a variety of routines for managing triggers. Triggers can be a...
	For example, adding a timer trigger looks something like this:
	var
	TrigHandle : Word;
	...
	TrigHandle := ApdComPort.AddTimerTrigger;
	ApdComPort.SetTimerTrigger(TrigHandle, 36, True);
	This code adds a timer trigger and stores the trigger handle in TrigHandle. The timer is activate...

	procedure Form1.TriggerTimer(CP : TObject; TriggerHandle : Word);
	begin
	...
	end;
	...
	ApdComPort.OnTriggerTimer := TriggerTimer;
	Here are the TApdComPort event properties and event handler declarations that correspond to the f...

	OnTriggerAvail
	procedure(CP : TObject; Count : Word) of object;
	Generated when a certain number of bytes of received serial data are available for processing. Co...
	It’s likely that more than one byte of data will be available when the message handler is called....
	Caution: Be sure to process the exact number of bytes passed in the Count parameter of this handl...
	Here’s what a typical OnTriggerAvail event handler should look like:
	procedure Form1.TriggerAvail(CP : TObject; Count : Word);
	var
	I : Word;
	C : Char;
	begin
	for I := 1 to Count do begin
	C := ApdComPort.GetChar;
	...
	end;
	end;
	The OnTriggerAvail and OnTriggerData events are generated from the dispatcher thread, and synchro...


	OnTriggerData
	procedure(CP : TObject; TriggerHandle : Word) of object;
	Generated when the dispatcher finds a match in the received data for a data string previously spe...
	Usually the dispatcher finds the match in the middle of a block of bytes it is examining. In this...
	The data trigger does not guarantee that the notification will be exactly synchronized with the a...
	Caution: Be sure to process the exact number of bytes passed in the Count parameter of this handl...
	In most cases, the TApdDataPacket component is the best way to capture a specific string. See “Ch...

	OnTriggerTimer
	procedure(CP : TObject; TriggerHandle : Word) of object;
	Generated when the dispatcher determines that a timer has expired. TriggerHandle is the trigger h...

	OnTriggerStatus
	procedure(CP : TObject; TriggerHandle : Word) of object;
	Generated when a status change occurs. Status types include: changes in modem signals (CTS, DSR, ...
	TriggerHandle is the trigger handle returned when AddStatusTrigger was called.
	When a status trigger is used to track more than one modem signal, the event handler must check t...
	Specialized versions of the OnTriggerStatus event are also available through several events that ...

	OnTriggerLineError
	procedure(
	CP : TObject; Error : Word; LineBreak : Boolean) of object;
	Generated when the dispatcher determines that a line error or break signal occurred while receivi...

	leOverrun = 2;
	leParity = 3;
	leFraming = 4;
	LineBreak is True if a break signal was received. Note that breaks are often accompanied by frami...


	OnTriggerModemStatus
	procedure(CP : TObject) of object;
	Generated when a monitored modem status signal changes. The signals to monitor are passed in SetS...

	OnTriggerOutbuffFree
	procedure(CP : TObject) of object;
	Generated when the number of bytes free in APro’s output buffer is greater than or equal to the n...

	OnTriggerOutbuffUsed
	procedure(CP : TObject) of object;
	Generated when the number of bytes used in Apro’s output buffer is less than or equal to the numb...

	OnTriggerOutSent
	procedure(CP : TObject) of object;
	Generated after PutChar, PutBlock, or PutString is called.
	The TApdComPort component has one more event type that is a superset of all of those just describ...

	OnTrigger
	procedure(
	CP : TObject; Msg, TriggerHandle, Data : Word) of object;
	Generated for all trigger events. Msg is the internal message number that corresponds to the even...
	This event is generated prior to the associated specific event type. For example, when a modem st...
	In most cases you would not want to use an OnTrigger event handler, but instead provide individua...
	With the exceptions of OnTriggerAvail, OnTriggerData, and OnTriggerOutSent, all triggers must be ...

	{$IFDEF Win32}
	{$APPTYPE CONSOLE}
	{$ENDIF}
	unit Extrig0;
	interface

	uses
	{$IFNDEF Win32}
	WinCrt,
	{$ENDIF}
	SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
	Controls, Forms, Dialogs, StdCtrls, AdPort, AdTerm;
	type
	TExTrigTest = class(TForm)
	ApdComPort1: TApdComPort;
	StartTest: TButton;
	Label1: TLabel;
	procedure ApdComPort1TriggerAvail(
	CP : TObject; Count : Word);
	procedure ApdComPort1TriggerData(
	CP : TObject; TriggerHandle : Word);
	procedure ApdComPort1TriggerTimer(
	CP : TObject; TriggerHandle : Word);
	procedure StartTestClick(Sender : TObject);
	private
	TimerHandle : Word;
	DataHandle : Word;
	end;
	var
	ExTrigTest: TExTrigTest;
	implementation
	{$R *.DFM}

	procedure WriteIt(C : Char);
	begin
	if Ord(C) > 32 then
	Write(C)
	else
	Write('[', Ord(C), ']');
	end;

	procedure TExTrigTest.ApdComPort1TriggerAvail(
	CP : TObject; Count : Word);
	var
	I : Word;
	C : Char;
	begin
	WriteLn('OnTriggerAvail event: ', Count, ' bytes received');
	for I := 1 to Count do begin
	C := ApdComPort1.GetChar;
	WriteIt(C);
	end;
	WriteLn;
	WriteLn('--------');
	end;

	procedure TExTrigTest.ApdComPort1TriggerData(
	CP : TObject; TriggerHandle : Word);
	var
	I : Word;
	C : Char;
	begin
	WriteLn('OnTriggerData event: ', TriggerHandle);
	end;

	procedure TExTrigTest.ApdComPort1TriggerTimer(
	CP : TObject; TriggerHandle : Word);
	begin
	WriteLn('OnTriggerTimer event: ', TriggerHandle);
	end;

	procedure TExTrigTest.StartTestClick(Sender : TObject);
	begin
	TimerHandle := ApdComPort1.AddTimerTrigger;
	ApdComPort1.SetTimerTrigger(TimerHandle, 91, True);
	DataHandle := ApdComPort1.AddDataTrigger('OK', True);

	{send a string to a modem that will hit all triggers}
	ApdComPort1.PutString('ATI'^M);
	end;
	end.
	This is the unit containing the form for the example project EXTRIG. It contains two components: ...
	The form implements three event handlers:
	ApdComPort1TriggerAvail for OnTriggerAvail events.
	ApdComPort1TriggerData for OnTriggerData events.
	ApdComPort1TriggerTimer for OnTriggerTimer events.

	As the modem returns its version information the program receives one or more OnTriggerAvail even...



	ISDN support overview
	Integrated Service Digital Network (ISDN) connections are becoming more commonplace in today’s co...
	ISDN introduces a number of features to the world of PC communications. ISDN lines have digital c...
	ISDN is available in a number of configurations. Basic Rate Interface ISDN (BRI-ISDN) comes with ...
	Async Professional supports basic ISDN services with many AT-compatible adapters through the TApd...
	Note that Async Professional support ISDN devices through the TApdTapiDevice interface. Async Pro...
	Async Professional supports two types of ISDN adapter/driver configurations: ISDN adapters that a...
	Async Professional can be used with ISDN adapters that conform to the following specifications:
	100% AT (command set) compatible.
	TAPI compatible and has a TAPI driver (available in the Modems Applet in the Microsoft Windows Co...
	At least one data channel.

	Async Professional also supports the following optional features:
	Analog modem (TAPI) driver support (used when connecting to standard modems on POTS lines).
	Faxmodem (TAPI) driver support (used when connecting to standard faxmodems or fax machines on POT...

	Some TAPI service provider drivers do not support the full set of TAPI functions. You might be li...
	Using a TApdTapiDevice component with an ISDN line is exactly the same as using it with a standar...

	RS-485 support overview
	RS-485 serial networks usually consist of two or more serial devices all connected to the same 2-...
	RS-485 requires specific serial port hardware that supports RS-485 voltages and conventions. Most...
	Since both RS-485 wires are required to transmit data, an RS-485 device can either receive data o...
	With such a network, the PC normally acts as a master—addressing and sending data to each remote ...
	The mechanism provided by RS-485 boards for switching the data line from receive to transmit mode...
	RTS Control
	Automatic
	Other

	Most currently available RS-485 boards use the RTS line to control the state of the data line. Be...
	Some boards and converters handle the RS-485 data line switch automatically, with no assistance f...
	The few remaining boards use proprietary techniques for providing RS-485 support instead of the R...
	RTS control
	Since the TApdComPort provides an RTS property your application could manually raise RTS before t...
	A better approach is to use Async Professional’s built-in RTS line control, which is available th...
	Caution: The RTS line control follows the output buffer. If the output buffer empties while your ...
	It is better to pre-format a command in a buffer and use a single PutBlock call to transmit it th...
	For example, use the first code example rather than the second:
	Message := '!' + Address + MsgLength + Message + '$';
	PutString(Message);

	PutChar('!');
	PutChar(Address);
	PutChar(MsgLength)
	PutString(Message, MsgLength);
	PutChar('$');
	Under Windows 95/98/ME, the waiting is handled within Async Professional since the communications...
	The automatic handling of the RTS line is possible for standard ports in all environments and for...
	If the serial port doesn’t use standard serial port hardware, then RS485Mode cannot provide autom...
	Under Windows NT, the waiting is handled within the serial port driver and replacement drivers mu...



	Debugging facilities
	In a perfect world all programs would work flawlessly as they were typed in. Since things rarely ...
	For example, suppose you’re writing a data collection program that regularly receives data from a...
	Tracing
	Variations of this need for an audit trail can occur in almost any communications program. Rather...
	Simply put, tracing gives you the ability to keep track of all characters transmitted and receive...
	Every time an application successfully retrieves a received character (i.e., GetChar returns a ch...
	These entries are stored in a circular queue of a specified size. Since the queue is circular, it...
	The queue can be dumped to a text file at any time. This text file is a report of all data transm...
	Transmit:
	**[24]B0100000027fed4[13][138][17]

	Receive:
	rz[13]**[24]B00800000000dd38[13][138][17]

	Transmit:
	**[24]B0100000027fed4[13][138][17]

	Receive:
	[17]*[24]C[4][1][0][0][0][184]6[30][139]a.txt[0]6048
	4734111064 0 0 3 18144[0][24]kP[251]B6
	This report happens to be the first few exchanges of a Zmodem protocol transfer. Printable charac...
	Notice that the data is grouped in blocks of received and transmitted characters representing the...
	The sequence in a trace report is not necessarily the same as the sequence in which data arrived ...
	That’s not what tracing was designed to do. It was designed to show the data in the order it was ...
	The mechanics of using tracing are quite simple. A typical use would look something like the foll...

	...create comport component
	ApdComPort.TraceSize := 1000;
	ApdComPort.Tracing := tlOn;
	...use comport component
	ApdComPort.TraceName := 'TEST.TRC';
	ApdComPort.Tracing := tlDump;
	...destroy comport component
	The state of the tracing facility is controlled by setting the Tracing property to one of the fol...
	Table 2.1: Tracing property values
	When inspected, either at run time or design time, Tracing will always be one of tlOff, tlOn, or ...
	After you create a comport component, set the TraceSize property to specify the trace buffer size...



	Dispatch logging
	Tracing is a great tool for examining the incoming and outgoing data processed by your program. O...
	In some situations, however, a more appropriate debugging tool is one that shows the true chronol...
	The standard Windows communications driver doesn’t provide enough information to determine exactl...
	Dispatch logging creates an audit trail of each action taken by Async Professional components. Th...
	The queue can be dumped to a text file at any time. This text file is a report of all dispatcher ...
	APRO v4.00
	Compiler : Delphi 6
	Operating System : Windows NT 4.0 Service Pack 4
	Time Type SubType Data OtherData
	-------- -------- ------------ -------- ---------
	00000010 TrDatChg Avail 00000001
	00000010 TrgHdAlc Window 7DDE03CE
	00000010 TrgHdAlc Window 870302A2
	00000010 TrDatChg Avail 00000001
	00000010 TrgHdAlc Procedure 00000000
	00000010 TrDatChg Avail 00000001
	00000010 TrigAllc Data 00000008 rz[0D]
	00000010 TrigAllc Data 00000010 [05]
	00000010 TrigAllc Data 00000018 [10]
	00000010 TrigAllc Data 00000020 [1B]I
	00000010 TrigAllc Status 00000029 (Modem status)
	The first three lines are the header of the text file a provide the installed version of Async Pr...
	The first column of the report is a timestamp. It represents the time elapsed from the time dispa...
	The second column is the major category of log entry, the third column identifies the log entry s...
	The following tables identify possible entries in a dispatch log:
	An entry of this type means that a communications event is being processed.
	A trigger is being dispatched by the dispatcher.
	Occur only if the DebugThreads define is enabled in AWUSER.PAS. They are designed to provide deta...
	A trigger is being allocated.
	A trigger is being disposed.
	A trigger handler has been allocated.
	A trigger handler has been disposed.
	Data associated with the trigger has been changed.
	Logs the telnet negotiation conversation during a Winsock telnet session. Each SubType shows the ...
	Events that indicate state changes in packets.
	The dispatcher was called recursively. This is an error and can cause events to be missed. The ca...
	Entries for this Type track APRO’s progress through the send or receive fax state machine. The Su...
	Entries for this Type track APRO’s progress through the send or receive xmodem protocol state mac...
	Entries for this Type track APRO’s progress through the send or receive ymodem protocol state mac...
	Entries for this Type track APRO’s progress through the send or receive zmodem protocol state mac...
	Entries for this Type track APRO’s progress through the send or receive kermit protocol state mac...
	Entries for this Type track APRO’s progress through the send or receive ASCII protocol state mach...
	This type is currently not implemented due to an enumeration capacity limitation in the C++ Build...
	A user defined event type. You can add custom strings to a comports logfile using the comport’s A...


	Logging facility
	The state of the logging facility is controlled by setting the Logging property to one of the val...
	Table 2.2: Logging property values
	See “Tracing” on page�33, for more information and a related example.



	Example
	This example shows how to construct and use a comport component. Create a new project, add the fo...
	Table 2.3: Example project components and property values
	Double-click on the Test button and modify the generated method to match this:

	procedure TForm1.TestClick(Sender : TObject);
	begin
	ApdComPort1.Output := 'ATZ'^M;
	end;
	This method transmits “ATZ” (the standard modem reset command), followed by a carriage return, to...
	Double-click on the TApdComPort OnTriggerAvail event handler in the Object Inspector and modify t...

	procedure TForm1.ApdComPort1TriggerAvail(
	CP : TObject; Count : Word);
	var
	I : Word;
	C : Char;
	S : string;
	begin
	S := '';
	for I := 1 to Count do begin
	C := ApdComPort1.GetChar;
	case C of
	#0..#31 : {don't display} ;
	else S := S + C;
	end;
	end;
	ShowMessage('Got an OnTriggerAvail event for: ' + S);
	end;
	This method collects all of the received data into the string S, discarding non-printable charact...
	To run this program you need to attach a modem to the serial port, then compile and run the proje...


	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomComPort (AdPort)
	TApdComPort (AdPort)


	Properties
	Methods
	Events
	Reference Section
	ActivateDeviceLayer virtual method
	function ActivateDeviceLayer : TApdBaseDispatcher; virtual;
	TApdBaseDispatcher = class;

	Called when the port is first opened to instantiate a device driver object for the port.
	Async Professional includes several device layers. The dlWin32 device layer (the default for 32-b...
	You can create custom device layers by deriving them from TApdBaseDispatcher and creating a new p...
	See “Device Independence” on page�725 for more information on device layers.
	See also: DeviceLayer, TapiMode


	AddDataTrigger method
	function AddDataTrigger(
	const Data : string; const IgnoreCase : Boolean) : Word;

	Adds a string match trigger to the dispatcher.
	Data is the string the dispatcher attempts to match in the received data stream. If IgnoreCase is...
	If the trigger is added successfully, the function returns the handle of the trigger. Otherwise, ...
	When the internal dispatcher finds incoming data that matches Data it generates an OnTriggerData ...
	The following example tells the internal dispatcher to generate an OnTriggerData event whenever i...
	ApdComPort.AddDataTrigger('UserID:', False);
	See also: AddStatusTrigger, AddTimerTrigger, RemoveTrigger


	AddStatusTrigger method
	function AddStatusTrigger(const SType : Word) : Word;

	Adds a status trigger of the specified type.
	This method adds a status trigger of type SType, which is one of the following:
	See the SetStatusTrigger method on page 88 or more information about these status trigger types.
	If the trigger is added successfully, the function returns the handle of the trigger; otherwise i...
	The following example adds a status trigger and enables the trigger to generate an OnTriggerStatu...
	var
	StatusHandle : Word;
	...
	StatusHandle := ApdComPort.AddStatusTrigger(stOutBuffFree);
	ApdComPort.SetStatusTrigger(StatusHandle, 100, True);
	...
	ApdComPort.SetStatusTrigger(StatusHandle, 0, False);
	See also: RemoveTrigger, SetStatusTrigger


	AddStringToLog method
	procedure AddStringToLog(S : string);

	Adds a User-type log entry to the dispatcher log
	This procedure can be called to add custom entries to the dispatcher log. These entries will show...
	AddStringToLog can be very useful when debugging the application. Custom strings can be added to ...
	See also: Logging


	AddTimerTrigger method
	function AddTimerTrigger : Word;

	Adds a timer trigger.
	If the trigger is added successfully, the function returns the handle of the trigger; otherwise, ...
	The following example adds a timer trigger and enables it to expire in 36 ticks (2 seconds), when...
	var
	Timer : Word;
	...
	Timer := ApdComPort.AddTimerTrigger;
	ApdComPort.SetTimerTrigger(Timer, 36, True);
	See also: SetTimerTrigger


	AddTraceEntry method
	procedure AddTraceEntry(const CurEntry, CurCh : Char);

	Adds a trace event to the port’s trace queue.
	This procedure can be called to add a special entry to the trace buffer. The CurEntry parameter i...
	Although AddTraceEntry is intended primarily for internal use by Async Professional routines that...
	If CurEntry is a character other than ‘T’ or ‘R’, it shows up in the tracing report as shown in t...
	Special-X:
	Y
	When AddTraceEntry is mixed in with a normal set of transmit and receive blocks, it looks somethi...

	Transmit:
	ATZ[13]

	Special-X:
	Y

	Receive:
	ATZ[13][13[10]OK[13][10]
	In this example the program transmitted ‘ATZ’<CR>, called AddTraceEntry(‘X’, ‘Y’), then used one ...
	See also: Tracing



	AutoOpen property
	property AutoOpen : Boolean

	Default: True
	Determines whether the port is automatically opened on demand.
	If AutoOpen is True and a method or property that requires an open serial port is accessed, the T...
	See also: Open


	BaseAddress run-time property
	property BaseAddress : Word

	Default: 0
	Determines the base address of the port.
	Under normal conditions, a program would not need to reference or set this property. The base add...
	This property is provided for rare cases where Async Professional is not able to automatically de...
	See “RS-485 support overview” on page�31 for more information on RS-485 support.
	See also: RS485Mode


	Baud property
	property Baud : LongInt

	Default: 19200
	Determines the baud rate used by the port.
	Generally acceptable values for Baud include 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, an...
	If the port is open when Baud is changed, the line parameters are updated as soon as any data exi...
	You can enter a baud rate using the Object Inspector or invoke the SelectBaudRate property editor...
	See also: ComNumber, DataBits, Parity, StopBits


	BufferFull property
	property BufferFull : Word

	Default: 0
	Determines the input buffer level at which receive flow control is imposed.
	When hardware flow control is used, BufferFull should typically be set to 90% of the input buffer...
	See also: BufferResume, HWFlowOptions, SWFlowOptions


	BufferResume property
	property BufferResume : Word

	Default: 0
	Determines the input buffer level at which receive flow control is deactivated.
	When hardware flow control is used, BufferResume should typically be set to 10% of the input buff...
	See also: BufferFull, HWFlowOptions, SWFlowOptions


	CharReady method
	function CharReady : Boolean;

	Returns True if at least one character is in the dispatcher buffer.
	Don’t use CharReady in OnTriggerAvail event handlers. Doing so can interfere with the dispatcher’...
	See also: GetChar


	ComNumber property
	property ComNumber : Word

	Default: 0
	Determines the serial port number (Com1, Com2, ...) used by the TApdComPort component.
	ComNumber does not validate the port number. When the port is opened, the Windows communications ...
	If the port is open when ComNumber is changed, the existing port is closed and then reopened usin...
	This property is ignored when the TAPI and Winsock device layers are used.
	The following example creates, configures, and opens a comport component at run time:
	ApdComPort := TApdComPort.Create(Self);
	ApdComPort.ComNumber := 1; {use Com1}
	ApdComPort.Baud := 9600;
	ApdComPort.Parity := pNone;
	ApdComPort.DataBits := 8;
	ApdComPort.StopBits := 1;
	ApdComPort.Open := True;


	CTS read-only, run-time property
	property CTS : Boolean

	Returns True if the port’s “clear to send” line (CTS) is set.
	The following example transmits a large block of data after assuring that the remote has raised t...
	if ApdComPort.CTS then
	ApdComPort.PutBlock(BigBlock, 1024);
	See also: DSR


	DataBits property
	property DataBits : Word

	Default: 8
	Determines the number of data bits of the port.
	Acceptable values are 5, 6, 7, and 8.
	If the port is open when DataBits is changed, the line parameters are updated immediately. DataBi...
	See also: Baud, ComNumber, Parity, StopBits


	DCD read-only, run-time property
	property DCD : Boolean

	Returns True if the port’s “data carrier detect” line (DCD) is set.
	DCD is usually set only for serial connections made through a modem. Your modem sets DCD to indic...
	The following example detects carrier loss and handles the error:
	if not ApdComPort.DCD then
	{handle unexpected disconnect}
	See also: DeltaDCD


	DeltaCTS read-only, run-time property
	property DeltaCTS : Boolean

	Returns True if the port’s “delta clear to send” bit (DeltaCTS) is set.
	DeltaCTS is set only if CTS has changed since the last time the application read the value of Del...
	See also: CTS


	DeltaDCD read-only, run-time property
	property DeltaDCD : Boolean

	Returns True if the port’s “delta data carrier detect” bit (DeltaDCD) is set.
	DeltaDCD is set only if DCD has changed since the last time the application read the value of Del...
	See also: DCD


	DeltaDSR read-only, run-time property
	property DeltaDSR : Boolean

	Returns True if the port’s “delta data set ready” bit (DeltaDSR) is set.
	DeltaDSR is set only if DSR has changed since the last time the application read the value of Del...
	See also: DSR


	DeltaRI read-only, run-time property
	property DeltaRI : Boolean

	Returns True if the port’s “delta ring indicator” bit (DeltaRI) is set.
	DeltaRI is set only if RI (the ring indicator) has changed since the last time the application ca...
	The formal name for this bit is “trailing edge ring indicator” or TERI. DeltaRI is used for consi...
	It is generally better to use DeltaRI to detect incoming calls than to use RI. RI toggles rapidly...
	The following example calls the Answer method of TApdModem to connect a modem after a ring is det...
	if ApdComPort.DeltaRI then
	Modem.Answer;
	See also: RI


	DeviceLayer property
	property DeviceLayer : TDeviceLayer
	TDeviceLayer = (dlWin16, dlFossil, dlWin32, dlWinsock);

	Default: dlWin16 for 16-bit, dlWin32 for 32-bit
	Determines the hardware interface used by the port.
	Async Professional includes several device layers. The dlWin32 device layer (the default for 32-b...
	You can create custom device layers by deriving them from TApdBaseDispatcher and creating a new p...
	If desired, each individual TApdComPort component can use a different device layer.
	See “Device Independence” on page�725 for more information on device layers.
	See also: ActivateDeviceLayer


	DSR read-only, run-time property
	property DSR : Boolean

	Returns True if the port’s “data set ready” line (DSR) is set.
	DSR is a signal that the remote device sets to indicate that it is attached and active. It may be...
	See also: DeltaDSR, CTS


	DTR property
	property DTR : Boolean

	Default: True
	Determines the current state of the “data terminal ready” signal (DTR).
	Some types of remote devices require that this signal be raised before they transmit. For example...
	The following example lowers the DTR signal after opening the port and later raises it again:
	ApdComPort := TApdComPort.Create(Self);
	ApdComPort.Open := True;
	ApdComPort.DTR := False;
	...
	ApdComPort.DTR := True;
	See also: RTS


	FlowState read-only, run-time property
	property FlowState : TFlowControlState
	TFlowControlState = (fcOff, fcOn, fcDsrHold, fcCtsHold,
	fcDcdHold,fcXOutHold, fcXInHold, fcXBothHold);

	Returns the state of hardware or software flow control.
	fcOff indicates that flow control is not in use. fcOn indicates that flow control is enabled, but...
	fcDsrHold, fcCtsHold and fcDcdHold indicate that the application cannot transmit because the othe...
	Windows doesn’t provide information on the state of receive hardware flow control, so fcOn is ret...
	fcXOutHold indicates that the application cannot transmit because it has received an XOff charact...
	In the rare case where both hardware and software flow control are enabled for a port, FlowState ...
	See also: HWFlowOptions, SWFlowOptions


	FlushInBuffer method
	procedure FlushInBuffer;

	Clears the input buffers used by both the Windows device driver and the Async Professional intern...
	It also resets all data triggers so as to disregard any cleared data.
	The following example flushes all data currently in the input buffer if a line error is detected....
	if ApdComPort.LineError <> leNoError then begin
	...error handling
	ApdComPort.FlushInBuffer;
	end;
	See also: FlushOutBuffer


	FlushOutBuffer method
	procedure FlushOutBuffer;

	Clears the output buffers used by both the Windows device driver and the Async Professional inter...
	Any data pending in the output buffer is not transmitted.
	The following example discards any data that hasn’t yet been transmitted whenever an application ...
	if ErrorDetected then begin
	ApdComPort.FlushOutBuffer;
	...resync with remote
	end;
	See also: FlushInBuffer


	GetBlock method
	procedure GetBlock(var Block; Len : Word);

	Returns a block of received characters and removes them from the dispatcher buffer.
	This routine makes a request to return the next Len received bytes. The data is moved into the bu...
	To determine if line errors occurred while the communications driver was receiving this data, che...
	The following example calls GetBlock to remove the next 128 bytes from the dispatcher buffer, and...
	var
	Block : array[0..127] of Char;
	...
	try
	ApdComPort.GetBlock(Block, 128);
	except
	on E : EAPDException do
	if E is EBufferIsEmpty then begin
	...protocol error, 128 bytes expected
	raise;
	end;
	end;
	See also: CharReady, GetChar, InBuffUsed, PeekBlock


	GetChar method
	function GetChar : Char;

	Returns the next character from the dispatcher buffer.
	If at least one character is available in the dispatcher buffer, GetChar returns the first availa...
	To determine if line errors occurred while the communications driver was receiving this data, che...
	The following example returns the next available character in C:
	var
	C : Char;
	...
	if ApdComPort.CharReady then
	C := ApdComPort.GetChar;
	See also: CharReady, GetBlock, PeekChar


	HWFlowOptions property
	property HWFlowOptions : THWFlowOptionSet
	THWFlowOptionSet = set of THWFlowOptions;
	THWFlowOptions = (
	hwfUseDTR, hwfUseRTS, hwfRequireDSR, hwfRequireCTS);

	Default: Empty set
	Determines the hardware flow control options for the port.
	When the options are an empty set, as they are by default, there is no hardware flow control. The...
	“Receive flow control” stops a remote device from transmitting while the local input buffer is to...
	Receive flow control is enabled by including the hwfUseRTS and/or hwfUseDTR elements in the optio...
	As the application processes received characters, buffer usage eventually drops below the value s...
	Transmit flow control is enabled by including the hwfRequireCTS and/or hwfRequireDSR elements in ...
	Note that flow control using RTS and CTS is much more common than flow control using DTR and DSR.
	See “Flow Control” on page�711 for more information.
	The following example enables bi-directional hardware flow control with limits at the 10% and 90%...
	ApdComPort.HWFlowOptions := [hwfUseRTS, hwfRequireCTS];
	ApdComPort.BufferFull := Trunc(0.9*ApdComPort.InSize);
	ApdComPort.BufferResume := Trunc(0.1*ApdComPort.InSize);
	...
	ApdComPort.HWFlowOptions := [];
	See also: DTR, FlowState, RTS, SWFlowOptions


	InBuffFree read-only, run-time property
	property InBuffFree : Word

	Returns the number of bytes free in the dispatcher buffer.
	This routine returns the number of bytes of free space in the Async Professional dispatcher buffe...
	Because the dispatcher automatically drains the Windows buffer using timer and notification messa...
	The following example checks to see that there’s significant free space in the dispatcher buffer ...
	if ApdComPort.InBuffFree > 128 then
	...perform a time-consuming operation
	See also: InBuffUsed


	InBuffUsed read-only, run-time property
	property InBuffUsed : Word

	Returns the number of bytes currently available for reading from the dispatcher buffer.
	This routine returns the number of bytes currently loaded in the Async Professional dispatcher bu...
	Because the dispatcher automatically drains the Windows buffer using timer and notification messa...
	The following example checks InBuffUsed to see if received data is available for processing:
	if ApdComPort.InBuffUsed <> 0 then
	...process data
	See also: CharReady, InBuffFree


	InSize property
	property InSize : Word

	Default: 4096
	Determines the size, in bytes, of the Window communications driver’s input buffer.
	InSize should always be fairly large, perhaps 4096 or 8192. The larger this size, the less likely...
	The Windows communication API does not permit changing the buffer size when a serial port is open...
	See also: Open, OutSize


	LineBreak read-only, run-time property
	property LineBreak : Boolean

	Returns True if a line break signal was received since the last call to LineBreak.
	See also: OnTriggerStatus

	LineError read-only, run-time property
	property LineError : Word

	Returns a non-zero value if line errors have occurred since the last call to LineError.
	It returns 0 if no errors were detected or the port is not yet open. Otherwise it returns a numer...
	Line errors can occur during calls to any GetXxx or PutXxx method of the port. If your applicatio...
	The following example checks for line errors after receiving data with GetBlock:
	ApdComPort.GetBlock(DataBlock, DataLen);
	if ApdComPort.LineError <> 0 then
	...error handling
	See also: OnTriggerLineError


	LogAllHex property
	property LogAllHex : Boolean

	Default: False
	Determines whether all characters in the dispatcher log are written as hex or decimal.
	This property is useful when you are processing raw data, instead of a mixture of printable text ...
	If LogAllHex is False (the default), a received string of “123” will be written to the log as lit...
	0000.824 Dispatch ReadCom 0000000A 123

	If LogAllHex is True, the same received string will be written to the log in their hexadecimal no...
	0000.829 Dispatch ReadCom 0000000A [31][32][33]
	See also: LogHex, TraceAllHex


	Logging property
	property Logging : TTraceLogState
	TTraceLogState = (tlOff, tlOn, tlDump, tlAppend, tlClear, tlPause);

	Default: tlOff
	Determines the current logging state.
	When Logging is set to tlOff, as it is by default, no logging is performed.
	To enable logging, set Logging to tlOn. This allocates an internal buffer of LogSize bytes and in...
	To write the contents of the logging buffer to disk, set Logging to tlDump (which overwrites any ...
	To clear the contents of the logging buffer and continue logging, set Logging to tlClear. After t...
	To temporarily pause logging, set Logging to tlPause. To resume logging, set Logging to tlOn.
	See “Dispatch logging” on page�36 for more information.
	The following example turns on logging and later dumps the logging buffer to APRO.LOG:
	ApdComPort.Logging := tlOn;
	...
	ApdComPort.LogName := 'APRO.LOG';
	ApdComPort.Logging := tlDump;
	See also: AddStringToLog, LogHex, LogName, LogSize, Tracing


	LogHex property
	property LogHex : Boolean

	Default: True
	Determines whether non-printable characters stored in a dispatch logging file are written using h...
	See also: LogAllHex, Logging, LogName, LogSize

	LogName property
	property LogName : ShortString

	Default: “APRO.LOG”
	Determines the name of the file used to store a dispatch log.
	The dispatcher log file is written when the Logging property is changed to tlDump or tlAppend. If...
	See also: Logging


	LogSize property
	property LogSize : Word

	Default: 10000
	Determines the number of bytes allocated for the dispatch logging buffer.
	The assigned value limit is 16 million. Each dispatch entry consumes at least 10 bytes. Many entr...
	This property should normally be set before a logging session begins. If a changed value is assig...
	See also: Logging


	ModemStatus read-only, run-time property
	property ModemStatus : Byte

	Returns the modem status byte and clears all delta bits.
	The status is returned in the byte format used by the UART’s modem status register. The returned ...
	You’ll probably find it easier to use the CTS, DSR, RI, DCD, and related DeltaXxx properties inst...
	ModemStatus also clears the internal delta bits used to indicate changes in the CTS, DSR, RI, and...
	The following example uses ModemStatus to check for dropped carrier. It would have been simpler i...
	Status := ApdComPort.ModemStatus;
	if Status and DCDMask = 0 then
	...port dropped carrier
	See also: CTS, DCD, DeltaCTS, DeltaDCD, DeltaDSR, DeltaRI, DSR, RI


	OnPortClose event
	property OnPortClose : TNotifyEvent

	OnPortClose is generated when the serial port associated with the TApdComPort is physically closed.
	Setting the Open property to False does not close the associated serial port immediately. Buffers...
	See also: OnPortOpen, Open


	OnPortOpen event
	property OnPortOpen : TNotifyEvent

	OnPortOpen is generated when the serial port associated with the TApdComPort is physically opened.
	Setting the Open property to True begins a series of actions, ending with the physical serial por...
	See also: OnPortClose, Open


	OnTrigger event
	property OnTrigger : TTriggerEvent
	TTriggerEvent = procedure(
	CP : TObject; Msg, TriggerHandle, Data : Word) of object;

	Defines an event handler that is called whenever any serial data trigger occurs.
	OnTrigger can be used to handle all kinds of trigger events in one location. Normally it is easie...
	CP is the TApdComPort component that generated the trigger. Msg is the Windows message that speci...
	TriggerHandle is the handle number returned when the trigger was added. Data is a numeric value t...
	The following example waits for and responds to a login prompt, processing APW_TRIGGERDATA, APW_T...
	DataTrig := ApdComPort.AddDataTrigger('login:', True);
	TimerTrig := ApdComPort.AddTimerTrigger;
	ApdComPort.SetTimerTrigger(TimerTrig, 182, True);
	...

	procedure TMyForm.ApdComPortTrigger(
	CP : TObject; Msg, TriggerHandle, Data : Word);
	var
	I : Word;
	C : Char;

	begin
	case Msg of
	APW_TRIGGERDATA :
	{got 'login', send response}
	ApdComPort.PutString('myname');
	APW_TRIGGERAVAIL :
	{extract and display/process the data}
	for I := 1 to Data do begin
	C := ApdComPort.GetChar;
	...process data
	end;
	APW_TRIGGERTIMER :
	{timed out waiting for login prompt, handle error}
	...
	end;
	end;
	See also: OnTriggerAvail, OnTriggerData, OnTriggerStatus, OnTriggerTimer


	OnTriggerAvail event
	property OnTriggerAvail : TTriggerAvailEvent
	TTriggerAvailEvent = procedure(
	CP : TObject; Count : Word) of object;

	Defines an event handler that is called whenever a certain amount of serial input data is availab...
	This event is generated when data has been transferred into the dispatcher buffer.
	CP is the TApdComPort component that generated the trigger. Count is the actual number of bytes t...
	If several parts of the same application are using the same comport component and each part insta...
	Caution: Be sure to process the exact number of bytes passed in the Count parameter of this handl...
	The following example collects incoming data until it finds a carriage return character (ASCII 13...
	const
	S : string = '';
	...
	CRTrig := ApdComPort.AddDataTrigger(#13, False);
	...
	procedure TMyForm.ApdComPortTriggerData(
	CP : TObject; TriggerHandle : Word);
	begin
	if TriggerHandle = CRTrig then begin
	...do something with S
	ApdComPort.RemoveTrigger(TriggerHandle);
	end;
	end;

	procedure TMyForm.ApdComPortTriggerAvail(
	CP : TObject; Count : Word);
	var
	I : Word;
	begin
	for I := 1 to Count do
	S := S + ApdComPort.GetChar;
	end;
	See also: OnTrigger, OnTriggerData


	OnTriggerData event
	property OnTriggerData : TTriggerDataEvent
	TTriggerDataEvent = procedure(
	CP : TObject; TriggerHandle : Word) of object;

	Defines an event handler that is called whenever a string matching a predefined goal is detected ...
	The event is generated as a result of adding a match string using AddDataTrigger. When the dispat...
	CP is the TApdComPort component that generated the trigger. TriggerHandle is the handle number re...
	Note that data match triggers remain active until explicitly removed. The event handler can call ...
	See also: AddDataTrigger, OnTrigger, OnTriggerAvail


	OnTriggerLineError event
	property OnTriggerLineError : TTriggerLineErrorEvent
	TTriggerLineErrorEvent = procedure(
	CP : TObject; Error : Word; LineBreak : Boolean) of object;

	Defines an event handler that is called whenever the dispatcher detects a line error or line brea...
	This event handler is called in a subset of the cases where the more general OnTriggerStatus hand...
	CP is the TApdComPort component that generated the trigger. Error is a numeric code that indicate...
	Note that status triggers are not self-restarting. The event handler must call SetStatusTrigger a...
	The following example adds a status trigger for line errors and line breaks. The events are handl...
	TrigLE : Word;
	...
	TrigLE := ApdComPort.AddStatusTrigger(stLine);
	ApdComPort.SetStatusTrigger(
	TrigLE, lsParity or lsFraming or lsOverrun or lsBreak, True);
	...
	procedure TMyForm.ApdComPortTriggerLineError(
	CP : TObject; Error : Word; LineBreak : Boolean);
	begin
	if Error <> leNone then
	...process line error
	if LineBreak then
	...process line break
	{reactivate trigger}
	ApdComPort1.SetStatusTrigger(
	TrigLE, lsParity or lsFraming or lsOverrun or lsBreak, True);
	end;
	See also: LineError, OnTriggerStatus, SetStatusTrigger


	OnTriggerModemStatus event
	property OnTriggerModemStatus : TNotifyEvent

	Defines an event handler that is called whenever the dispatcher detects that modem status signals...
	This event handler is called in a subset of the cases where the more general OnTriggerStatus hand...
	The parameter passed to the TNotifyEvent is the TApdComPort component that generated the trigger....
	Note that status triggers are not self-restarting. The event handler must call SetStatusTrigger a...
	The following example adds and activates a modem status trigger for ring indicators and changes i...
	TrigMS : Word;
	...
	TrigMS := ApdComPort.AddStatusTrigger(stModem);
	ApdComPort.SetStatusTrigger(
	TrigMS, msRingDelta or msDSRDelta, True);
	...
	procedure TMyForm.ApdComPortTriggerModemStatus(CP : TObject);
	begin
	if ApdComPort.DeltaRI then
	...handle ring
	if ApdComPort.DeltaDSR then
	...handle change in DSR
	{reactivate trigger}
	ApdComPort.SetStatusTrigger(
	TrigMS, msRingDelta or msDSRDelta, True);
	end;
	See also: CTS, DCD, DeltaCTS, DeltaDCD, DeltaDSR, DeltaRI, DSR, ModemStatus, RI


	OnTriggerOutbuffFree event
	property OnTriggerOutbuffFree : TNotifyEvent

	Defines an event handler that is called whenever the dispatcher detects that free space in its ou...
	This event handler is called in a subset of the cases where the more general OnTriggerStatus hand...
	The parameter passed to the TNotifyEvent is the TApdComPort component that generated the trigger.
	Note that status triggers are not self-restarting. The event handler must call SetStatusTrigger a...
	The following example adds and activates a status trigger for OnTriggerOutbuffFree events; when t...
	TrigOBF : Word;
	...
	TrigOBF := ApdComPort.AddStatusTrigger(stOutbuffFree);
	ApdComPort.SetStatusTrigger(TrigOBF, 255, True);
	...
	procedure TMyForm.ApdComPortTriggerOutbuffFree(CP : TObject);
	begin
	{buffer has at least 255 bytes free, transmit a big string}
	ApdComPort.Output := BigString;
	end;
	See also: OnTriggerStatus, OnTriggerOutbuffUsed


	OnTriggerOutbuffUsed event
	property OnTriggerOutbuffUsed : TNotifyEvent

	Defines an event handler that is called whenever the dispatcher detects that used space in its ou...
	This event handler is called in a subset of the cases where the more general OnTriggerStatus hand...
	The parameter passed to the TNotifyEvent is the TApdComPort component that generated the trigger.
	Note that status triggers are not self-restarting. The event handler must call SetStatusTrigger a...
	The following example adds and activates a status trigger for an OnTriggerOutbuffUsed event; when...
	TrigOBU : Word;
	...
	TrigOBU := ApdComPort.AddStatusTrigger(stOutBuffUsed);
	ApdComPort.SetStatusTrigger(TrigOBU, 100, True);
	...
	procedure TMyForm.ApdComPortTriggerOutbuffUsed(CP : TObject);
	begin
	{buffer almost empty, start filling up again}
	ApdComPort.Output := Stuff;
	ApdComPort.Output := MoreStuff;
	ApdComPort.Output := EvenMoreStuff;
	...
	end;
	See also: OnTriggerStatus, OnTriggerOutbuffFree


	OnTriggerOutSent event
	property OnTriggerOutSent : TNotifyEvent

	Defines an event handler that is called whenever the dispatcher gets a request to send one or mor...
	This event handler is called in a subset of the cases where the more general OnTriggerStatus hand...
	Unlike most triggers, OnTriggerOutSent does not need to be reset. The event is always generated f...
	The following example adds a status trigger for OnTriggerOutSent; thereafter, each time the progr...
	TrigOS : Word;
	...
	TrigOS := ApdComPort.AddStatusTrigger(stOutSent);
	...
	procedure TMyForm.ApdComPortTriggerOutSent(CP : TObject);
	begin
	...update display to indicate data was transmitted
	end;
	See also: OnTriggerStatus


	OnTriggerStatus event
	property OnTriggerStatus : TTriggerStatusEvent
	TTriggerStatusEvent = procedure(
	CP : TObject; TriggerHandle : Word) of object;

	Defines an event handler that is called whenever a line status change of some kind is detected.
	This event handler combines the events described under OnTriggerLineError, OnTriggerModemStatus, ...
	CP is the TApdComPort component that generated the trigger. TriggerHandle is the handle number re...
	With the exception of OnTriggerOutSent, status triggers are not self-restarting. The event handle...
	The following example adds and activates status triggers for line errors and modem status changes...
	TrigLE : Word;
	TrigMS : Word;
	...
	TrigLE := ApdComPort.AddStatusTrigger(stLine);
	TrigMS := ApdComPort.AddStatusTrigger(stModem);
	ApdComPort.SetStatusTrigger(
	TrigLE, lsParity or lsFraming or lsOverrun or lsBreak, True);
	ApdComPort.SetStatusTrigger(
	TrigMS, msRingDelta or msDSRDelta, True);
	...
	procedure TMyForm.ApdComPortTriggerStatus(
	CP : TObject; TriggerHandle : Word);
	begin
	if TriggerHandle = TrigLE then begin
	...handle line error or break
	...reset line error trigger
	end else if TriggerHandle = TrigMS then begin
	...handle modem status change
	...reset modem status trigger
	end;
	end;
	See also: OnTriggerLineError, OnTriggerModemStatus, OnTriggerOutbuffFree, OnTriggerOutbuffUsed, O...


	OnTriggerTimer event
	property OnTriggerTimer : TTriggerTimerEvent
	TTriggerTimerEvent = procedure(
	CP : TObject; TriggerHandle : Word) of object;

	Defines an event handler that is called when an Async Professional timer expires.
	CP is the TApdComPort component that generated the trigger. TriggerHandle is the handle number re...
	Note that timer triggers are not self-restarting. The event handler must call SetTimerTrigger aga...
	The following example adds and activates two timer triggers. After 10 seconds and 60 seconds elap...
	Timer1, Timer2 : Word;
	...
	Timer1 := ApdComPort.AddTimerTrigger;
	Timer2 := ApdComPort.AddTimerTrigger;
	ApdComPort.SetTimerTrigger(Timer1, 182, True);
	ApdComPort.SetTimerTrigger(Timer2, 1092, True);
	...
	procedure TMyForm.ApdComPortTriggerTimer(
	CP : TObject; TriggerHandle : Word);
	begin
	if TriggerHandle = Timer1 then begin
	...handle 10 second timeout condition
	{restart timer}
	ApdComPort.SetTimerTrigger(Timer1, 182, True);
	end else begin
	...handle 60 second timeout condition
	{restart timer}
	ApdComPort.SetTimerTrigger(Timer2, 1092, True);
	end;
	end;
	See also: AddTimerTrigger, SetTimerTrigger


	Open property
	property Open : Boolean

	Default: False
	Determines whether the physical port is opened and initialized with all current port properties.
	Open must be set to True before a comport component can send or receive characters. If the AutoOp...
	When Open is set to True, the TApdComPort uses all current property settings to allocate input an...
	When Open is set to False, the TApdComPort turns off tracing and logging (by setting the associat...
	There is no harm done by setting Open to True when it is already True, or setting it to False whe...
	See also: AutoOpen, OnPortClose, OnPortOpen


	OutBuffFree read-only, run-time property
	property OutBuffFree : Word

	Returns the number of bytes free in the output buffer.
	Use OutBuffFree to assure that the output buffer has enough free space to hold data that you are ...
	The following example checks for sufficient output buffer space to transmit a block of NeededSpac...
	if ApdComPort.OutBuffFree >= NeededSpace then
	ApdComPort.PutBlock(Data, NeededSpace)
	else begin
	MyHandle := ApdComPort.AddStatusTrigger(stOutBuffFree);
	ApdComPort.SetStatusTrigger(MyHandle, NeededSpace, True);
	end;
	See also: OutBuffUsed


	OutBuffUsed read-only, run-time property
	property OutBuffUsed : Word

	Returns the number of bytes currently in the output buffer.
	Use OutBuffUsed to detect whether or not any outgoing data remains in the output buffer.
	The following example checks to see if any outgoing data is still in the output buffer. If so, it...
	if ApdComPort.OutBuffUsed <> 0 then begin
	MyHandle := ApdComPort.AddStatusTrigger(stOutBuffUsed);
	ApdComPort.SetStatusTrigger(MyHandle, 0, True);
	end;
	See also: OutBuffFree


	Output write-only, run-time property
	property Output : string

	Transmits its assigned value through the port.
	Assigning a value to Output is equivalent to calling the PutString method with that same string.
	The following example sends a dial string out the port:
	ApdComPort.Output := 'ATDT555-1212'^M;
	See also: PutChar, PutString


	OutSize property
	property OutSize : Word

	Default: 4096
	Determines the size, in bytes, of the output buffer used by the Windows communications driver.
	OutSize must be large enough to hold the largest block of data that you might transmit at one tim...
	To obtain a non-default buffer size, OutSize must be set before the port is opened.
	See also: Open, InSize


	Parity property
	property Parity : TParity
	TParity = (pNone, pOdd, pEven, pMark, pSpace);

	Default: pNone
	Determines the parity checking mode of the port.
	If the port is open when Parity is changed, the line parameters are updated immediately. Parity d...
	See also: Baud, ComNumber, DataBits, StopBits


	ProcessCommunications method
	procedure ProcessCommunications;

	Calls the internal dispatcher one time.
	This method is used by the Winsock device layer.
	An application should call this routine if it needs to receive data during lengthy processing whe...
	The internal dispatcher, which is responsible for retrieving data from the Windows communication ...
	Note that ProcessCommunications is provided for those cases where an application must wait (for t...
	The following example sends a string and waits for a response:
	ET : EventTimer;
	S : string;
	...
	S := '';
	ApdComPort.Output := 'login:';
	NewTimer(ET, 182);
	repeat
	ApdComPort.ProcessCommunications;
	if ApdComPort.CharReady then
	S := S + ApdComPort.GetChar;
	until (S = 'ABC') or TimerExpired(ET);
	See also: AddDataTrigger


	PromptForPort property
	property PromptForPort : Boolean

	Default: True
	Indicates whether the user should be prompted for the serial port number.
	If PromptForPort is True and ComNumber is zero, a dialog is displayed to prompt the user for the ...
	If PromptForPort is False and ComPort is zero, an ENoPortSelected exception is raised when the po...
	See also: ComPort


	PutBlock method
	function PutBlock(const Block; const Len : Word) : Integer;

	Copies a block of data to the output buffer of the Windows communications driver.
	The communications driver then transmits the block byte-by-byte as fast as possible.
	When there is insufficient free space in the output buffer, the documented behavior of the Window...
	Block refers to the block of data and Len is the number of bytes to transmit. Len must be smaller...
	The following example transmits a block of 20 characters after assuring that space is available:
	if ApdComPort.OutBuffFree >= 20 then
	ApdComPort.PutBlock(Block, 20);
	See also: OutBuffFree, PutChar, PutString


	PutChar method
	procedure PutChar(const C : Char);

	Copies a single character to the output buffer of the Windows communications driver.
	The communications driver then transmits the character as soon as possible.
	The following example transmits one character after assuring that space is available:
	if ApdComPort.OutBuffFree >= 1 then
	ApdComPort.PutChar(C);
	See also: OutBuffFree, PutBlock, PutString


	PutString method
	procedure PutString(const S : string);

	Copies a string to the output buffer of the Windows communications driver.
	The communications driver then transmits the string as soon as possible. The length byte of the s...
	The following example transmits a string after assuring that space is available:
	S := 'Guinness Stout';
	if ApdComPort.OutBuffFree >= Length(S) then
	ApdComPort.PutString(S);
	See also: OutBuffFree, Output, PutBlock, PutChar


	RemoveAllTriggers method
	procedure RemoveAllTriggers;

	Deactivates all triggers added to this port.
	Use this routine when your program changes modes and requires completely new triggers. Destroying...
	Caution: Calling this method effectively disables the comport component since it removes all trig...
	Normally, it’s best to keep track of the triggers you add and remove them individually using Remo...
	See also: Open, RemoveTrigger


	RemoveTrigger method
	procedure RemoveTrigger(Handle : Word);

	Deactivates a specified trigger.
	Handle is the handle returned when the trigger was added. If no matching trigger handle is found,...
	The following example adds and uses a timer trigger, and later removes it:
	var
	MyHandle : Word;
	...
	MyHandle := ApdComPort.AddTimerTrigger;
	ApdComPort.SetTimerTrigger(MyHandle, 36, True);
	...
	ApdComPort.RemoveTrigger(MyHandle);
	See also: RemoveAllTriggers


	RI read-only, run-time property
	property RI : Boolean

	Returns True if the port’s “ring indicator” line (RI) is set.
	Because the ring indicator line fluctuates rapidly as rings occur, the DeltaRI property is much m...
	See also: DeltaRI


	RS485Mode property
	property RS485Mode : Boolean

	Default: False
	Determines whether the RTS line should be raised or lowered automatically when transmitting data.
	Set this property to True when using an RS-485 board or converter that uses the RTS line to enabl...
	Caution: This property should be set to True only when a program is using RS-485 ports or convert...
	Because RS-485 mode requires control over the RTS line, the RTS property is set to False and CTS/...
	See “RS-485 support overview” on page�31 for more information on RS-485 support.
	See also: BaseAddress


	RTS property
	property RTS : Boolean

	Default: True
	Determines the current state of the “request to send” signal (RTS).
	This signal is usually used for hardware flow control, in which case your application does not ne...
	The following example lowers the RTS signal after opening the port and later raises it again:
	ApdComPort := TApdComPort.Create(Self);
	ApdComPort.Open := True;
	ApdComPort.RTS := False;
	...
	ApdComPort.RTS := True;
	See also: DTR, HWFlowOptions


	SendBreak method
	procedure SendBreak(Ticks : Word; Yield : Boolean);

	Transmits a break signal.
	This method transmits a break signal (the transmit line is held in the “marking” state) for the n...
	When Yield is True, SendBreak yields control back to Windows while sending the break, giving othe...

	SetBreak method
	procedure SetBreak(BreakOn : Boolean);

	Raises or lowers the break signal.
	This method will begin transmission of the break signal if BreakOn is True; or stops transmission...
	See also: SendBreak


	SetStatusTrigger method
	procedure SetStatusTrigger(const Handle : Word;
	const Value : Word; const Activate : Boolean);

	Activates or deactivates a status trigger.
	Status triggers are activated in two steps. The trigger is added using AddStatusTrigger, then the...
	Handle is the value that was returned by the call to AddStatusTrigger. The interpretation of Valu...
	For triggers of type stModem, Value is a bit mask that contains one or more of the following opti...
	For the msCTSDelta, msDSRDelta, and msDCDDelta options SetStatusTrigger saves the current state o...
	The msRingDelta option triggers an OnTriggerStatus event at the end of the next incoming ring sig...
	An stModem trigger also generates an OnTriggerModemStatus event. Note, however, that no trigger h...
	For triggers of type stLine, Value is a bit mask that contains one or more of the following options:
	If a single trigger is used to monitor multiple line status signals, the OnTriggerStatus event ha...
	An stLine trigger also generates an OnTriggerLineError event, which passes the current values of ...
	For triggers of type stOutBuffFree, an OnTriggerStatus event is generated when the number of byte...
	For triggers of type stOutBuffUsed, an OnTriggerStatus event is generated when the number of byte...
	For triggers of type stOutSent, Value is not used. Here, an OnTriggerStatus event is generated wh...
	All status triggers except stOutSent must be restarted within the message handler. That is, the t...
	The following example adds an stOutBuffFree status trigger and activates it to send a message whe...
	var
	MyHandle : Word;
	...
	MyHandle := ApdComPort.AddStatusTrigger(stOutBuffFree);
	ApdComPort.SetStatusTrigger(MyHandle, 100, True);
	The following example adds an stModem trigger and activates it to send a message when either the ...

	var
	MyHandle : Word;
	...
	MyHandle := ApdComPort.AddStatusTrigger(stModem);
	ApdComPort.SetStatusTrigger(
	MyHandle, msDSRDelta or msCTSDelta, True);
	See also: AddStatusTrigger, OnTriggerStatus


	SetTimerTrigger method
	procedure SetTimerTrigger(const Handle : Word;
	const Ticks : LongInt; const Activate : Boolean);

	Activates or deactivates a timer trigger.
	Timer triggers are activated in two steps. The trigger is added using AddTimerTrigger, then the t...
	Handle is the handle returned when the trigger was added. Ticks is the duration of the timer in B...
	Activate is True to activate the trigger, False to deactivate it. When Activate is False the Tick...
	After the specified time elapses the internal dispatcher generates an OnTriggerTimer event. The t...
	Timer triggers generate a single OnTriggerTimer event. The timer is automatically disabled after ...
	The following example adds a timer trigger and activates it with a 36 tick (2 second) timeout:
	var
	MyHandle : Word;
	...
	MyHandle := ApdComPort.AddTimerTrigger;
	ApdComPort.SetTimerTrigger(MyHandle, 36, True);
	See also: AddTimerTrigger


	StopBits property
	property StopBits : Word

	Default: 1
	Determines the number of stop bits of the port.
	Acceptable values are 1 and 2. If DataBits equals 5, a request for 2 stop bits is interpreted as ...
	If the port is open when StopBits is changed, the line parameters are updated immediately. StopBi...
	See also: Baud, ComNumber, DataBits, Parity


	SWFlowOptions property
	property SWFlowOptions : TSWFlowOptions
	TSWFlowOptions = (swfNone, swfReceive, swfTransmit, swfBoth);

	Default: swfNone
	Determines the software flow control options for the port.
	This routine turns on one or both aspects of automatic software flow control based on the value a...
	“Receive flow control” stops a remote device from transmitting while the local receive buffer is ...
	Receive flow control is enabled by assigning swfReceive or swfBoth to the property. When enabled,...
	As the application processes received characters, buffer usage eventually drops below the level a...
	Transmit flow control is enabled by assigning swfTransmit or swfBoth to the property. The BufferF...
	The following example enables bi-directional software flow control with limits at the 25% and 75%...
	ApdComPort.BufferFull := Trunc(0.75*ApdComPort.InSize);
	ApdComPort.BufferResume := Trunc(0.25*ApdComPort.InSize);
	ApdComPort.SWFlowOptions := swfBoth;
	...
	ApdComPort.SWFlowOptions := swfNone;
	See also: FlowState, HWFlowOptions


	TapiMode property
	property TapiMode : TTapiMode
	TTapiMode = (tmNone, tmAuto, tmOn, tmOff);

	Default: tmAuto
	Determines whether a TApdComPort can be controlled by a TApdTapiDevice.
	A TApdTapiDevice cannot work by itself; it must work in conjunction with a TApdComPort. When a TA...
	If TapiMode is tmAuto (the default), the TApdComPort is available for TAPI use. The TApdTapiDevic...
	ApdComPort.TapiMode := tmOn;
	ApdComPort.AutoOpen := False;
	ApdComPort.Open := False;
	TapiMode is changed to tmOn to indicate that the TApdComPort is being controlled by the associate...
	To turn off TAPI mode, or to prevent a TAPI device from taking control of the TApdComPort, set Ta...
	The value tmNone isn’t used.
	See the ADXPORT form/unit in the TERMDEMO demonstration program (see the Async Professional Devel...
	See “Chapter 8: TAPI Components” on page�203 for more information on TAPI.
	See also: AutoOpen, Open



	TraceAllHex property
	property TraceAllHex : Boolean

	Default: False
	Determines when the trace log will contain literal printable characters, or if all characters wil...
	See also: LogAllHex, Tracing

	TraceHex property
	property TraceHex : Boolean

	Default: True
	Determines whether non-printable characters stored in a trace file are written using hexadecimal ...
	See also: TraceAllHex, TraceName, TraceSize, Tracing

	TraceName property
	property TraceName : ShortString

	Default: APRO.TRC
	Determines the name of the file used to store a trace.
	See also: Tracing

	TraceSize property
	property TraceSize : Word

	Default: 10000
	Determines the number of entries allocated in the trace buffer.
	The value may be as large as 4 million. Each entry consumes 2 bytes.
	This property should normally be set before a tracing session begins. If a changed value is assig...
	See also: Tracing


	Tracing property
	property Tracing : TTraceLogState
	TTraceLogState = (tlOff, tlOn, tlDump, tlAppend, tlClear, tlPause);

	Default: tlOff
	Determines the current tracing state.
	When Tracing is set to tlOff, as it is by default, no tracing is performed.
	To enable tracing, set Tracing to tlOn. This allocates an internal buffer of 2*TraceSize bytes an...
	To write the contents of the tracing buffer to disk, set Tracing to tlDump (which overwrites any ...
	Note that Tracing is usually not as useful as the dispatcher log. The trace file will contain gro...
	To clear the contents of the tracing buffer and continue tracing, set Tracing to tlClear. After t...
	To temporarily pause tracing, set Tracing to tlPause. To resume, set Tracing to tlOn.
	See “Tracing” on page�33 for more information.
	The following example turns on tracing and later dumps the tracing buffer to APRO.TRC:
	ApdComPort.Tracing := tlOn;
	...
	ApdComPort.TraceName := 'APRO.TRC';
	ApdComPort.Tracing := tlDump;
	See also: Logging, TraceHex, TraceName, TraceSize


	UseEventWord property
	property UseEventWord : Boolean

	Default: True
	Determines how the dispatcher checks for received data.
	The Windows communication API provides two methods to check for received data and line/modem stat...
	Windows also provides API calls to retrieve the same status information provided by the event wor...
	Caution: Yielding introduces the possibility of reentrancy, which your application must anticipat...
	The reentrancy issue also applies to other parts of the application since most applications provi...
	None of these problems apply when Yield is False because WaitForString won’t allow other message ...
	Note that WaitForString uses GetChar to retrieve data, which may prevent this data from being see...
	Note that WaitForString is depreciated and maintained for backward compatibility. In most cases, ...
	The following example shows an OnWaitChar event handler that manually stuffs received data into a...
	procedure TForm.ApdComPort1WaitChar(CP : TObject; C : Char);
	begin
	ApdTerminal1.StuffChar(C);
	ApdTerminal1.ForcePaint;
	end;
	The following example is the OnClick event handler from a “Login” button that waits for and respo...

	procedure TForm1.LoginClick(Sender : TObject);
	begin
	ApdComPort.Output := 'ATDT260-9726'^M;
	if not ApdComPort.WaitForString('login', 1092, True, True) then
	...handle timeout error
	ApdComPort.Output := 'myname';
	if not ApdComPort.WaitForString(
	'password', 182, True, True) then
	...handle timeout error
	ApdComPort.Output := 'secret';
	...
	end;
	See also: AddDataTrigger, OnTriggerData, OnWaitChar, WaitForMultiString


	XOffChar property
	property XOffChar : Char

	Default: #19 (^S)
	Determines the character that is sent to disable remote sending when software flow control is act...
	Software flow control almost universally uses the XOff (ASCII 19) character to suspend transmissi...
	See also: SWFlowOptions, XOnChar


	XOnChar property
	property XOnChar : Char

	Default: DefXOnChar (#17, ^Q)
	Determines the character that is sent to enable remote sending when software flow control is active.
	Software flow control almost universally uses the XOn (ASCII 17) character to enable transmission...




	Chapter 3: Winsock Components
	Windows includes routines for network and Internet communications. These routines are contained i...
	Before a connection can be established, Winsock needs to know how to find the host computer. Each...
	Caution: Leading zeros in a dot notation IP address (for example, “198.168.010.012”) causes Winso...
	While expressing a network address in dot notation is a little better than dealing with a raw 32-...
	Not all computers have DNS entries. A DNS entry is usually used to provide public access to a com...
	Most software allows you to specify either the host name or the IP address in dot notation when a...
	In addition to IP addresses, Winsock uses ports to specify how to connect to a remote machine. Wi...
	The IP address and port number are used in combination to create a socket. A socket is first crea...
	There is one other aspect of Internet communications that should be noted. Telnet is a protocol t...
	The telnet protocol describes option negotiation (typically at the beginning of a session) and es...
	Note: If WsTelnet is True, and the client or server to which you are connecting does not support ...
	Sockets in Async Professional
	Async Professional includes a device layer, dlWnsock, that utilizes Winsock for network and Inter...
	The Async Professional implementation of Winsock consists of two components. TApdWinsockPort is a...
	TApdWinsockPort is derived from TApdCustomComPort and therefore inherits all of its properties an...
	TApdSocket is a low-level component that provides access to most standard Winsock services. This ...
	The Winsock support in Async Professional is not intended as a full-featured Winsock implementati...

	Winsock NIC selection
	Some systems are configured with multiple IP addresses, perhaps a physical network card for local...

	Winsock proxy/firewall support
	Some systems must go through a firewall/proxy to access remote systems. In this case, the TApdSoc...

	TApdSocksServerInfo Class
	TApdSocksServerInformation contains the location of the proxy server. If a proxy is to use be use...
	If the connection attempt fails, the OnWsError event is generated and the Open property is set to...
	Hierarchy
	TPersistent (VCL)
	TApdSocksServerInfo (AdWnPort)


	Properties
	Reference Section
	Address run-time property
	property Address : string

	Specifies the address of the proxy server.
	Password run-time property
	property Password : string

	Specifies the password needed to access the proxy server.
	Port run-time property
	property Port : Word

	Specifies the port number of the proxy server.
	SocksVersion run-time property
	property SocksVersion : TApdSocksVersion
	TApdSocksVersion = (svNone, svSocks4, svSocks5);

	Specifies the version of the proxy server.
	The SocksVersion property can be set to the following values:
	Socks4a has extended Socks4 by adding DNS lookup by the server. Both Socks4 and Socks4a are suppo...
	More information on Socks4 can be found on http://www.socks.nec.com/protocol/socks4.protocol and ...
	More information on Socks5 can be found on http://www.eborder.nec.com/index2.htm, http://www.sock...

	UserCode run-time property
	property UserCode : string

	Specifies the user name or code needed to access the proxy server.


	TApdWinsockPort Component
	The TApdWinsockPort component provides a Winsock port that can be used to establish a TCP/IP conn...
	If you use the TApdWinsockPort in Winsock mode, it cannot be used with the TAdModem because in th...
	The TApdWinsockPort component is an implementation of the Winsock version 1.1 API.
	Example
	This example shows how to connect to the Library of Congress via telnet. Create a new project, ad...
	Table 3.1: Example components and property values
	Double-click on the Open button’s OnClick event handler in the Object Inspector and modify the ge...

	procedure TForm1.OpenClick(Sender : TObject);
	begin
	ApdWinsockPort1.Open := True;
	end;
	Double-click on the Close button’s OnClick event handler in the Object Inspector and modify the g...

	procedure TForm1.CloseClick(Sender : TObject);
	begin
	ApdWinsockPort1.Open := False;
	end;
	Establish a connection to the Internet (e.g., using Windows Dialup Networking).
	Compile and run the example. Of course, this is a bare-bones application—but it demonstrates the ...


	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	v TApdComPort (AdPort) 22
	TApdWinsockPort (AdWnPort)


	Properties
	Methods
	Events
	Reference Section
	DeviceLayer property
	property DeviceLayer : TDeviceLayer
	TDeviceLayer = (dlWin16, dlFossil, dlWin32, dlWinsock);

	Default: dlWinsock
	Determines the hardware interface used by the port.
	The DeviceLayer property determines whether the TApdWinsockPort is acting as a Winsock port (dlWi...
	You can create custom device layers by deriving them from TApdBaseDispatcher and creating a new p...

	OnWsAccept event
	property OnWsAccept : TWsAcceptEvent
	TWsAcceptEvent = procedure (
	Sender : TObject; Addr : TInAddr; var Accept : Boolean) of object;

	Defines an event handler that is called when a client attempts to connect to a server.
	This event is generated when an application is acting as a server (WsMode equals WsServer) and a ...
	The following example calls a user-supplied function named GoodAddress to determine whether the n...
	procedure TForm1.WsPortWsAccept(
	Sender : TObject; Addr : TInAddr; var Accept : Boolean);
	begin
	if GoodAddress(Addr) then begin
	Status.Caption := 'Accepted!';
	Accept := True;
	end else begin
	Status.Caption := 'Connection Denied';
	Accept := False;
	end;
	end;
	See also: OnWsConnect, WsMode


	OnWsConnect event
	property OnWsConnect : TNotifyEvent

	Defines an event handler that is called when a Winsock connection is established.
	When an application is operating as a client (WsMode equals WsClient,) it usually attempts to con...
	The following example illustrates a client application receiving notification that a connection t...
	procedure TForm1.WsPortWsConnect(Sender : TObject);
	begin
	Status.Caption := 'Connected';
	{ do some processing… }
	end;
	See also: OnWsAccept, OnWsDisconnect, WsMode


	OnWsDisconnect event
	property OnWsDisconnect : TNotifyEvent

	Defines an event handler that is called when a Winsock connection is dropped.
	A connection can be dropped as the result of an error or when a transmission is complete and one ...
	If WsMode equals WsServer, OnDisconnect is generated when the client is disconnected. The Open pr...
	The following example illustrates a server application receiving notification that the client has...
	procedure TForm1.WsPortWsDisconnect(Sender : TObject);
	begin
	Status.Caption := 'Bye!';
	end;
	See also: OnWsConnect, Open, WsMode


	OnWsError event
	property OnWsError : TWsErrorEvent
	TWsErrorEvent = procedure(
	Sender : TObject; ErrorCode : Integer) of object;

	Defines an event handler that is generated when a Winsock error occurs.
	ErrorCode contains the Winsock error code. See “Error Handling and Exception Classes” on page�900...

	Open property
	property Open : Boolean

	Default: False
	Determines whether the Winsock port is open and initialized.
	Open must be set to True before a Winsock port can send or receive characters. When Open is set t...
	When Open is set to False, the TApdWinsockPort sets the tracing and logging properties to tlDump ...
	There is no harm done by setting Open to True when it is already True, or setting it to False whe...

	WsAddress property
	property WsAddress : string

	The network address used to make a Winsock connection.
	WsAddress accepts the IP address in dot notation (165.212.210.10) or as a host name (telnet.turbo...
	Caution: Do not add leading zeros in dot notation addresses (e.g., 165.212.210.010). Leading zero...

	WsLocalAddresses read-only, run-time property
	property WsLocalAddresses : TStringList

	Lists the IP addresses for each network interface that is installed.
	WsLocalAddresses is a read-only TStringList containing the IP address for each network interface ...
	See also: WsLocalAddressIndex


	WsLocalAddressIndex run-time property
	property WsLocalAddressIndex : Integer

	Determines the network interface to use.
	To select a network intefacee, set WsLocalAddressIndex to the index of the network interface list...
	See also: WsLocalAddresses


	WsMode property
	property WsMode : TWsMode
	TWsMode = (wsClient, wsServer);

	Default: WsClient
	Determines whether the application operates as a server or a client.
	If WsMode is WsServer, the application acts as a server. When the Open property is set to True, t...
	If WsMode is WsClient, the application operates as a client. When the Open property is set to Tru...
	See also: Open, WsAddress, WsMode, WsPort


	WsPort property
	property WsPort : string

	Default: “telnet”
	The Winsock port used to establish a network connection.
	WsPort is the Winsock port on which to connect (for a client application) or on which to listen (...
	See also: WsAddress


	WsSocksServerInfo run-time property
	property WsSocksServerInfo : TApdSocksServerInfo

	Contains the Firewall/Proxy configuration.
	WsSocksServerInfo contains the configuration of the proxy server and the type of proxy server in ...

	WsTelnet property
	property WsTelnet : Boolean

	Default: True
	Indicates whether telnet processing is enabled.
	For most uses of the TApdWinsockPort (such as connecting to telnet servers or communication betwe...
	WsTelnet cannot be changed while the port is open. The value of WsTelnet when the port is opened ...



	TApdSocket Component
	The TApdSocket component is a low-level class that provides many standard Winsock services. It is...
	A global instance of the TApdSocket class (ApdSocket) is created in the initialization code of th...
	Microsoft Winsock API help file
	Microsoft Developer Network CD
	Dumas, Programming Winsock, Sam’s Publishing, ISBN 0-672-30594-1
	Quinn and Shute, Windows Sockets Network Programming, Addison-Wesley, ISBN 0-201-63372-8
	Roberts, Developing for the Internet with Winsock, Coriolis Group Books, ISBN 1-883577-42-X
	Chapman, Building Internet Applications with Delphi 2, Que, ISBN 0-7897-0732-2

	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdSocket (AdSocket)


	Properties
	Methods
	Events
	Reference Section
	AcceptSocket method
	function AcceptSocket(
	Socket : TSocket; var Address : TSockAddrIn) : TSocket;
	TSockAddrIn = packed record
	case Integer of
	0: (sin_family : Word;
	sin_port : Word;
	sin_addr : TInAddr;
	sin_zero : array[0..7] of AnsiChar);
	1: (sa_family : Word;
	sa_data : array[0..13] of AnsiChar)
	end;

	Accepts a client that is trying to attach to a listening socket.
	Socket is the handle of the socket. Address is a structure that contains information used by Wins...
	See also: ListenSocket


	BindSocket method
	function BindSocket(
	Socket : TSocket; Address : TSockAddrIn) : Integer;
	TSockAddrIn = packed record
	case Integer of
	0: (sin_family : Word;
	sin_port : Word;
	sin_addr : TInAddr;
	sin_zero : array[0..7] of AnsiChar);
	1: (sa_family : Word;
	sa_data : array[0..13] of AnsiChar)
	end;

	Associates a local network address and port number with a socket.
	Socket is the handle of the socket. Address is a structure that contains information used by Wins...
	See also: CreateSocket, ListenSocket


	CheckLoaded method
	procedure CheckLoaded;

	Determines whether the Winsock DLL is loaded and initialized.
	Call CheckLoaded to see if Winsock is ready for use. If Winsock is not initialized, CheckLoaded r...

	CloseSocket method
	function CloseSocket(Socket : TSocket) : Integer;

	Closes a socket.
	CloseSocket closes a socket and frees the memory allocated for it. Socket is the handle of the so...
	See also: CreateSocket


	ConnectSocket method
	function ConnectSocket(
	Socket : TSocket; Address : TSockAddrIn) : Integer;
	TSockAddrIn = packed record
	case Integer of
	0: (sin_family : Word;
	sin_port : Word;
	sin_addr : TInAddr;
	sin_zero : array[0..7] of AnsiChar);
	1: (sa_family : Word;
	sa_data : array[0..13] of AnsiChar)
	end;

	Establishes a network connection.
	ConnectSocket is used by a client to connect the socket specified by Socket to a remote host. Add...
	See also: BindSocket, CreateSocket


	CreateSocket method
	function CreateSocket : TSocket;

	Creates a socket.
	If the socket is created successfully, CreateSocket returns a unique socket descriptor that is us...
	See also: BindSocket, CloseSocket


	Description read-only, run-time property
	property Description : string

	Contains a string that describes the Winsock DLL.
	Description is a read-only property that contains a textual description of the current Winsock DL...
	See also: HighVersion, SystemStatus, Version


	Handle read-only, run-time property
	property Handle : HWnd

	The window handle for the TApdSocket class.
	Winsock uses the window handle to send messages to the TApdSocket object. The Winsock messages re...

	HighVersion read-only, run-time property
	property HighVersion : Word

	Contains the highest version of the Winsock specification supported by the current Winsock DLL.
	For the Windows NT 4.0 and 2000 Winsock, HighVersion is 2.2, which indicates that it can support ...
	See also: WSVersion


	htonl method
	function htonl(HostLong : LongInt) : LongInt;

	Translates a 32-bit value from host byte order to network byte order.
	IBM-compatible computers typically store data in memory in little-endian byte order (the least si...
	See also: htons, ntohl, ntohs


	htons method
	function htons(HostShort : Word) : Word;

	Translates a 16-bit value from host byte order to network byte order.
	IBM-compatible computers typically store data in memory in little-endian byte order (the least si...
	See also: htonl, ntohl, ntohs


	LastError read-only, run-time property
	property LastError : Integer;

	Contains the error code of the last Winsock error.
	If a Winsock operation fails, you can use LastError to get the Winsock error code. See “Error Han...
	See also: OnWsError


	ListenSocket method
	function ListenSocket(
	Socket : TSocket; Backlog : Integer) : Integer;

	Tells a socket to listen for a connection attempt.
	ListenSocket is used by a server application to enter listening mode. Socket is the socket on whi...
	See also: BindSocket, CreateSocket


	LocalAddress read-only, run-time property
	property LocalAddress : string

	Contains the local machine’s network address.
	LocalAddress contains a text string of the local machine’s network address in dot notation (e.g.,...
	See also: LocalHost


	LocalHost read-only, run-time property
	property LocalHost : string

	Contains the local machine’s network name.
	LocalHost contains a textual description of the local machine’s network name (e.g., “garyf-testma...
	See also: LocalAddress


	LookupAddress method
	function LookupAddress(InAddr : TInAddr) : string;
	TInAddr = packed record
	case Integer of
	0 : (S_un_b : SunB);
	1 : (S_un_w : SunW);
	2 : (S_addr : LongInt);
	end;

	Gets a host name for the Internet address specified by InAddr.
	The following example uses String2NetAddr to fill in a TInAddr structure from a text string conta...
	var
	MyAddr : TInAddr;
	with TApdSocket.Create(self) do try
	MyAddr := String2NetAddr('165.212.210.12');
	HostLabel.Caption := LookupAddress(MyAddr);
	finally
	Free;
	end;
	See also: LookupName, String2NetAddr


	LookupName method
	function LookupName(const Name : string) : TInAddr;
	TInAddr = packed record
	case Integer of
	0 : (S_un_b : SunB);
	1 : (S_un_w : SunW);
	2 : (S_addr : LongInt);
	end;

	LookupName gets an Internet address for the host name specified by Name.
	The Internet address is returned as a TInAddr structure.
	The following example gets an Internet address from the host name “www.turbopower.com” and then u...
	var
	MyAddr : TInAddr;
	with TApdSocket.Create(Self) do try
	MyAddr := LookupName('www.turbopower.com');
	AddressLabel.Caption := NetAddr2String(MyAddr);
	finally
	Free;
	end;
	See also: LookupHost, NetAddr2String


	LookupPort method
	function LookupPort(Port : Integer) : string;

	Gets a text string of the service name for the port specified by Port.
	There are certain well-known ports used in Winsock. For example, port 25 is typically used for SM...
	with TApdSocket.Create(Self) do try
	ServiceLabel.Caption := LookupPort(25);
	finally
	Free;
	end;
	See also: LookupService


	LookupService method
	function LookupService(const Service : string) : Integer;

	Gets the port number for the service name specified by Service.
	The service name should be one of the Winsock well-known services (such as “SMTP”). If the servic...
	var
	MyPort : Integer;
	with TApdSocket.Create(Self) do try
	MyPort := LookupService('smtp');
	finally
	Free;
	end;
	See also: LookupPort


	MaxSockets read-only, run-time property
	property MaxSockets : Word

	The maximum number of sockets available for the current version of Winsock.
	NetAddr2String method
	function NetAddr2String(InAddr : TInAddr) : string;
	TInAddr = packed record
	case Integer of
	0 : (S_un_b : SunB);
	1 : (S_un_w : SunW);
	2 : (S_addr : LongInt);
	end;

	Translates the 32-bit network address in InAddr to a string.
	The string is in dot notation (e.g., “165.212.210.12”).
	The following example converts an Internet address to a string. The string is then displayed in a...
	var
	MyAddr : TInAddr;
	with TApdSocket.Create(Self) do try
	MyAddr := LookupName('www.turbopower.com');
	AddressLabel.Caption := NetAddr2String(MyAddr);
	finally
	Free;
	end;
	See also: String2NetAddr


	ntohl method
	function ntohl(NetLong : LongInt) : LongInt;

	Translates a 32-bit value from network byte order to host byte order.
	IBM-compatible computers typically store data in memory in little-endian byte order (the least si...
	See also: htonl, htons, ntohs


	ntohs method
	function ntohs(NetShort : Word) : Word;

	Translates a 16-bit value from network byte order to host byte order.
	IBM-compatible computers typically store data in memory in little-endian byte order (the least si...
	See also: htonl, htons, ntohl


	OnWsAccept event
	property OnWsAccept : TWsNotifyEvent
	TWsNotifyEvent = procedure(
	Sender: TObject; Socket: TSocket) of object;

	Defines an event handler that is called when the server accepts a connection.
	This event is primarily used when an application is operating as a server. The server application...
	See also: OnWsConnect


	OnWsConnect event
	property OnWsConnect : TWsNotifyEvent
	TWsNotifyEvent = procedure(
	Sender: TObject; Socket: TSocket) of object;

	Defines an event handler that is called when a Winsock connection is established.
	When a server application accepts a connection, the OnWsConnect event is generated to notify the ...
	See also: OnWsDisconnect


	OnWsDisconnect event
	property OnWsDisconnect : TWsNotifyEvent
	TWsNotifyEvent = procedure(
	Sender: TObject; Socket: TSocket) of object;

	Defines an event handler that is called when a Winsock connection is dropped.
	A connection can be dropped as the result of an error or when a transmission is complete and one ...
	See also: OnWsConnect


	OnWsError event
	property OnWsError : TWsSocketErrorEvent
	TWsSocketErrorEvent = procedure(Sender : TObject;
	Socket : TSocket; ErrorCode : Integer) of object;

	Defines an event handler that is called when a Winsock error occurs.
	Socket identifies the socket for which the error occurred. ErrorCode contains the Winsock error c...
	See Also: LastError


	OnWsRead event
	property OnWsRead : TWsNotifyEvent
	TWsNotifyEvent = procedure(
	Sender : TObject; Socket : TSocket) of object;

	Defines an event handler that is called when data is available to be read on a socket.
	See also: OnWsWrite

	OnWsWrite event
	property OnWsWrite : TWsNotifyEvent
	TWsNotifyEvent = procedure(
	Sender : TObject; Socket : TSocket) of object;

	Defines an event handler that is called when Winsock can accept more data from a socket.
	See also: OnWsRead

	ReadSocket method
	function ReadSocket(
	Socket : TSocket; var Buf; BufSize, Flags : Integer) : Integer;

	Reads data from a socket.
	Socket is the socket from which to receive data. Buf is the buffer where the data is stored. BufS...
	See also: WriteSocket


	SetAsyncStyles method
	function SetAsyncStyles(
	Socket : TSocket; lEvent : LongInt) : Integer;

	Tells Winsock to send notification of certain network events.
	Socket is the socket for which events should be reported. lEvent is the event or events that shou...
	When an event that notification is requested for occurs, Winsock sends a CM_APDSOCKETMESSAGE mess...

	String2NetAddr method
	function String2NetAddr(const S : string) : TInAddr;
	TInAddr = packed record
	case Integer of
	0 : (S_un_b : SunB);
	1 : (S_un_w : SunW);
	2 : (S_addr : LongInt);
	end;

	Translates a string to a network address.
	String2NetAddr translates S into a 32-bit value in network byte order. It is returned in the form...
	The following example creates a socket and then turns the string address “165.212.210.12” into an...
	var
	MyAddr : TInAddr;
	with TApdSocket.Create(Self) do try
	MyAddr := String2NetAddr('165.212.210.12');
	finally
	Free;
	end;
	See also: Net2StringAddr


	SystemStatus read-only, run-time property
	property SystemStatus : string

	Contains the current status of the Winsock DLL.
	SystemStatus usually returns “Running under” Windows 95/98/ME or Windows NT 4.0/2000.
	See also: Description


	WriteSocket method
	function WriteSocket(
	Socket : TSocket; var Buf; BufSize, Flags : Integer) : Integer;

	Sends data to a socket.
	Socket is the socket on which to send data. Buf is the buffer that contains the data. BufSize is ...
	WriteSocket does not send the data directly to the receiving end. Winsock queues the data and sen...
	See also: ReadSocket


	WsVersion read-only, run-time property
	property WsVersion : Word

	Contains the version number of the current Winsock DLL.
	WsVersion is a 16-bit value. The high-order byte contains the major version number and the low-or...
	The following example gets the version number, translates it into a text string, and displays it ...
	var
	MyVer : Word;
	with TApdSocket.Create(Self) do try
	MyVer := WsVersion;
	VerLabel.Caption := Format('%d.%d', [LoByte(MyVer), HiByte(MyVer)]);
	finally
	Free;
	end;
	See also: HighVersion





	Chapter 4: Data Packet Component
	The purpose of the data packet component is to provide a simple solution to the common task of lo...
	TApdDataPacket Component
	The TApdDataPacket component provides automatic data packet delivery from the incoming data strea...
	A data packet can be thought of as an advanced data trigger. Packets automatically collect data f...
	You would typically use data packets in place of data triggers when the data you are looking for ...
	Data as packets
	Most data arriving at the serial port can be described as a packet. It will have a start conditio...
	A specific character/string: The StartString defines the packet in its entirety. Set StartCond to...

	...
	ApdDataPacket1.StartCond := scString;
	ApdDataPacket1.StartString := 'hello';
	...
	A bracketed packet: This is the most common usage, where the beginning and ending of the data is ...

	...
	ApdDataPacket1.StartCond := scString;
	ApdDataPacket1.StartString := #2; // STX char
	ApdDataPacket1.EndCond := [ecString];
	ApdDataPacket1.EndString := #3; // ETX char
	...
	Note: C++Builder uses a more difficult implementation of sets than Delphi does, use the following...

	...
	ApdDataPacket1->EndCond.Clear(); ApdDataPacket1->EndCond << ecString; ...
	A known start character/string followed by data of known length: An example might be an <STX> (#2...

	...
	ApdDataPacket1.StartCond := scString
	ApdDataPacket1.StartString := #2; // STX char
	ApdDataPacket1.EndCond := [ecPacketSize];
	ApdDataPacket1.IncludeStrings := True;
	ApdDataPacket1.PacketLength := 19; // 18 data chars,
	1 start char
	...
	A known number of data chars, with a terminating character/string: An example of this type of pac...

	...
	ApdDataPacket1.StartCond := scAnyData;
	ApdDataPacket1.EndCond := [ecString];
	ApdDataPacket1.EndString := #13; // CR char
	...
	These are only a few of the possibilities. Your data may vary. You may have a start string, follo...


	Data ownership
	There is no limit on the number of data packet components for a port, however, any incoming chara...
	The TApdDataPacket component has a component editor, shown in Figure 4.1, where all properties ca...
	Figure 4.1: TApdDataPacket component editor.

	Packet Start Condition
	The Packet Start Condition defines the start of the packet. You have the option to start the pack...
	Refer to the StartCond and StartString properties in the reference section for more information o...

	Packet End Condition
	The Packet End Condition defines when the packet is complete. Packet completion can either occur ...
	Refer to the EndCond, EndString and PacketSize properties in the reference section for more infor...

	Additional properties
	The additional properties define details about how the packet should operate: Whether it should b...
	Refer to the AutoEnable, IgnoreCase, IncludeStrings and TimeOut properties in the reference secti...

	Non-printable characters and wildcards in the packet
	The TApdDataPacket supports some translations in the StartString and EndString properties. These ...
	Wildcards in the packet definition can be very useful. The wildcard character is a single questio...
	For example, a relatively common packet will contain a block of data terminated by a character th...
	...
	ApdDataPacket1.EndString := #3 + '?'; // ETX and the next char
	...
	If IncludeStrings is True, the last char in the collected data will be the checksum.



	Example
	This example demonstrates the use of a TApdDataPacket component to retrieve a modem’s response to...
	Table 4.1: Example components and property settings
	Double-click on the button’s OnClick event handler in the Object Inspector and modify the generat...

	procedure TForm1.Button1Click(Sender : TObject);
	begin
	ApdComPort1.PutString('ATI3'#13);
	end;
	Double-click on the TApdDataPacket component OnStringPacket event handler in the Object Inspector...

	procedure TForm1.ApdDataPacket1StringPacket(
	Sender : TObject; Data : String);
	begin
	Caption := trim(Data);
	end;
	Compile and run the application. When prompted, select a serial port that has a modem attached. W...


	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdDataPacket (AdPacket)


	Properties
	Events
	Reference Section
	AutoEnable property
	property AutoEnable : Boolean

	Default: True
	Determines whether a data packet is automatically re-enabled.
	AutoEnable controls what happens after the packet is received (the start string and end condition...

	ComPort property
	property ComPort : TApdCustomComPort

	Determines the port used by the data packet.
	Enabled property
	property Enabled : Boolean

	Default: True
	Determines whether a packet is allowed to collect data.
	You can have as many TApdDataPacket components as you like. You can conveniently turn them on or ...

	EndCond property
	property EndCond : TPacketEndSet
	TPacketEndSet = set of TPacketEndCond;
	TPacketEndCond = (ecString, ecPacketSize);

	Default: []
	Determines when a complete packet has been received.
	The valid values for EndCond are:
	Note: C++Builder uses a more difficult implementation of sets than Delphi does, use the following...
	...
	ApdDataPacket1->EndCond.Clear();
	ApdDataPacket1->EndCond << ecString;
	...
	See also: EndString, PacketSize, StartString


	EndString property
	property EndString : string

	The string that completes a data packet.
	If EndCond contains ecString, the packet stops collecting data when the string specified by EndSt...
	See the StartString property on page 143 for information about specifying characters and using fi...
	See also: EndCond, StartString


	IgnoreCase property
	property IgnoreCase : Boolean

	Default: True
	Determines whether the StartString and EndString properties are case-sensitive.
	See also: EndString, StartString

	IncludeStrings property
	property IncludeStrings : Boolean

	Default: True
	Determines whether the strings that define a packet are made available to the event handler.
	For example, assume that StartString is “Async”, EndString is “al”, and the string “Async Profess...
	See also: EndString, StartString


	OnPacket event
	property OnPacket : TPacketNotifyEvent
	TPacketNotifyEvent = procedure(
	Sender : TObject; Data : pointer; Size : Integer) of object;

	Defines an event handler that is called when a complete data packet is available.
	Data is a pointer to the actual collected data. Size is the length of the collected data. The dat...
	var
	Buffer: array[0..255] of byte;

	procedure TForm1.ApdDataPacket1Packet(
	Sender: TObject; Data: Pointer; Size: Integer);
	begin
	Move(Data^, Buffer[0], Size);
	end;

	void __fastcall TForm1::ApdDataPacket1Packet(
	TObject *Sender, Pointer Data, int Size)
	{
	char* MyData = new char[Size];
	Move(Data, MyData, Size);
	}


	OnTimeout event
	property OnTimeout : TNotifyEvent

	Defines an event handler that is called when a timeout occurs during receipt of a packet.
	The OnTimeout event is generated when a packet is in data collection mode but hasn’t completed wi...
	The data collected up to the point of the timeout is available through the GetCollectedString and...
	The timeout timer does not start until the start condition has been met. If StartCond = scString,...

	OnStringPacket event
	property OnStringPacket : TStringPacketNotifyEvent
	TStringPacketNotifyEvent = procedure(
	Sender : TObject; Data : string) of object;

	Defines an event handler that is called when a complete data packet is available.
	Data is the actual data in the packet. The data packet is only available for the duration of the ...
	Note that a null character (#0) in the collected data may terminate the Data string prematurely. ...
	See also: OnPacket


	PacketSize property
	property PacketSize : Integer

	Default: 0
	Determines the size of a packet.
	If EndCond contains ecCharCount, PacketSize determines the size of the data packet.
	If IncludeStrings is True, PacketSize will not compensate for the length of the start and end str...
	See also: EndCond


	StartCond property
	property StartCond : TPacketStartCond
	TPacketStartCond = (scString, scAnyData);

	Default: scString
	Determines when a packet should start collecting data.
	The valid values for StartCond are:
	See also: StartString


	StartString property
	property StartString : string

	The string that causes a packet to start collecting data.
	If StartCond is scString, the packet starts collecting data when the string specified by StartStr...
	To specify a control character in the string, use a caret ‘^’ symbol (e.g. ^L^M). To specify a ch...
	The following example sets the StartString to “123 #”, followed by a <Ctrl C>, followed by “Sampl...
	ApdDataPacket.StartString := '123 # '^C'Sample ^ ^ '#255;

	StartString also supports fixed-length wildcards. The character ? within a string is interpreted ...
	'ATI?'^M^J will match 'ATI0^M^J, 'ATI1^M^J..., 'END??' will match 'END12', 'END99'..., '??BEGIN' ...
	Since ? is now interpreted as a wildcard, an actual ? in the packet must be escaped by \ (backsla...
	'+FMFR\?' really means '+FMFR?' where the ‘?’ is a literal ‘?’. '\\ASC' really means '\ASC' where...
	See also: EndString, StartCond


	TimeOut property
	property TimeOut : Integer

	Default: 2184 (~ 2 minutes)
	Determines how long a data packet waits for completion of a data stream.
	If TimeOut is non-zero, it determines how long (in ticks) a data packet is allowed to wait for co...
	The timeout timer does not start until the start condition has been met. If StartCond = scString,...
	See “Data ownership” on page�134 for more information.
	See also: EndString, OnTimeOut





	Chapter 5: Script Component
	This chapter describes the TApdScript component, which contains properties and methods for automa...
	A script is a list or file containing communications commands. Script languages are often provide...
	TApdScript Component
	The AdScript unit provides a single documented component: TApdScript. TApdScript implements a scr...
	The script language
	The basic syntax of the script language is shown in the following line of code:
	<command> <data1> <data2>;<comment>

	In this line of code, <command> describes the action to perform, <data1> and <data2> are optional...
	The following is a list of supported commands followed by brief descriptions and discussions of t...
	:<label> GOTO <label>
	DISPLAY 'XX XX' ;<comment>
	SENDBREAK <duration in ms> INITPORT <1..99>
	DELAY <duration in ms> IF CONNECTED <label>
	SET <option> <data> DONEPORT
	UPLOAD <protocol> SEND 'XXXXXX'
	DOWNLOAD <protocol> CHDIR <pathname>
	DELETE <filemask> RUN <command> <wait>
	EXIT <exitcode> IF SUCCESS <label>
	WAIT 'XXXX' <timeout in ms> IF TIMEOUT <label>
	IF FAIL <label> IF 1,2,3...127
	WAITMULT 'XXX|YYY|ZZZ' <timeout in ms>
	:<label>
	A point in the script file that can be jumped to via a GOTO or IF instruction. A label name can b...
	;<comment>
	Any line that starts with a semicolon is considered a comment. Blank lines are also considered co...
	INITPORT <Com1..Com99>
	Opens the specified port. Only one port at a time may be opened. This number directly correlates ...
	DONEPORT
	Closes a port previously opened with INITPORT.
	SEND 'XXXXXX'
	Transmits the string “XXXXXX”. Control characters may transmitted by preceding a character with ‘...
	Note: Unlike Object Pascal, control characters must be inside the quote marks, if quote marks are...
	If the string does not contain any embedded blanks the beginning and ending quotes can be omitted...
	SEND ABC sends ABC
	SEND ‘ABC’ sends ABC
	SEND A B C sends only the A ('B C' is considered a comment)
	SEND ‘A B C’ sends A B C
	WAIT 'XXXXX' <timeout in ms>
	Waits up to <timeout in ms> milliseconds for a particular received string. The string comparison ...
	This command sets one of three conditions: SUCCESS, FAIL or TIMEOUT, which can be tested with the...
	IF SUCCESS/TIMEOUT/FAIL <label>
	Tests the condition set by the last command and, if the tested condition is True, script executio...
	WAITMULTI 'XXX|ZZZ|YYY', <timeout in ms>
	Waits up to <timeout in ms> milliseconds for one of several substrings. The bar character (|) sep...
	This command sets a numeric condition result based on the substring received: ‘1’ is set if the f...
	IF 1,2,3...127 <label>
	Tests the condition set by the last WAITMULTI command and, if the tested condition is True, scrip...
	The following example sends a modem dial command, then waits for one of CONNECT, NO CARRIER, or B...

	send 'atdt260-9726^m'
	waitmulti 'connect|no carrier|busy' 60000
	if 1 HandleConnect
	if 2 HandleNoConnect
	if 3 HandleBusy
	goto HandleTimeout
	:HandleConnect
	...proceed with session
	:HandleNoConnect
	...handle noconnect error
	:HandleBusy
	...handle busy error
	...
	GOTO <label>
	Unconditionally jumps to <label>.
	DISPLAY 'Just did something'
	Generates a call to the TApdScript component’s OnScriptDisplay event handler. If the DisplayToTer...
	SENDBREAK <duration in ms>
	Transmits a break of <duration in ms> milliseconds.
	DELAY <duration in ms>
	Delays for <duration in ms> milliseconds. The script doesn’t yield during delays so you should ke...
	SET <option> <data>
	Sets or resets a variety of port, script and protocol options. Some options require an additional...
	Table 5.1: SET options (continued)
	UPLOAD <protocol>
	Starts transmitting files using <protocol>. <protocol> must be one of the following: XMODEM, XMOD...
	DOWNLOAD <protocol>
	Starts receiving files using <protocol>. <protocol> must be one of the following: XMODEM, XMODEM1...
	CHDIR <pathname>
	Changes the current directory to the one specified by <pathname>. If the directory does not exist...
	DELETE <filemask>
	Deletes all files matching <filemask>. If no path is specified the current directory is used.
	RUN <command> <wait>
	Executes the specified command, batch file or program. <wait> can be True or False and determines...
	Following is an example script showing how these commands might be used to log on to a host or te...


	SET RETRY 10 ;Try 10 times
	:Again
	SEND ^C ;Send an attention character
	WAIT 'READY' 182 ;Wait 10 seconds for response
	IF SUCCESS Logon ;Got prompt, continue with logon
	IF TIMEOUT Again ;Try again if we timed out
	IF FAIL, Done ;Give up after 10 tries
	:Logon
	SEND 'Name, password^M' ;Send name and password
	...
	:Done
	SEND 'Bye^M'
	EXIT <exitcode>
	This will terminate the script and return the exit code as the Condition parameter in the OnScrip...
	The exitcode parameter can be SUCCESS, TIMEOUT, FAIL or an integer value.


	User functions and variables
	User functions and variables are designed to provide a means by which your scripts can interact w...
	User functions
	User functions are indicated by a ‘&’ as the first character in the name of the function. User fu...
	When a user function is encountered in the script, it will generate the OnScriptUserFunction even...
	Following are examples of calls to user functions. In all cases, the OnScriptUserFunction event w...
	&MyFunction
	&MyFunction 'Parameter'
	&MyFunction 1234


	User variables
	User variables are indicated by a ‘$’ as the first character in the name of the variable. User va...
	When a user variable is encountered in the script, it will generate the OnScriptUserVariable even...
	Following are examples of using user variables:
	DISPLAY $MyVariable
	&MyFunction $MyVariable



	Executing scripts
	A script is a list of commands in the format described in the previous section. The script can be...
	Not a valid script command. Line #
	Bad format for first parameter. Line #
	Bad format for second parameter. Line #
	Label is referenced but never defined. Line #
	Bad option in SET command. Line #
	Error XXX while processing script. Line #
	Scripts are always executed in the background in a fashion similar to file transfer protocols. Sc...


	Other components
	The script component always needs a TApdCustomComPort component descendent (i.e., TApdComPort or ...
	A program using a script may also use a terminal window (TAdTerminal). No special action is requi...
	If the script calls either UPLOAD or DOWNLOAD a TApdProtocol component is required. As with the T...

	Debugging scripts
	A script file is really an interpreted program and TApdScript is the interpreter. Like any progra...
	TApdScript provides a variety of tools for debugging scripts. First, it provides three events for...
	1. OnScriptCommandStart—called before each command is executed.
	2. OnScriptCommandFinish—called after each command is executed.
	3. OnScriptFinish—called when the entire script completes.
	It also provides the OnScriptDisplay event, which is called in response to each DISPLAY command i...
	Finally, you can use the debug log available within the TApdComPort component to examine the data...


	Example
	This example creates a very simple script file to send the ATI4 command to a modem and wait for t...
	Create a new project, add the following components, and set the property values as indicated in T...
	Table 5.2: Script example property values
	Double-click on the Start button and modify the generated method to look like this:

	procedure TForm1.StartClick(Sender: TObject);
	begin
	ApxScript1.StartScript;
	end;
	This method starts the script. StartScript returns immediately while the script continues running...
	Double-click on the script component’s OnScriptFinished event handler in the Object Inspector and...

	procedure TForm1.ApdScript1ScriptFinish(
	CP: TObject; Condition: Integer);
	begin
	ShowMessage('Script finished!');
	end;
	This method displays a message box when the script is finished.
	Run the project and experiment with the generated program.


	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (AdMisc) 8
	TApdCustomScript (AdScript)
	TApdScript (AdScript)


	Properties
	Methods
	Events
	Reference Section
	CancelScript method
	procedure CancelScript;

	Cancels the background script.
	Once a script is started, it executes all commands in the background without any help or interfer...

	ComPort property
	property ComPort : TApdCustomComPort

	The comport component used by the script to send and receive data.
	When the script is created it assigns the first comport component it finds on the form to ComPort...

	DisplayToTerminal property
	property DisplayToTerminal : Boolean

	When True, the script DISPLAY commands display data to the terminal window.
	Set this to True if the application has a terminal window and the terminal window should be used ...

	InProgress run-time, read-only property
	property InProgress : Boolean

	Returns True while a script is executing in the background.
	Use this property to determine whether or not a script is executing in the background. A typical ...

	OnScriptCommandFinish event
	property OnScriptCommandFinish : TScriptCommandEvent

	Generated after each script command is executed.
	This event complements the OnScriptCommandStart event and can also be used to implement single-st...
	For script commands that include a “wait” (WAIT, WAITMULTI, UPLOAD, DOWNLOAD) OnScriptCommandFini...
	See also: OnScriptCommandStart


	OnScriptCommandStart event
	property OnScriptCommandStart : TScriptCommandEvent
	TScriptCommandEvent = procedure(
	CP : TObject; Node : TApdScriptNode;
	Condition : SmallInt) of object;
	TApdScriptNode = class(TObject)
	Command : TApdScriptCommand; Data : String; Option : TOption;
	Timeout : Word; Condition : Word;
	TApdScriptCommand = (
	scNone, scComment, scLabel, scInitPort, scDonePort, scSend,
	scWait, scWaitMulti, scIf, scDisplay, scGoto, scSendBreak,
	scDelay, scSetOption, scUpload, scDownload, scChDir, scDelete,
	scRun, scExit);

	Generated before each script command is executed.
	The primary purpose of this event is to provide a mechanism for single stepping through a script ...
	See also: OnScriptCommandFinish


	OnScriptDisplay event
	property OnScriptDisplay : TScriptDisplayEvent
	TScriptDisplayEvent = procedure(
	CP : TObject; const Msg : String) of object;

	Generated in response to script DISPLAY commands.
	The script processor doesn’t make any assumptions about how to display the contents of DISPLAY co...
	One exception to this process occurs when the DisplayToTerminal property is True and the script c...

	OnScriptFinish event
	property OnScriptFinish : TScriptFinishEvent
	TScriptFinishEvent = procedure(
	CP : TObject; Condition : SmallInt) of object;

	Generated at the end of the script.
	This event is generated when the end of the script file or script list is reached and there are n...
	If an application dynamically creates a TApdScript component it should not free that component, o...
	See also: InProgress


	OnScriptParseVariable event
	property OnScriptParseVariable : TScriptParseVariableEvent
	TScriptParseVariableEvent = procedure(
	CP : TObject; const Variable : String;
	var NewValue : String) of object;

	Generated when a value is needed for a user variable.
	This event is generated when a user variable is encountered in the script. User variables can app...
	Refer to the section “User functions and variables” on page�152 for more information.
	See also: OnScriptUserFunction


	OnScriptUserFunction event
	property OnScriptUserFunction : TScriptUserFunctionEvent
	TScriptUserFunctionEvent = procedure(
	CP : TObject; const Command : String;
	const Parameter : String) of object;

	Generated when a user function has been encountered in the script.
	This event is generated when a user function is encountered in the script. User functions are ind...
	Refer to the section “User functions and variables” on page�152 for more information.
	See also: OnScriptParseVariable


	PrepareScript method
	procedure PrepareScript;

	Prepares the script command list and checks for syntax errors.
	Before a list or file of script commands can be processed, it must first be prepared. This is sim...
	When PrepareScript finds a syntax error it raises an EApxScriptError exception with one of the fo...
	Not a valid script command. Line #
	Bad format for first parameter. Line #
	Bad format for second parameter. Line #
	Label is referenced but never defined. Line #
	Bad option in SET command. Line #
	DOS error XXX while processing script. Line #


	Protocol property
	property Protocol : TApdCustomProtocol

	Determines the protocol used by UPLOAD and DOWNLOAD commands.
	When the script component is created it searches the form for an existing TApdCustomProtocol and ...
	If an UPLOAD or DOWNLOAD command is processed and Protocol is unassigned, the script component cr...

	ScriptCommands property
	property ScriptCommands : TStrings

	The list of script commands.
	Although declared as a TStrings component, this component is treated as a TStringList and uses th...
	Note that ScriptCommands are used only when the ScriptFile property is empty. If the ScriptFile c...
	For convenience, at design time the script component loads the commands from ScriptFile into Scri...

	ScriptFile property
	property ScriptFile : String

	A file containing script commands.
	When ScriptFile contains a file name PrepareScript and StartScript always read that file to build...
	See ScriptCommands for more information concerning the relationship of ScriptCommands and ScriptF...

	StartScript method
	procedure StartScript;

	Begins executing the script in the background.
	StartScript checks the internal table of compiled commands. If that table is empty, it calls Prep...
	If StartScript finds or creates a list of compiled commands, it begins executing those commands. ...

	Terminal property
	property Terminal : TApdBaseWinControl

	Determines the terminal component used by the DISPLAY commands.
	When the script component is created it searches the form for an existing terminal and uses the f...
	If DisplayToTerminal is True, the contents of DISPLAY commands are written to this terminal window.




	Chapter 6: State Machine Components
	A state machine is simply a device or technique that receives input and acts upon that input base...
	State machines are one of the fundamental techniques used for asynchronous communications, where ...
	Table 6.1: Simple State Machine
	A simple, two or three-state state machine is relatively painless to create. The state machine is...
	The TApdStateMachine and TApdState components exist in order to assist in the development of orde...

	State machine philosophy
	In order for the Async Professional state machine components to be useful, their design philosoph...
	The TApdStateMachine is the only state machine component that interfaces with the TApdComPort or ...
	States and conditions
	A TApdState component contains a TCollection descendent (TApdStateConditions); which contains TCo...
	A condition, in the realm of the state machine, consists of a StartString and an EndString, a Pac...
	A TApdState component can be either activated or deactivated, and only activated or deactivated b...

	Adding, editing, and deleting conditions
	The multiple-condition capability of the TApdState component does not lend itself very well to pr...
	Figure 6.1: TApdState component editor.

	The grid displays the current values for the installed conditions. To add a new condition to this...
	When a condition is added or edited, the Condition editor, shown in Figure 6.2, is displayed. Thi...
	Figure 6.2: TApdStateCondition property editor.

	The controls are preinitialized with the current TApdStateCondition values when the condition is ...


	The state machine in action
	For illustration, we will create a simple state machine that will initialize a modem, initialize ...
	Due to the number of properties that are available when defining the state conditions, only the p...
	Create a new project and drop a TApdComPort component and a TApdStateMachine component onto the n...
	Select ApdState1, change the OutputOnActivate property to “ATZ^M”. Right-click the component and ...
	Select ApdState2, change the OutputOnActivate property to “‘AT#CID=1’^M”. Invoke the conditions p...
	Select ApdState3, and invoke the conditions property editor. In this state, we will wait for two ...
	We will stay in this state until we tell the state that we want to progress to the next state. We...
	procedure TForm1.ApdState3StateFinish(State: TApdCustomState;
	Condition: TApdStateCondition; var NextState: TApdCustomState);
	begin
	{ decide what to do when we receive "RING"s }
	if Condition.StartString = 'RING' then begin
	{ it's our RING condition }
	State.Tag := State.Tag + 1;
	if State.Tag > 1 then
	{we've seen at least 2 rings, progress to the next state}
	NextState := ApdState4
	else
	{ we've seen less than 2 rings, wait for more }
	NextState := ApdState3;
	end else if Condition.StartString = 'DATE:' then
	{ it's our Date CID tag }
	CIDDate := ApdStateMachine1.DataString
	else if Condition.StartString = 'NMBR:' then
	{ it's our Number CID tag }
	CIDNumber := ApdStateMachine1.DataString
	else if Condition.StartString = 'NAME:' then
	{ it's our Name CID tag }
	CIDName := ApdStateMachine1.DataString;
	end;
	Select ApdState4 and change the OutputOnActivate property to “ATA^M”. Invoke the conditions prope...
	Next, select the ApdStateMachine1 component on the form, set the StartState property to ApdState1...
	Finally, drop the obligatory TButton on the form and create the OnClick event handler. This event...

	procedure TForm1.Button1Click(Sender: TObject);
	begin
	ApdStateMachine1.Start;
	end;
	One implementation of the preceding example is illustrated in Figure 6.3.
	Figure 6.3: State machine example.

	Compile and run the project. Click the button to start the state machine. As the states are activ...


	TApdStateMachine Component
	The TApdStateMachine component manages TApdState components to provide an easy to use, easy to ma...
	Hierarchy
	TScrollingWinControl (VCL)
	u TApdBaseScrollingWinControl (OOMisc) 8
	TApdCustomStateMachine (AdStMach)
	TApdStateMachine (AdStMach)


	Properties
	Methods
	Events
	Reference Section
	Cancel method
	procedure Cancel;

	Cancels the state machine.
	Call the Cancel method to cancel the TApdStateMachine. The current state will be deactivated, and...
	When the Cancel method is used to terminate the TApdStateMachine, the ErrorCode parameter of the ...
	See also: OnStateMachineFinish


	ComPort property
	property ComPort : TApdCustomComPort

	Determines the serial port used by the TApdStateMachine component.
	A properly initialized TApdComPort or TApdWinsockPort must be assigned to this property before st...
	ComPort is usually set automatically at design time to the first TApdCustomComPort component that...
	Setting the ComPort property at run time is necessary only when using a dynamically created TApdC...
	To use this component through a TAPI interface, start the TApdStateMachine after the OnTapiPortOp...

	CurrentState read-only, run-time property
	property CurrentState : TApdCustomState

	The TApdCustomState that is currently active.
	During the execution of a state machine, different states will be activated and deactivated depen...
	At run time, the current state will be displayed with a highlighted background.

	Data read-only, run-time property
	property Data : Pointer

	A pointer to the collected data.
	As a TApdStateMachine manages an active TApdState component, internal TApdDataPackets collect the...
	See also: DataSize, DataString


	DataSize read-only, run-time property
	property DataSize : Integer

	The size of the collected data.
	As the TApdStateMachine manages an active TApdState component, internal TApdDataPackets collect t...
	See also: Data, DataString


	DataString read-only, run-time property
	property DataString : string

	The collected data.
	As the TApdStateMachine manages an active TApdState component, internal TApdDataPackets collect t...
	See also: Data, DataSize


	LastErrorCode read-only, run-time property
	property LastErrorCode : Integer

	The ErrorCode of the last TApdStateCondition.
	When a TApdState is deactivated, the condition whose data requirements were met defines an ErrorC...
	See also: OnStateMachineFinish


	OnStateChange event
	property OnStateChange : TApdStateMachineStateChangeEvent
	TApdStateMachineStateChangeEvent = procedure(
	StateMachine : TApdCustomStateMachine;
	FromState : TApdCustomState;
	var ToState : TApdCustomState) of object;

	Defines an event handler that is called when the CurrentState changes.
	When the TApdStateMachine progresses through the owned TApdState components the TApdState compone...
	This event handler can be used to provide status indicators, or to modify the next state based on...
	StateMachine is the TApdCustomStateMachine that generated the event. FromState is the TApdCustomS...
	See also: CurrentState, OnStateMachineFinish


	OnStateMachineFinish event
	property OnStateMachineFinish : TApdStateMachineFinishEvent
	TApdStateMachineFinishEvent = procedure(
	StateMachine : TApdCustomStateMachine;
	ErrorCode : Integer) of object;

	Defines an event handler that is called when the state machine terminates.
	When the TApdCustomState machine terminates, this event is generated to provide notification of t...
	StateMachine is the TApdCustomStateMachine that generated the event. ErrorCode is an integer defi...
	See also: Cancel, LastErrorCode


	Start method
	procedure Start;

	Start starts the state machine.
	The Start method starts the state machine. Once Start is called, the TApdState determined by the ...
	See also: Cancel, StartState,


	StartState property
	property StartState : TApdCustomState

	Determines the state that is activated first.
	When the Start method is called, the TApdState component determined by StartState is activated, w...
	See also: OnStateChange, Start


	StateNames read-only, run-time property
	property StateNames : TStrings

	Provides the names of all TApdState components associated with the state machine.
	The StateNames property is primarily for internal use, to provide the names of all TApdState comp...

	TerminalState property
	property TerminalState : TApdCustomState

	Determines the state that terminates the state machine.
	The TApdCustomStateMachine can terminate due to the Cancel method, upon activation of the Termina...
	See also: Cancel, OnStateMachineFinish




	TApdState Component
	The TApdState component defines the conditions for which the state machine is monitoring at a giv...
	The TApdState component maintains a collection of state conditions, which means that a single TAp...
	The conditions are contained in the Conditions property of TApdState, which is a TCollection desc...
	TApdStateCondition
	The TApdState component maintains TApdStateConditions, which define the conditions to satisfy the...
	Table 6.2: TApdStateConditions (continued)
	StartString, EndString, IgnoreCase and PacketSize are very similar to the TApdDataPacket properti...


	Hierarchy
	TGraphicContro l (VCL)
	u TApdBaseGraphicControl (OOMisc) 8
	TApdCustomState (AdStMach)
	TApdState (AdStMach)


	Properties
	Methods
	Events
	Reference Section
	Active read-only, run-time property
	property Active : Boolean
	Default: False


	Indicates whether this state is active or not.
	As the TApdStateMachine component progresses through the TApdState components that define the sta...
	When the TApdStateMachine component activates a TApdState, the conditions that define the state a...
	See also: OutputOnActivate


	ActiveColor property
	property ActiveColor : TColor
	Default: clYellow


	Determines the color of the component when the state is active.
	When the TApdState is active, it will be rendered with a background color determined by the Activ...
	See also: Active, Glyph, GlyphCells, InactiveColor


	Conditions property
	property Conditions : TApdStateConditions
	TApdStateConditions = class(TCollection)
	public
	function Add : TApdStateCondition;
	property Items[Index: Integer] : TApdStateCondition;
	end;

	Defines the collection of conditions for the state.
	This property is a collection of TApdStateCondition classes, which defines the data match conditi...

	Glyph property
	property Glyph : TBitmap

	Defines a bitmap used to illustrate the state.
	If the Glyph property is not assigned, the TApdState component is rendered as an empty rectangle ...
	The Glyph can contain multiple cells to display a different image for each stage of the TApdState...
	See also: GlyphCells


	GlyphCells property
	property GlyphCells : Integer
	Default: 1


	Determines the number of cells contained in the Glyph property.
	The Glyph property can be unassigned, it can contain a single image that is displayed for the dur...
	For example, if Glyph contained a single cell that should be displayed for the duration of the st...
	When the Glyph cell is rendered, the Caption property will be displayed above the image. The Acti...
	See also: Active, ActiveColor, Glyph, InactiveColor


	InactiveColor property
	property InactiveColor : TColor
	Default: clWhite


	Determines the color of the component when the state is not active.
	When the TApdState is active, it will be rendered with a background color determined by the Activ...
	See also: Active, ActiveColor, Glyph, GlyphCells


	OnStateActivate event
	property OnStateActivate : TApdStateNotifyEvent
	TApdStateNotifyEvent = procedure(
	State : TApdCustomState) of object;

	Defines an event that is generated when the state is activated.
	OnStateActivate provides notification when the TApdState component becomes active. This event is ...
	State is the TApdState component that generated the event.
	See also: Activate, OutputOnActivate


	OnStateFinish event
	property OnStateFinish : TApdStateFinishEvent
	TApdStateFinishEvent = procedure(
	State : TApdCustomState; Condition : TApdStateCondition;
	var NextState : TApdCustomState) of object;

	Defines an event that is generated when the state’s conditions are satisfied.
	OnStateFinish provides notification when a TApdState’s conditions have been met. This event is ge...
	State is the TApdState component that generated the event. Condition is the TApdStateCondition wh...
	See also: Active, OnStateActivate


	OutputOnActivate property
	property OutputOnActivate : string

	Defines a string to transmit when the state is activated.
	As the TApdStateMachine progresses through the state machine, successive TApdState components are...
	For example, during a modem initialization state machine you may want to transmit “ATZ”<CR> and w...
	OutputOnActivate supports printable and non-printable characters in the string. At design time, e...
	See also: Active, OnStateActivate


	Terminate method
	procedure Terminate(ErrorCode : Integer)

	Terminates the TApdState component.
	Under normal circumstances, the data match conditions defined by the Conditions property of TApdS...
	See also: OnStateFinish





	Chapter 7: Status Light Components
	The components included in this chapter: TApdStatusLight and TApdSLController, allow you to add a...
	TApdStatusLight is a simple component that displays two bitmaps, or two different colors, dependi...
	The TApdSLController component monitors the status of a TApdComPort component and changes the sta...
	TApdStatusLight Component
	TApdStatusLight is a simple component that displays two bitmaps, or two different colors, dependi...
	This component works hand-in-hand with the TApdSLController component (see page 191). TApdSLContr...
	Hierarchy
	TGraphicControl (VCL)
	TApdCustomStatusLight (AdStatLt)
	TApdStatusLight (AdStatLt)


	Properties
	Reference Section
	Glyph property
	property Glyph : TBitmap

	Determines two custom bitmaps used to display the status light.
	If the Glyph property is not assigned, a “lit” status light is drawn as a solid red square and an...
	Glyph can be used to display custom bitmaps instead. The Glyph bitmap is actually two bitmaps in ...

	Lit property
	property Lit : Boolean
	Default: False


	Determines the state in which the status light is drawn.
	This property is normally assigned by the trigger handlers of the TApdSLController component.

	LitColor property
	property LitColor : TColor
	Default: clRed


	Determines the color of a no-glyph status light in its lit state.
	If the component’s Glyph property is not set to a valid bitmap, the status light is drawn as a sl...

	NotLitColor property
	property NotLitColor : TColor
	Default: clGreen


	Determines the color of a no-glyph status light in its unlit state.
	If the component’s Glyph property is not set to a valid bitmap, the status light is drawn as a sl...



	TApdSLController Component
	The TApdSLController component monitors the status of a TApdComPort component and changes the sta...
	TApdSLController is capable of monitoring the port’s line signals (DCD, DTR, CTS, and RI), line b...
	The Lights property
	The controller has a property called Lights which holds pointers to the status light components t...
	Table 7.1 provides a list of all Lights sub-properties and the port condition they monitor.
	Table 7.1: Lights property sub-properties and port conditions

	Using a TApdSLController
	To use a TApdSLController, first create a TApdStatusLight component for each line condition you w...
	Figure 7.1 shows the Object Inspector for a properly created TApdSLController component that can ...
	Figure 7.1: Viewing the Object Inspector of a properly created TApdSLController component.

	When the CTS signal changes, the component named CTSMonitor is changed accordingly. Similarly, th...

	Hierarchy
	TComponent (VCL)
	TApdCustomSLController (AdStatLt)
	TApdSLController (AdStatLt)


	Properties
	Reference Section
	BreakOffTimeout property
	property BreakOffTimeout : LongInt
	Default: 36


	Determines the number of ticks the BREAKLight remains lit after a line break is detected.
	ComPort property
	property ComPort : TApdCustomComPort

	Determines the serial port monitored by the status lights.
	The status light controller monitors the status of lines on a single serial port. This property m...

	ErrorOffTimeout property
	property ErrorOffTimeout : LongInt
	Default: 36


	Determines the number of ticks the ERRORLight remains lit after a line error is detected.
	Lights property
	property Lights : TLightSet

	Determines all of the lights displayed in the status bar.
	Lights is simply a class that contains properties for each port condition that TApdSLController c...
	For more information, see “The Lights property” on page�191.

	Monitoring run-time property
	property Monitoring : Boolean

	Determines whether the status lights are being updated.
	Setting Monitoring to True causes the status light controller to install various triggers that ar...
	ComPort must be assigned before setting Monitoring to True at run time.

	RingOffTimeout property
	property RingOffTimeout : LongInt
	Default: 8


	Determines the number of ticks the RINGLight remains lit after a ring is detected.
	RXDOffTimeout property
	property RXDOffTimeout : LongInt
	Default: 1


	Determines the number of ticks the RXDLight remains lit after a character is received.
	TXDOffTimeout property
	property TXDOffTimeout : LongInt
	Default: 1


	Determines the number of ticks the TXDLight remains lit after a character is transmitted.



	Chapter 8: The Terminal Components
	Traditionally, a terminal is a piece of hardware with a screen and keyboard that provides a metho...
	The data presented by the host computer takes one of two forms. The first form is intended for di...
	The other form of data sent to a terminal consists of two types, intermixed: displayable data and...
	All emulation means is that the PC is pretending to be the terminal in such a fashion that the ho...
	There are a variety of standards for terminal control sequences from such companies as IBM, Digit...
	Terminal Design Considerations
	Async Professional provides terminal emulation capabilities with its terminal component, TAdTermi...
	The former goal is important to those programmers who know that having a terminal that is complia...
	Catering for the latter goal, extensibility, is more difficult. There are many facets to emulatin...
	Once you have those kind of problems nailed down, you then have to consider the keyboard. Ideally...
	After all that, you have to actually draw the terminal display in a normal window on the screen. ...
	Figure 8.1: Terminal design example diagram.

	Terminal buffer
	First, there is the TAdTerminalBuffer class. This class provides a non-visual buffer containing a...

	Terminal parser
	Next, there is the TAdTerminalParser class. This class is designed to interpret terminal control ...

	Keyboard-mapping table
	Next, there is the keyboard-mapping table. This class stores the information required to map a PC...
	This seemingly repetitive triple lookup process exists to enhance comprehension and extensibility...
	For convenience, the keyboard-mapping table can be loaded in two ways. First, the mappings can be...

	Character set mapping table
	Next there is the character set mapping table. This class stores the information required to actu...
	The character set mapping table is a list of character ranges in character sets and the fonts and...
	For convenience, the character set mapping table can be loaded in two ways. First, the mappings c...

	Terminal emulator
	The final step in writing your own terminal is possibly the most intricate: writing a terminal em...
	1. Accept a character from the input data stream.
	2. Pass the character to the parser. The parser would decide whether the character was displayabl...
	3. If the parser indicated that the character was displayable, the component would pass the chara...
	4. If the parser indicated that the character was a command, the terminal component would act on ...
	5. Every now and then, the terminal component would get a paint message, at which point it would ...
	As far as the keyboard goes, the terminal component would convert the virtual key codes into cont...



	TAdTerminalBuffer Component
	The TAdTerminalBuffer class defines a data structure for maintaining the data required for a comm...
	The characters that should be shown.
	The character sets from which those character glyphs are drawn.
	The color in which the character glyphs will be displayed.
	The color for the background behind the characters.
	A set of display attributes for the characters.

	It is important to realize that the terminal buffer class is only a data structure; it has no res...
	Conceptually, the terminal buffer class manages five different screens worth of information as in...
	A word is required here regarding character sets. The VT100 terminal was a 7 bit device. In theor...
	Another point should to be made about the terminal buffer: it does not parse any data stream for ...
	Apart from the data to be displayed, a terminal component requires two basic pieces of informatio...
	If the terminal component is to have a chance of keeping up with fast data streams, it cannot con...
	The terminal buffer has two views of the data: the scrollback view and the display view. The scro...
	The user of the terminal buffer will refer to positions on the terminal screen as one-based value...
	The terminal buffer also supports the concept of a scrolling region. This is a region of the term...
	Generally, when a data stream is sent to a terminal, the sender does not send coloring or attribu...
	Hierarchy
	TObject (VCL)
	TAdTerminalBuffer (ADTrmBuf)


	Properties
	Methods
	Reference Section
	BackColor property
	property BackColor : TColor

	Default: clBlack
	Defines the background color for succeeding text.
	The BackColor property determines the background color that will appear behind text displayed in ...
	See also: DefBackColor, DefForeColor, ForeColor


	CharSet property
	property CharSet : Byte

	Default: 0
	Defines the character set from which characters are drawn.
	The Charset property determines the character set from which a character will be drawn. Once a ne...
	The terminal buffer class imposes no structure or valid values to a character set. It is up to th...
	See also: DefCharset


	ClearAllHorzTabStops method
	procedure ClearAllHorzTabStops;

	Removes all horizontal tab stops.
	The terminal buffer does not have any default tab stops (for example, a tab stop every 8 characte...
	See also: ClearHorzTabStop, SetHorzTabStop


	ClearAllVertTabStops method
	procedure ClearAllVertTabStops;

	Removes all vertical tab stops.
	The terminal buffer does not have any default vertical tab stops.
	See also: ClearVertTabStop, SetVertTabStop


	ClearHorzTabStop method
	procedure ClearHorzTabStop;

	Clears a horizontal tab stop at the current cursor column.
	If no horizontal tab stop is set for this column, ClearHorzTabStop does nothing.
	See also: ClearAllHorzTabStop, SetHorzTabStops


	ClearVertTabStop method
	procedure ClearVertTabStop;

	Clears a vertical tab stop at the current cursor row.
	If no vertical tab stop is set for this row, ClearVertTabStop does nothing.
	See also: ClearAllVertTabStops, SetVertTabStop


	Col property
	property Col : Integer

	Defines the column of the cursor.
	The Col property refers to the cursor. Reading the Col property returns the column number of the ...
	The value used for the Col property is one-based; in other words, columns are counted from 1. If ...
	If a scrolling region is activated, the values for Col will be relative to the home position of t...
	See also: Col, ColCount, SetCursorPosition, UseScrollingRegion


	ColCount property
	property ColCount : Integer

	Default: 80
	Defines the number of columns across the terminal screen.
	The ColCount property is the number of columns displayed by the terminal screen. For the VT100 te...
	If the ColCount property is changed, it is checked to be at least 2; otherwise, an exception is r...
	Changing the ColCount property for an existing terminal screen does not clear the data being disp...
	See also: Col, RowCount


	Create method
	constructor Create(aUseWideChars : Boolean);

	Creates an instance of the TAdTerminalBuffer class.
	The aUseWideChars parameter, if True, determines whether the Terminal is configured to work with ...

	DefBackColor property
	property DefBackColor : TColor

	Default: clBlack
	Defines the default background color.
	If Reset is called, the current background color is set to the value of DefBackColor.
	See also: BackColor, DefForeColor, Reset


	DefCharset property
	property DefCharset : Byte

	Default: 0
	Defines the default character set value.
	If Reset is called, the current character set is set to the value of DefCharset.
	See also: Charset, Reset


	DefForeColor property
	property DefForeColor : TColor

	Default: clSilver
	Defines the default color to be used for displaying text.
	If Reset is called, the current foreground color is set to the value of DefForeColor.
	See also: DefBackColor, ForeColor, Reset


	DeleteChars method
	procedure DeleteChars(aCount : Integer);

	Deletes characters from the current cursor position.
	The characters to the right of the deleted ones are moved over to take their place. The area on t...
	The DeleteChars method is limited to the current scrolling region.
	The cursor is left in the same position.

	DeleteLines method
	procedure DeleteLines(aCount : Integer);

	Deletes lines from the current cursor position.
	The lines underneath the lines being deleted are moved up to take their place. The area at the bo...
	The DeleteLines method is limited to the current scrolling region.
	The cursor is left in the same position.

	DoBackHorzTab method
	procedure DoBackHorzTab;

	Moves the cursor left to the previous tab stop.
	If there is no previous tab stop, the cursor is moved to the first column of the line. If it alre...
	This method is limited to the current scrolling region.
	See also: DoHorzTab, SetHorzTabStop


	DoBackspace method
	procedure DoBackspace;

	Backspaces the cursor.
	The character underneath the new position of the cursor is not erased by this operation. A backsp...
	This method is limited to the current scrolling region.
	See also: MoveCursorLeft


	DoBackVertTab method
	procedure DoBackVertTab;

	Moves the cursor up to the previous tab stop.
	If there is no previous tab stop, the cursor is moved to the first row. If it already at this pos...
	This method is limited to the current scrolling region.
	See also: DoVertTab, SetVertTabStop


	DoCarriageReturn method
	procedure DoCarriageReturn;

	Moves the cursor to the beginning of the current row.
	This method is limited to the current scrolling region.
	See also: DoLineFeed


	DoHorzTab method
	procedure DoHorzTab;

	Moves the cursor right to the next tab stop.
	If there is no next tab stop, the cursor is moved to the last column of the line. If it already a...
	This method is limited to the current scrolling region.
	See also: DoBackHorzTab, SetHorzTabStop


	DoLineFeed method
	procedure DoLineFeed;

	Moves the cursor down one row.
	This method has two modes of operation, distinguished by the value of UseNewLineMode. If UseNewLi...
	If UseNewLineMode is True, the cursor is moved down a row in the manner already described, except...
	This method is limited to the current scrolling region.
	See also: DoCarriageReturn


	DoVertTab method
	procedure DoVertTab;

	Moves the cursor down to the next tab stop.
	If there is no next tab stop, the cursor is moved to the last row. If it already at this position...
	This method is limited to the current scrolling region.
	See also: DoBackVertTab, SetVertTabStop


	EraseChars method
	procedure EraseChars(aCount : Integer);

	Erases characters from the current cursor position.
	The erasing operation is done by replacing aCount characters with space characters, using the cur...
	This method is limited to the current scrolling region.

	EraseFromBOL method
	procedure EraseFromBOL;

	Erases characters from the beginning of the row to the current cursor position.
	The erasing operation is done by replacing the characters with space characters, using the curren...
	This method is limited to the current scrolling region.

	EraseFromBOW method
	procedure EraseFromBOW;

	Erases characters from the beginning of the screen to the current cursor position.
	The erasing operation is done by replacing the characters with space characters, using the curren...
	This method is not limited to the current scrolling region; it applies to the whole screen.

	EraseLine method
	procedure EraseLine;

	Erases the current row.
	The erasing operation is done by replacing the characters with space characters, using the curren...
	This method is limited to the current scrolling region.

	EraseScreen method
	procedure EraseScreen;

	Erases the entire screen.
	The erasing operation is done by replacing the characters with space characters, using the curren...
	This method is not limited to the current scrolling region; it applies to the whole screen. The s...

	EraseToEOL method
	procedure EraseToEOL;

	Erases characters from the current cursor position to the end of the row.
	The erasing operation is done by replacing the characters with space characters, using the curren...
	This method is limited to the current scrolling region.

	EraseToEOW method
	procedure EraseToEOW;
	Erases characters from the current cursor position to the end of the screen.
	The erasing operation is done by replacing the characters with space characters, using the curren...
	This method is not limited to the current scrolling region; it applies to the whole screen.


	ForeColor property
	property ForeColor : TColor

	Default: clSilver
	Defines the foreground color for new text.
	The ForeColor property determines the color in which new text will be displayed in the terminal. ...
	See also: DefForeColor


	GetCharAttrs method
	procedure GetCharAttrs(var aValue : TAdTerminalCharAttrs);
	TAdTerminalCharAttr = (tcaBold, tcaUnderline,
	tcaStrikethrough, tcaBlink, tcaReverse, tcaInvisible);
	TAdTerminalCharAttrs = set of TAdTerminalCharAttr;

	Returns the current set of display attributes.
	The display attributes define the style of new text. The attributes are bold, underlined, striket...
	If you wish to add a new attribute to the current set, write code like this:
	var
	Attrs : TAdTerminalCharAttrs;
	begin
	...
	MyBuffer.GetCharAttrs(Attrs);
	Attrs := Attrs + [tcaUnderline];
	MyBuffer.SetCharAttrs(Attrs);
	See also: GetDefCharAttrs, SetCharAttrs


	GetDefCharAttrs method
	procedure GetDefCharAttrs(var aValue : TAdTerminalCharAttrs);
	TAdTerminalCharAttr = (tcaBold, tcaUnderline,
	tcaStrikethrough, tcaBlink, tcaReverse, tcaInvisible);
	TAdTerminalCharAttrs = set of TAdTerminalCharAttr;

	Returns the default set of display attributes.
	The display attributes define the style of new text. The attributes are bold, underlined, striket...
	See also: GetCharAttrs, Reset, SetDefCharAttrs


	GetInvalidRect method
	function GetInvalidRect(var aRect : TRect) : Boolean;

	Returns the next invalid rectangle.
	An invalid rectangle is a TRect structure that defines an area of the terminal screen that needs ...
	The return value is False if there was no invalid rectangle; otherwise, it is True and aRect has ...
	Every change to the terminal is recorded by the terminal buffer as a list of invalid rectangles. ...
	See also: HasCursorMoved, HasDisplayChanged


	GetLineAttrPtr method
	function GetLineAttrPtr(aRow : Integer) : pointer;

	Returns a pointer to the first element of the display attributes array.
	Each element in the display attributes array is a TAdTerminalCharAttrs set.
	This method is not limited to the current scrolling region; it applies to the whole screen. Thus,...

	GetLineBackColorPtr method
	function GetLineBackColorPtr(aRow : Integer): pointer;

	Returns a pointer to the first element of the background colors array.
	Each element in the background colors array is of type TColor.
	This method is not limited to the current scrolling region; it applies to the whole screen. Thus,...
	See also: BackColor, DefBackColor, GetLineForeColorPtr


	GetLineCharPtr method
	function GetLineCharPtr(aRow : Integer): pointer;

	Returns a pointer to the first element of the characters array.
	Each element in the characters array is either a single byte character, or a two-byte UNICODE cha...
	This method is not limited to the current scrolling region; it applies to the whole screen. Thus,...

	GetLineCharSetPtr method
	function GetLineCharSetPtr(aRow : Integer): pointer;

	Returns a pointer to the first element of the character set array.
	Each element in the character set array is a byte. It is the responsibility of the owning termina...
	This method is not limited to the current scrolling region; it applies to the whole screen. Thus,...

	GetLineForeColorPtr method
	function GetLineForeColorPtr(aRow : Integer): pointer;

	Returns a pointer to the first element of the foreground colors array.
	Each element in the foreground colors array is of type TColor.
	This method is not limited to the current scrolling region; it applies to the whole screen. Thus,...
	See also: DefForeColor, ForeColor, GetLineBackColorPtr


	HasCursorMoved method
	function HasCursorMoved : Boolean;

	Returns whether the cursor has moved.
	The terminal buffer maintains an internal flag that notes whether the cursor has moved at any tim...

	HasDisplayChanged method
	function HasDisplayChanged : Boolean;

	Returns whether the terminal has changed in appearance.
	This method is a handy shortcut to be used instead of calling GetInvalidRect and getting False.
	See also: GetInvalidRect


	InsertChars method
	procedure InsertChars(aCount : Integer);

	Inserts new chars at the cursor.
	This method is equivalent to hit the space bar. The new chars inserted are initialized to space c...
	The number of characters to insert is aCount and is constrained by the current display region.

	InsertLines method
	procedure InsertLines(aCount : Integer);

	Inserts new lines at the cursor.
	This method is equivalent to scrolling down the screen. The new rows inserted are initialized to ...
	The cursor is left in the same location.
	This method is limited to the current scrolling region.

	MoveCursorDown method
	procedure MoveCursorDown(aScroll : Boolean);

	Moves the cursor down one row.
	The cursor is moved onto the next row at the same column position. If the aScroll parameter is Fa...
	This method is limited to the current scrolling region.

	MoveCursorLeft method
	procedure MoveCursorLeft(aWrap : Boolean; aScroll : Boolean);

	Moves the cursor left one position.
	The column number of the cursor is decremented, unless the cursor is at the first position of the...
	If, in fact, the cursor is at the row’s home position, the values for aWrap and aScroll come into...
	This method is limited to the current scrolling region.
	See also: Col, MoveCursorRight, SetCursorPos

	MoveCursorRight method
	procedure MoveCursorRight(aWrap : Boolean; aScroll : Boolean);

	Moves the cursor right one position.
	The column number of the cursor is incremented, unless the cursor is at the last position of the ...
	If, in fact, the cursor is at the row’s last position, the values for aWrap and aScroll come into...
	This method is limited to the current scrolling region.
	See also: MoveCursorLeft, Col, SetCursorPos

	MoveCursorUp method
	procedure MoveCursorUp(aScroll : Boolean);

	Moves the cursor up one row.
	The cursor is moved onto the previous row at the same column position. If the aScroll parameter i...
	This method is limited to the current scrolling region.

	OriginCol read-only property
	property OriginCol : Integer

	Defines the column origin of the current scrolling region.
	If the scrolling region is not in effect, OriginCol is 1, being the left-most column of the scree...
	OriginCol is read-only. To set the scrolling region, call SetScrollRegion.
	See also: OriginRow, SetScrollRegion, UseScrollRegion


	OriginRow read-only property
	property OriginRow : Integer

	Defines the row origin of the current scrolling region.
	If the scrolling region is not in effect, OriginRow is 1, being the top row of the screen. If the...
	OriginRow is read-only. To set the scrolling region, call SetScrollRegion.
	See also: OriginCol, SetScrollRegion, UseScrollRegion


	Reset method
	procedure Reset;

	Resets the current colors and attributes to their defaults.
	The screen is not changed by this method.

	Row property
	property Row : Integer

	Defines the row of the cursor.
	The Row property refers to the cursor. Reading the Row property returns the row number of the cur...
	The value used for the Row property is one-based; in other words, rows are counted from 1. If the...
	If a scrolling region is activated, the values for Row will be relative to the home position of t...
	See also: Col, RowCount, SetCursorPosition


	RowCount property
	property RowCount : Integer

	Default: 24
	Defines the number of rows in the display view.
	The RowCount property gets or sets the number of rows displayed by the terminal. Attempts to set ...
	See also: ColCount, Row


	SetCharAttrs method
	procedure SetCharAttrs(const aValue : TAdTerminalCharAttrs);
	TAdTerminalCharAttr = (tcaBold, tcaUnderline,
	tcaStrikethrough, tcaBlink, tcaReverse, tcaInvisible);
	TAdTerminalCharAttrs = set of TAdTerminalCharAttr;

	Sets the current set of display attributes.
	The display attributes define the style of new text. The attributes are bold, underlined, striket...
	If you wish to add a new attribute to the current set, write code like this:
	var
	Attrs : TAdTerminalCharAttrs;
	begin
	...
	MyBuffer.GetCharAttrs(Attrs);
	Attrs := Attrs + [tcaUnderline];
	MyBuffer.SetCharAttrs(Attrs);
	See also: GetCharAttrs, SetDefCharAttrs


	SetCursorPosition method
	procedure SetCursorPosition(aRow, aCol : Integer);

	Moves the cursor to a given position.
	This method is equivalent to setting the Row and Col properties individually.
	See also: Col, Row


	SetDefCharAttrs method
	procedure SetDefCharAttrs(const aValue : TAdTerminalCharAttrs);
	TAdTerminalCharAttr = (tcaBold, tcaUnderline,
	tcaStrikethrough, tcaBlink, tcaReverse, tcaInvisible);
	TAdTerminalCharAttrs = set of TAdTerminalCharAttr;

	Sets the default set of display attributes.
	The display attributes define the style of new text. The attributes are bold, underlined, striket...
	See also: GetDefCharAttrs, Reset, SetCharAttrs


	SetHorzTabStop method
	procedure SetHorzTabStop;

	Sets a horizontal tab stop at the current cursor column.
	If a horizontal tab stop is already set for that column, this method has no effect.
	See also: ClearAllHorzTabStops, ClearHorzTabStop


	SetScrollRegion method
	procedure SetScrollRegion(aTopRow, aBottomRow : Integer);

	Sets the scrolling region.
	A scrolling region is a range of lines (from aTopRow to aBottomRow) within which writes to the sc...
	Calling SetScrollRegion will automatically activate the new scrolling region.
	See also: UseScrollingRegion


	SetVertTabStop method
	procedure SetVertTabStop;

	Sets a vertical tab stop at the current cursor row.
	If a vertical tab stop is already set for that row, this method has no effect.
	See also: ClearVertTabStop, ClearAllVertTabStops


	SVRowCount property
	property SVRowCount : Integer

	Default: 200
	Defines the number of rows in the scrollback view.
	The SVRowCount property gets or sets the number of rows available in the scrollback buffer. SVRow...
	See also: RowCount


	UseAutoWrap property
	property UseAutoWrap : Boolean

	Defines what happens when a character is written at the last column of a row
	UseAutoWrap only has an effect if the cursor is at the last column of a row. If UseAutoWrap is Fa...
	See also: MoveCursorRight


	UseNewLineMode property
	property UseNewLineMode : Boolean

	Defines what the DoLineFeed method does.
	If UseNewLineMode is False, DoLineFeed moves the cursor down one row, scrolling if necessary. The...
	If UseNewLineMode is True, DoLineFeed moves the cursor down one row, scrolling if necessary. The ...
	See also: DoLineFeed


	UseScrollRegion property
	property UseScrollRegion : Boolean

	Defines whether the scrolling region is active.
	If UseScrollRegion is False, the scrolling region is inactive and writes of text and scrolling ap...
	Calling SetScrollRegion automatically forces this property to True, the new scrolling is brought ...
	See also: SetScrollRegion


	UseWideChars read-only, run-time property
	property UseWideChars : Boolean

	Defines whether UNICODE characters are being stored by the terminal buffer.
	The value of UseWideChars is set by a parameter to the Create constructor. In Delphi 1, this valu...
	See also: Create


	WriteChar method
	procedure WriteChar(aCh : AnsiChar);

	Writes a single character at the cursor.
	The cursor is advanced after the character is written. Please see the UseAutoWrap property for a ...
	See also: UseAutoWrap, WriteString


	WriteString method
	procedure WriteString(const aSt : string);

	Writes a string at the cursor.
	This method is coded as a simple loop calling WriteChar for each character in the string.
	See also: WriteChar




	The Terminal Parsers
	The purpose of a terminal parser is to identify terminal control sequences in the stream of data ...
	The parser ancestor class
	To facilitate this process, there is an ancestor parser class, the TAdTerminalParser class. The m...
	Process a single character (virtual method).
	Clear the parser (virtual method).
	Get the command (property).
	Get the arguments (property).
	Get the sequence (property).

	To gain a better understanding of these operations, we’ll look at them individually from a high l...
	Processing a single character is a virtual method that must be overridden in descendants. It will...
	1. The parser did not understand the character in the current context, and so it should be ignored.
	2. The character is a displayable character and should be shown on the terminal screen.
	3. The character started or continued an escape sequence, however that sequence is as yet incompl...
	4. The character completed an escape sequence; the parser converted it into a command and now thi...
	It is up to the overridden method in a descendant class to determine how sequences are built up, ...
	The operation of clearing the parser should reset the parser into a state such that no sequence i...
	If the character processing method returns a value that signifies that a command has been identif...
	The Arguments property is an array property returning the arguments for the current command. If t...
	The Sequence property returns the actual escape sequence that has just been parsed. If the curren...


	The VT100 terminal parser
	Async Professional provides one descendant of the ancestor parser class, TAdVT100Parser, the pars...
	The VT100 parser has two modes to reflect the behavior of the standard VT100 terminal. The two mo...
	ANSI escape sequences for the VT100 terminal (and terminals that follow the ANSI specification) a...
	<Esc>[P...PI...IF

	<Esc> is the escape character (ASCII $27), ‘[’ is the left bracket, the Ps are ASCII characters i...
	With the VT100 terminal in ANSI mode, escape sequences either start with <Esc>[,<Esc>#, <Esc>(, o...
	With the VT100 parser in VT52 mode, all escape sequences are two character sequences of the form ...
	The VT100 terminal also supports one-byte control characters, characters like tab, carriage retur...
	Table 8.1 defines the control characters and escape sequences understood by the VT100 parser. The...
	Table 8.1: VT100 parser control characters and escape sequences (continued)
	Note: Use the escape sequence <Esc>[2l to switch into VT52 mode.



	TAdTerminalParser Class
	The TAdTerminalParser Class is the ancestor class that defines the functionality of a terminal pa...
	The methods defined by the TAdTerminalParser class are all virtual in order that they can be over...
	Hierarchy
	TObject (VCL)
	TAdTerminalParser (AdTrmPsr)


	Properties
	Methods
	Reference Section
	Argument read-only, array property
	property Argument[aInx : Integer] : Integer

	Returns the arguments for the current command
	When a terminal control sequence has been completely received, the ProcessChar method will return...
	If you try and retrieve any arguments before a terminal control sequence has been completely rece...
	In this ancestor class, the Argument property always returns zero.
	See also: ArgumentCount, ProcessChar


	ArgumentCount read-only property
	property ArgumentCount : Integer

	Returns the number of arguments for the current command
	When a terminal control sequence has been completely received, the ArgumentCount property will re...
	If a sequence is still being built up, the ArgumentCount property will be zero. It will only have...
	In this ancestor class, the Argument property always returns zero.
	See also: Argument, ProcessChar


	Clear method
	procedure Clear;

	Clears the internal state of the parser
	By calling Clear, you will reset the parser to a state such that no sequence is being built up an...

	Command read-only property
	property Command : Byte

	Returns the current command
	Command returns the command identified by the ProcessChar method. Once ProcessChar identifies a c...
	Command can take on any of the eXxx values defined in OOMISC.PAS (such as eCUB, eVTS and so on). ...
	In this ancestor class, the Command property always returns eNone.
	See also: ProcessChar


	Create method
	constructor Create(aUseWideChar : Boolean);

	Creates the parser instance
	Create allocates and initializes an instance of the parser class. The aUseWideChar parameter defi...
	See also: ProcessChar, ProcessWideChar


	ProcessChar virtual method
	function ProcessChar(aCh : AnsiChar) : TAdParserCmdType; virtual;
	TAdParserCmdType = (pctNone, pctChar, pctPending, pctComplete);

	Processes a single character.
	ProcessChar is the main workhorse of the parser class. It is the method that takes a character an...
	ProcessChar can return one of several values. pctNone means that the character passed in was not ...
	The last possible result value is pctComplete. This value indicates that the parser has captured ...
	In this ancestor class, the ProcessChar method always returns pctNone.
	If ProcessChar is called for a parser that was created to expect wide characters, a parser except...
	See also: Argument, ArgumentCount, Command, Create, ProcessWideChar, Sequence


	ProcessWideChar method
	function ProcessChar(aCh : WideChar) : TAdParserCmdType; virtual;
	TAdParserCmdType = (pctNone, pctChar, pctPending, pctComplete);

	Processes a single character.
	ProcessWideChar is the wide character (or UNICODE) version of ProcessChar. It works in the same f...
	In this ancestor class, the ProcessWideChar method always returns pctNone.
	If ProcessWideChar is called for a parser that was created to expect single-byte ASCII characters...
	See also: Create, ProcessChar


	Sequence read-only property
	property Sequence : string

	Returns the current terminal control sequence.
	Once ProcessChar identifies a complete terminal control sequence, and is about to return pctCompl...
	If a sequence is being built up or there is no current command, the value of the Sequence propert...
	In this ancestor class, the Sequence property always returns the empty string.
	See also: ProcessChar




	TAdVT100Parser Class
	The TAdVT100Parser class is the descendant of the TAdTerminalParser. It defines a parser that und...
	Hierarchy
	TObject (VCL)
	u TAdTerminalParser (AdTrmPsr) 229
	TAdVT100Parser (AdTrmPsr)


	Properties
	Methods
	Reference Section
	Argument read-only, array property
	property Argument[aInx : Integer] : Integer

	Returns the arguments for the current command.
	Please see TAdTerminalParser for a description of how the Argument property works.
	Some VT100 escape sequences use default values for certain arguments. For example, the Cursor Rig...
	In certain cases the parser will be unable to determine the value of the default argument since i...
	There is a set of VT100 escape sequences that use the ‘?’ character in the parameter part of the ...

	InVT52Mode read-only property
	property InVT52Mode : Boolean

	Returns whether the terminal has been switched to VT52 mode.
	The VT100 terminal can be switched between two modes: ANSI and VT52. The terminal will understand...
	The VT100 parser class tracks the escape sequences that switch the terminal from mode to mode and...
	The ProcessChar method will return the eDECANM result value if the parser identifies one of the e...
	See also: ProcessChar


	ProcessChar method
	function ProcessChar(aCh : AnsiChar) : TAdParserCmdType; override;
	TAdParserCmdType = (pctNone, pctChar, pctPending, pctComplete);

	Processes a single character.
	Please see TAdTerminalParser for a description of how the ProcessChar method works.
	The VT100 terminal (and the ANSI specification) has one peculiarity that is generally not well im...
	The ANSI specification details the behavior if an <Esc> character appears in the middle of an esc...
	Two one-byte control characters that have special significance are CAN ($18) and SUB ($1A). These...
	Although the ProcessChar method will successfully parse and decode the standard VT100 escape sequ...
	See also: InVT52Mode




	The TAdKeyboardMapping Class
	The TAdKeyboardMapping class provides a simple, convenient method to specify the PC keystrokes th...
	There are three parts to the keyboard mapping. The first part is merely for convenience: it is a ...
	The second part of the keyboard mapping is the definition of the character or control sequence th...
	Whereas the two mappings just described are fixed by standards, the last mapping is where the cre...
	The TAdKeyboardMapping class is designed to be used by a terminal emulator. The terminal componen...
	Although it may seem excessive to have three lookups per keystroke to get to the final sequence t...
	The TAdKeyboardMapping class is convenient to use when you have to specify a large number of mapp...
	var
	KeyMap : TAdKeyboardMapping;
	begin
	KeyMap := TAdKeyboardMapping.Create;
	try
	KeyMap.LoadFromFile('ADKEYVT1.TXT');
	KeyMap.StoreToBinFile('VT100.BIN');
	finally
	KeyMap.Free;
	end;
	end;
	The code creates a TAdKeyboardMapping instance called KeyMap. A set of mappings is then read from...
	MyVT100KeyMap RCDATA VT100.BIN

	If you name the resource file VT100.RC, the resource compiler will create a file called VT100.RES...
	{$R VT100.RES}

	Now you can call the LoadFromRes method of your TAdKeyboardMapping instance to load this set of k...

	Hierarchy
	TObject (VCL)
	TAdKeyboardMapping (ADTrmKey)


	Properties
	Methods
	Reference Section
	Add method
	function Add(const aKey : TAdKeyString;
	const aValue : TAdKeyString) : Boolean;
	TAdKeyString = string[63];

	Adds a new keyboard mapping to the instance.
	The aKey string is the lookup value (the key string) and aValue is the string associated with it....
	If the key string and its value were successfully added, Add returns True. If the key string is a...
	Please see LoadFromFile for a discussion on how to define the key strings and their values.
	See also: LoadFromFile


	Clear method
	procedure Clear;

	Clears all keyboard mappings.
	LoadFromFile and LoadFromRes automatically call Clear prior to loading a set of mappings. If you ...
	See also: Add, LoadFromFile, LoadFromRes


	Count read-only, run-time property
	property Count : Integer

	Determines the number of mappings in the class.
	The Count property will return the number of different mappings contained in the class. It does n...

	Get method
	function Get(const aKey : TAdKeyString) : TAdKeyString;
	TAdKeyString = string[63];

	Returns the value of a looked up key string.
	aKey is the key string to lookup. If it was found, the return value will be the string with which...
	See also: Add


	LoadFromFile method
	procedure LoadFromFile(const aFileName : string);

	Loads a set of keyboard mappings from a text file.
	The name of the file is given by aFileName.
	The file is a text file in a particular format. LoadFromFile will follow these rules when reading...
	Any completely blank line is ignored.
	Any line starting with a * is a comment and is skipped.
	Any line starting with at least one space is a detail line. A detail line consists of two “words”...
	Any detail line that cannot be parsed is simply ignored.
	Any line that doesn’t match the above is skipped.

	The words in a detail line have some formatting associated with them. The emulator imposes this f...
	“\e” in a word means the Escape character
	\xnn, where nn is a hex number, represents that ASCII character
	If you want to specify shift keys with virtual key names, use the mnemonics “shift”, “ctrl”, and ...
	An example of a virtual key code to virtual key name mapping would be:
	* This is the definition of F1
	\x70 VK_F1
	An example of a defining the sequence to be sent by a terminal key is:

	* This is the definition of PF1 on a VT100
	* (it sends <Esc>OP)
	DEC_PF1 \eOP
	An example of mapping Alt+F1 so that it acts like the PF1 key on a VT100 is:

	* Map Alt+F1 to PF1
	alt+VK_F1 DEC_PF1
	Let’s follow how the emulator would use these mappings. The user presses Alt+F1. The emulator wou...
	Please see ADKEYVT1.TXT for a complete set of mappings that define one way of mapping the VT100 k...
	The only errors than can occur with LoadFromFile are file I/O errors. Internally LoadFromFile use...
	See also: Add



	LoadFromRes method
	procedure LoadFromRes(
	aInstance : THandle; const aResName : string);

	Loads a set of keyboard mappings from a resource.
	The name of the resource is given by aResName, and the resource is to be found in the module inst...

	StoreToBinFile method
	procedure StoreToBinFile(const aFileName : string);

	Stores the current set of mappings to file.
	The name of the file is given by aFileName. The binary file so created can be compiled into a res...
	The only errors than can occur are file I/O errors. Internally StoreToBinFile uses a file stream ...



	The TAdCharSetMapping Class
	The TAdCharSetMapping class provides a method to emulate the different character sets used by ter...
	One of the problems of emulating a terminal with a Windows program is that terminals, especially ...
	Before proceeding with the character set mapping class, we should define a few terms. A character...
	The character set mapping class is designed to be used by a terminal emulator. When the terminal ...
	The TAdCharSetMapping class gets its mapping data from one of two sources: a specially formatted ...
	var
	CharSetMap : TAdCharSetMapping;
	begin
	CharSetMap := TAdCharSetMapping.Create;
	try
	CharSetMap.LoadFromFile('ADCHSVT1.TXT');
	CharSetMap.StoreToBinFile('VT100.BIN');
	finally
	CharSetMap.Free;
	end;
	end;
	The code creates a TAdCharSetMapping instance called CharSetMap. A set of mappings is then read f...
	MyVT100CharSetMap RCDATA VT100.BIN

	If you name the resource file VT100.RC, the resource compiler will create a file called VT100.RES...
	{$R VT100.RES}

	Now you can call the LoadFromRes method of your TAdCharSetMapping instance to load this set of ch...

	Hierarchy
	TObject (VCL)
	TAdCharSetMapping (ADTrmMap)


	Properties
	Methods
	Reference Section
	Add method
	function Add(const aCharSet : TAdKeyString;
	aFromCh : AnsiChar; aToCh : AnsiChar;
	aFont : TAdKeyString; aGlyph : AnsiChar) : Boolean;
	TAdKeyString = string[63];

	Adds a new character set mapping to the instance.
	The aCharSet parameter is the name of the character set. This name is defined by the emulator if ...
	The result value is True if the character set mapping was added, False otherwise. The latter resu...
	To help in designing portable character set mappings, there is one special value that can be used...
	For example, suppose you wish to add a character set mapping for the standard ASCII characters, u...
	var
	MyMap : TAdCharSetMapping;
	begin
	...
	if not MyMap.Add(
	'MyCharSet', ' ', '~', 'Courier New', ' ') then
	..mapping not added..
	This tries to add a mapping for all of the characters between space and ‘~’ in the MyCharSet char...


	Clear method
	procedure Clear;

	Clears all character set mappings.
	LoadFromFile and LoadFromRes automatically call Clear prior to loading a set of mappings. If you ...
	See also: Add, LoadFromFile, LoadFromRes


	Count read-only, run-time property
	property Count : Integer

	Determines the number of mappings in the class.
	The Count property will return the number of different mappings contained in the class. It does n...

	GenerateDrawScript method
	procedure GenerateDrawScript(
	const aCharSet : TAdKeyString; const aText : string);

	Generates a draw script from a string.
	The emulator, when it needs to display text on the terminal window, will separate out the text to...
	If GenerateDrawScript is called before all of the commands from the previous script have been rea...
	The aCharSet parameter is the name of the character set. aText is the string of characters that h...
	See also: GenNextDrawCommand


	GetNextDrawCommand method
	function GetNextDrawCommand(
	var aFont : TAdKeyString; var aText : string) : Boolean;

	Retrieves the next draw command from the current script.
	The emulator, when it needs to display text on the terminal window, will separate out the text to...
	The GetNextDrawCommand method returns True if there is another command, and sets aFont to the fon...
	See also: GenerateDrawScript


	LoadFromFile method
	procedure LoadFromFile(const aFileName : string);

	Loads a set of character set mappings from a text file.
	The name of the file is given by aFileName.
	The file is a text file in a particular format. LoadFromFile will follow these rules when reading...
	Any completely blank line is ignored.
	Any line starting with a * is a comment and is skipped.
	Any line starting with at least one space is a detail line. A detail line consists of five “words...
	Any detail line that cannot be parsed is simply ignored.
	Any line that doesn’t match the above is skipped.

	The five words, in order, are the same as the five parameters to the Add method. They denote the ...
	The character set name.
	The from character for the range.
	The to character for the range.
	The font name.
	The from glyph for the range.

	The words that define a character can either be the character itself or be the hex representation...
	To help in designing portable character set mappings, there is one special value that can be used...
	An example of defining a character set mapping for the standard ASCII characters would be
	* This defines the standard ASCII characters
	MyCharSet \x20 ~ 'Courier New' \x20
	This would be read as: the character set name is “MyCharSet”; the range of characters is from the...
	Please see ADCHSVT1.TXT for a complete set of mappings that define one way of mapping the VT100 c...
	The only errors than can occur with LoadFromFile are file I/O errors. Internally LoadFromFile use...
	See also: Add



	LoadFromRes method
	procedure LoadFromRes(
	aInstance : THandle; const aResName : string);

	Loads a set of keyboard mappings from a resource.
	The name of the resource is given by aResName, and the resource is to be found in the module inst...

	StoreToBinFile method
	procedure StoreToBinFile(const aFileName : string);

	Stores the current set of mappings to file.
	The name of the file is given by aFileName. The binary file so created can be compiled into a res...
	The only errors than can occur are file I/O errors. Internally StoreToBinFile uses a file stream ...



	The TAdTerminalEmulator Class
	The TAdTerminalEmulator class is the base class for all terminal emulators. An emulator is design...
	Async Professional provides two descendants of TAdTerminalEmulator. The first is the simplest emu...
	The second emulator provided by Async Professional is the VT100 terminal emulator, TAdVT100Emulat...
	Double height and double width characters.
	Support for the keyboard LEDs.
	The ability to switch character sets to use the line draw characters.
	Applying the scrolling region.
	Support for the various VT100 modes, including keyboard modes.

	The emulator also provides support for the following features that are not part of the standard V...
	Support for erasing, deleting and inserting characters.
	Support for the different ANSI color attributes.

	Finally, please note that the emulator does not support the following, sometimes optional, hardwa...
	Interlace mode (switching between 240 & 480 scan lines per frame).
	Smooth scrolling (the emulator performs jump scrolling all the time).
	STP processor option.
	AVO (advanced video option).
	GPO (graphics processor option).

	To use an emulator component you would drop one on the form and then drop a terminal component on...
	Obviously, if you wish to alter the behavior of an emulator, you will need to know about its prop...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TAdTerminalEmulator (ADTrmEmu)


	Properties
	Methods
	Reference Section
	BlinkPaint virtual method
	procedure BlinkPaint(aVisible : Boolean); virtual;

	Paints the blinking text.
	Most terminals support blinking text. For a Windows emulation of blinking text, the text must fir...
	The terminal component performs no painting of its own. Instead it defers that job to the emulato...
	See also: LazyPaint, Paint


	Buffer read-only, run-time property
	property Buffer : TAdTerminalBuffer

	Returns the terminal buffer.
	The Buffer property is the data structure that holds the elements that go to make up the visual r...
	The emulator creates a buffer object in its Create constructor and frees it in the Destroy destru...

	CharSetMapping read-only, run-time property
	property CharSetMapping : TAdCharSetMapping

	Returns the character set mapping object for the emulator.
	The CharSetMapping property is the data structure that holds the various character-set-to- font-g...
	The emulator creates a character set mapping object in its Create constructor and frees it in the...
	Note that some emulators will not have a character set mapping object; reading CharSetMapping wil...

	GetCursorPos virtual method
	procedure GetCursorPos(var aRow, aCol : Integer); virtual;

	Returns the cursor position.
	The emulator maintains the position of the terminal’s cursor. The terminal component can call the...
	Using terminal terminology, the “cursor” means the keyboard edit point. It is the place where new...

	KeyboardMapping read-only, run-time property
	property KeyboardMapping : TAdKeyboadMapping

	Returns the keyboard mapping object for the emulator.
	The KeyboardMapping property is the data structure that holds the various keystroke-to- terminal ...
	The emulator creates a keyboard mapping object in its Create constructor and frees it in the Dest...
	Note that some emulators will not have a keyboard mapping object; reading KeyboardMapping will re...

	KeyDown virtual method
	procedure KeyDown(var Key : Word; Shift: TShiftState); virtual;

	Processes a key down message from the terminal component.
	The terminal component performs no keystroke processing of its own. Instead it defers that job to...
	The terminal component’s KeyDown method—the standard VCL KeyDown method for TWinControl descendan...
	The emulator will use its keyboard mapping object to determine what to do with the keystroke. If ...
	If there is no conversion defined in the mapping object the emulator ignores the keystroke. If th...

	KeyPress virtual method
	procedure KeyPress(var Key : AnsiChar); virtual;

	Processes a key press message from the terminal component.
	The terminal component performs no keystroke processing of its own. Instead it defers that job to...
	The terminal component’s KeyPress method—the standard VCL KeyPress virtual method for TWinControl...
	The usual job of the emulator at this point is to send the character to the host computer by mean...

	LazyPaint virtual method
	procedure LazyPaint; virtual;

	Processes a lazy display paint request from the terminal component.
	The terminal component performs no painting of its own. Instead it defers that job to the emulato...
	There are two types of painting to be done. The first is painting because the new data that has c...
	The LazyPaint method is called in the former case. The emulator has been parsing the incoming dat...
	The emulator needs to interrogate its terminal buffer object to find out the changed character ce...
	See also: BlinkPaint, Paint


	NeedsUpdate read-only, run-time property
	property NeedsUpdate : Boolean

	Defines whether the terminal display has changed.
	The emulator sets its NeedsUpdate property to True when it makes a change to its terminal buffer ...

	Paint virtual method
	procedure Paint; virtual;

	Processes a paint request from the terminal component.
	The terminal component performs no painting of its own. Instead it defers that job to the emulato...
	There are two types of painting to be done. The first is painting because the new data that has c...
	The Paint method of the emulator is called by the Paint method of the terminal component, the sta...
	See also: BlinkPaint, LazyPaint


	Parser run-time property
	property Parser : TAdTerminalParser

	Accesses the emulator’s terminal control sequence parser.
	The Parser property is the engine that interprets the incoming data stream for the emulator. It i...
	The emulator creates a parser object in its Create constructor and frees it in the Destroy destru...
	The emulator will call the ProcessChar method of the parser—if there is one—for every character i...
	It is possible to replace the parser at run time. This will have the effect of altering the behav...

	Terminal property
	property Terminal : TAdTerminal

	Defines the visual terminal component.
	The Terminal property defines the terminal component whose canvas is used for drawing the termina...
	The terminal component and emulator component use each other to provide the correct functionality...
	If you set the Terminal property to nil, the emulator will detach itself from the previous termin...
	See also: TAdTerminal.ComPort, TAdTerminal.Emulator




	The TAdTTYEmulator Class
	The TAdTTYEmulator class emulates a teletype terminal, one that doesn’t support any terminal cont...
	The following properties are nil for a TAdTTYEmulator instance: Parser, KeyboardMapping, and Char...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	v TAdTerminalEmulator (ADTrmEmu) 253
	TAdTTYEmulator (ADTrmEmu)


	Properties
	Methods

	The TAdVT100Emulator Class
	The TAdVT100Emulator class emulates a Digital Equipment Corporation (DEC) VT100 terminal. It also...
	The TAdVT100Emulator class provides support for the standard VT100 terminal modes. These are as f...
	Line feed/newline: whether the line feed character inserts a new line or merely advances the curs...
	Cursor key mode: whether the cursor movement keys send application mode sequences or cursor mode ...
	ANSI/VT52 mode: whether the terminal interprets ANSI escape sequences or the restricted VT52 sequ...
	Column mode: whether the terminal displays 80 or 132 characters across.
	Scrolling mode: whether the terminal jump scrolls or smooth scrolls. Although the VT100 emulator ...
	Screen mode: whether the display is normal or reverse-imaged.
	Origin mode: whether the home position for the cursor obeys the current scrolling region or not.
	Wraparound mode: whether the terminal wraps the cursor to column 1 of the next line when a charac...
	Auto repeat: whether keys auto-repeat or not when held down.
	Interface mode: whether the terminal displays with 240 or 480 scanlines. Although the VT100 emula...
	Graphic processor option: whether the terminal uses its GPO. Although the VT100 emulator maintain...
	Keypad mode: whether keys on the numeric keypad send numeric characters or escape sequences.

	There are several escape sequences sent by the host computer to which the VT100 terminal must res...
	Table 8.2: VT100 emulator escape sequence responses
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	v TAdTerminalEmulator (ADTrmEmu) 253
	TAdVT100Emulator (ADTrmEmu)


	Properties
	Methods
	Reference Section
	ANSIMode run-time property
	property ANSIMode : Boolean

	Determines whether the terminal acts on ANSI or VT52 sequences.
	The VT100 terminal can act on two different and separate sets of terminal control sequences. If A...
	It is the host computer that determines this mode. Although you can change this property it is in...

	AppKeyMode run-time property
	property AppKeyMode : Boolean

	Determines which sequences are sent for the cursor movement keys.
	The VT100 terminal can send two different escape sequences for the cursor movement keys (the arro...
	It is the host computer that determines this mode. Although you can change this property it is in...

	AppKeypadMode run-time property
	property AppKeypadMode : Boolean

	Determines which sequences are sent for the numeric keypad.
	The VT100 terminal can send two different escape sequences for the numeric keypad (including the ...
	It is the host computer that determines this mode. Although you can change this property it is in...

	AutoRepeat run-time property
	property AutoRepeat : Boolean

	Determines whether held down keys auto-repeat.
	The VT100 terminal supports turning off auto-repeat for keys held down on the keyboard. In genera...
	On the VT100 the user most often sets this mode, not the host computer.

	Col132Mode run-time property
	property Col132Mode : Boolean

	Determines whether to display 80 or 132 characters across the display.
	The VT100 terminal can support two display widths: 80 characters or 132 characters across. If Col...
	It is the host computer that determines this mode. Although you can change this property it is in...

	GPOMode run-time property
	property GPOMode : Boolean

	Determines whether the graphics processor option is active.
	Although maintained, the VT100 emulator does nothing with this property. Note that the VT100 emul...

	Interlace run-time property
	property Interlace : Boolean

	Determines whether to use 240 or 480 scanlines.
	The VT100 terminal can display using 240 scanlines (True) or 480 (False). Although maintained, th...

	LEDs read-only, run-time property
	property LEDs : Integer

	Returns the state of the LEDs on the VT100 keyboard.
	The VT100 keyboard has a set of four LEDs embedded in the face of the keyboard. The host computer...
	The LEDs are only visual, they do not affect the use of the keyboard or functionality of the term...

	NewLineMode run-time property
	property NewLineMode : Boolean

	Determines the action of a line feed character.
	A line feed character (hex 10) received by a VT100 terminal can do one of two things. If this pro...
	If this property is True, the cursor is advanced one row down, moving to the first column, scroll...
	It is the host computer that determines this mode. Although you can change this property it is in...

	RelOriginMode run-time property
	property RelOriginMode : Boolean

	Determines where the home position is to be found.
	If this property is False, the cursor home position is at the top left corner of the display, eve...
	If this property is True, the cursor home position is at the top left corner of the scrolling reg...
	It is the host computer that determines this mode. You can change this property to write text out...

	RevScreenMode run-time property
	property RevScreenMode : Boolean

	Determines whether the display is in reverse image or not.
	If this property is False, normal text is shown as white on black. If True, normal text is shown ...
	On the VT100 the user most often sets this mode, not the host computer, although the host can cha...

	SmoothScrollMode run-time property
	property SmoothScrollMode : Boolean

	Determines whether scrolling is smooth or jumps.
	The VT100 terminal can scroll the display in two modes: a smooth scroll, or a jump scroll. Althou...

	WrapAround run-time property
	property WrapAround : Boolean

	Determines whether displayed text wraps at the right margin.
	If this property is False, text received when the cursor is at the right hand side does not cause...
	If this property is True, text received when the cursor is at the right hand side will cause the ...
	It is the host computer that determines this mode. It is inadvisable to change this mode, otherwi...



	The TAdTerminal Component
	The TAdTerminal component represents the visual part of a terminal. It is the only visual compone...
	Apart from this, it performs next to no work itself, handing off most of the display and other ca...
	The main behaviors of the terminal component and its associated objects are as follows:
	Receives characters from the serial device and passes them onto the emulator for interpretation a...
	Traps all keystrokes and passes them onto the emulator for conversion into their terminal equival...
	The emulator maintains a buffer of several matrices, one for each of text, background color, text...
	The terminal has the capability of maintaining a scrollback buffer to enable the user to scroll b...
	The terminal will automatically display scrollbars if the client window is smaller than the termi...
	If the terminal component is dropped onto a form and there is no existing emulator component on t...

	In order for the terminal’s window to show data, there are two objects that must be connected to ...
	The COM port provides the terminal with incoming bytes from a serial communications device, such ...
	As for display, the emulator would assume control over the window handle of the terminal componen...
	The reason for this more complex design—rather than rolling the emulator and terminal components ...
	Figure 8.2 shows the interrelationship between the client window, the terminal display and the sc...
	Figure 8.2: Interrelationship between the client window, the terminal display, and the scrollback...

	The client window acts as a viewport on the terminal display. In general, you would make sure tha...
	If scrollback mode is activated, the client window acts as a viewport on the entire scrollback bu...
	The terminal component also supports a lazy write mode. In this mode, incoming data is processed ...
	Font handling
	The issue of fonts becomes complex when dealing with a terminal that should support displaying no...
	What the terminal component and its associated classes attempt to do is to make the displayed gly...
	The terminal classes will allow the use of proportional fonts. However, it should be noted that t...

	Capturing data
	The terminal component has a built-in facility to capture data, that is, to write all data receiv...
	The data is written to the capture file before the emulator has an opportunity to see the data st...
	Characters typed at the keyboard are not saved in the capture file. However, such characters usua...

	Using the clipboard
	The terminal window provides support for copying displayed text to the Windows clipboard. Because...
	The terminal window does support the following:
	Normal mode block marking using the mouse.
	Scrollback mode block marking using the mouse.
	Copying the marked block to the clipboard.

	When in normal mode, only the visible contents of the terminal window can be marked. When in scro...
	You can copy the marked block to the clipboard by calling the terminal window routine CopyToClipb...
	Caution: Although the CopyToClipboard method will copy the marked text to the clipboard, you shou...

	Hierarchy
	TWinControl (VCL)
	u TApdBaseWinControl (OOMisc) 8
	TAdTerminal (ADTrmEmu)


	Properties
	Methods
	Events
	Reference Section
	Active property
	property Active : Boolean

	Default: True
	Determines whether the terminal is accepting serial events.
	Setting Active to True causes the terminal to start processing serial and keyboard data and to di...
	You must set Active to False if the terminal is being used in combination with another component,...
	The following example sets Active to False as it starts receiving a file to prevent the terminal ...
	AdTerminal1.Active := false;
	ApdProtocol1.StartReceive;
	...
	procedure TMyForm.ProtocolFinish(
	CP : TObject; ErrorCode : Integer);
	begin
	AdTerminal1.SetFocus;
	AdTerminal1.Active := true;
	end;
	See also: ComPort, Emulator


	Attributes run-time, array property
	property Attributes[aRow, aCol : Integer] : TAdTerminalCharAttrs
	TAdTerminalCharAttr = (tcaBold, tcaUnderline, tcaStrikethrough,
	tcaBlink, tcaReverse, tcaInvisible);
	TAdTerminalCharAttrs = set of TAdTerminalCharAttr;

	Accesses the attributes of text in the display.
	Attributes enables the direct manipulation of the attributes for characters displayed by the term...
	The result value is a set of possible attributes. They are tcaBold for bold text; tcaUnderline fo...
	The following example sets all text on row 5 to blinking:
	for I := 1 to AdTerminal1.Columns do begin
	AdTerminal1.Attributes[5, I] :=
	AdTerminal1.Attributes[5, I] + [tcaBlink];
	However, do notice that this direct manipulation is fairly inefficient.
	See also: BackColor, CharSet, ForeColor



	BackColor run-time, array property
	property BackColor[aRow, aCol : Integer] : TColor

	Accesses the background color of text in the display.
	BackColor enables the direct manipulation of the background color for characters displayed by the...
	However, do notice that this direct manipulation is fairly inefficient.
	See also: Attributes, CharSet, ForeColor


	BlinkTime property
	property BlinkTime : Integer

	Default: 500
	Defines the time in milliseconds between cycles for blinking text.
	Some terminals enable text displayed by the terminal to be blinking. The BlinkTime property defin...
	Note that, to provide this functionality, the terminal sets up a timer to tick at this rate. A Wi...

	Capture property
	property Capture : TAdCaptureMode
	TAdCaptureMode = (cmOff, cmOn, cmAppend);

	Default: cmOff
	Defines whether the data received by the terminal is captured to file.
	The Capture property has only two values on reading: whether the terminal is capturing data (cmOn...
	It has three possible values on writing: cmOn, cmOff, or cmAppend. If the value written is cmAppe...
	If the value written is cmOn and the current value is cmOff, the file is created. If it existed p...
	The name of the file where captured data is written is given by the CaptureFile property.
	All data coming into the terminal is written to the file without any effort being made to parse i...
	If the CaptureFile property has not been set to the name of a file (i.e., it is the empty string)...
	See also: CaptureFile


	CaptureFile property
	property CaptureFile : string

	Default: “APRO.CAP”
	Defines the name of the file where the terminal writes captured data.
	It is possible to change the name of the file where captured data is sent while data is being cap...
	See also: Capture


	CharHeight read-only, run-time property
	property CharHeight : Integer

	Defines the height in pixels of a character cell for the terminal.
	The terminal display can be viewed as a matrix of fixed-sized character cells. There are Rows cel...
	The overall size of the characters displayed by the terminal is given by the Size property of the...
	See also: CharWidth


	CharSet run-time, array property
	property CharSet[aRow, aCol : Integer] : Byte

	Accesses the character set of text in the display.
	The Async Professional terminal supports the notion of different character sets for different tex...
	CharSet enables the direct manipulation of the character set for characters displayed by the term...
	However, do notice that this direct manipulation is fairly inefficient.
	See also: Attributes, BackColor, ForeColor


	CharWidth read-only, run-time property
	property CharWidth : Integer

	Defines the width in pixels of a character cell for the terminal.
	The terminal display can be viewed as a matrix of fixed-sized character cells. There are Rows cel...
	The overall size of the characters displayed by the terminal is given by the Size property of the...
	See also: CharHeight


	Clear method
	procedure Clear;

	Clears the terminal display.
	To clear the display, the terminal component will internally scroll the window up by Rows lines. ...
	(The Clear method is the equivalent of the ClearWindow method of the deprecated TApdTerminal.)
	See also: ClearAll


	ClearAll method
	procedure ClearAll;

	Clears the entire scrollback buffer including the terminal display.
	To clear the scrollback buffer, the terminal sets all characters in the buffer to the space chara...
	(The ClearAll method is the equivalent of the ClearBuffer method of the deprecated TApdTerminal.)
	See also: Clear


	Columns property
	property Columns : Integer

	Default: 80
	Defines the number of columns across the terminal display.
	The value of the Columns property is the number of standard-sized characters that can be written ...
	Altering the value of Columns will cause the underlying buffer to be resized. The terminal will a...
	Setting the value of Columns to less than that supported by the original terminal itself is liabl...
	If the host computer switches the terminal into a mode with a different number of columns (say, f...
	Caution: Because of the structure of the buffer class, in Delphi 1, the product of Columns and Sc...

	ComPort property
	property ComPort : TApdCustomComPort

	Defines the serial device to which the terminal is connected.
	ComPort is usually set automatically at design time to the first TApdCustomComPort descendant com...
	Setting the ComPort property at run time is necessary only when using a dynamically created TApdC...
	Note that setting the value of ComPort may not be enough to get the terminal to display data. You...
	See also: Active, Emulator


	CopyToClipboard method
	procedure CopyToClipboard;

	Copies the marked block to the clipboard.
	This routine copies the currently marked block to the Windows clipboard. The block is copied in C...
	Please read the caution within the section entitled “Using the clipboard” on page�273 in the intr...

	Create constructor
	constructor Create(aOwner : TComponent); override;

	Creates an instance of the terminal component.
	The constructor will also create an instance of a teletype emulator (TTY emulator) for use when t...
	See also: Destroy


	CreateWnd method
	procedure CreateWnd; override;

	Creates the window handle for the terminal component.
	Once the window handle has been created, this method installs a keyboard hook in order to trap al...
	See also: DestroyWnd


	Destroy destructor
	destructor Destroy; override;

	Destroys an instance of the terminal component.
	The destructor will free all memory and resources allocated by the instance. Of particular note i...
	See also: Create


	DestroyWnd method
	procedure DestroyWnd; override;

	Destroys the window handle of the terminal component.
	If a keyboard hook was properly installed by the CreateWnd procedure, DestroyWnd will remove it b...
	See also: CreateWnd


	Emulator property
	property Emulator : TAdTerminalEmulator

	Defines the terminal emulator that processes incoming data.
	The terminal component is merely a conduit between the serial device defined by the ComPort prope...
	The emulator processes the input data stream looking for terminal control sequences. It will then...
	The Emulator property is usually set automatically at design time to the first TAdTerminalEmulato...
	Usually, setting the Emulator property at run time is necessary only when switching between diffe...
	Note that setting the value of Emulator may not be enough to get the terminal to display data. Yo...
	See also: Active, ComPort


	ForeColor run-time, array property
	property ForeColor[aRow, aCol : Integer] : TColor

	Accesses the foreground color of text in the display.
	ForeColor enables the direct manipulation of the foreground color (the color of the glyphs themse...
	See also: Attributes, BackColor, CharSet


	HalfDuplex property
	property HalfDuplex : Boolean

	Default: False
	Determines whether local data is echoed to the terminal display.
	If HalfDuplex is False (the default), data entered at the local keyboard is displayed only if the...
	If HalfDuplex is True, data entered at the local keyboard is automatically displayed in the termi...

	LazyByteDelay property
	property LazyByteDelay : Integer

	Default: 128
	Determines the number of bytes received before the display is forcibly repainted.
	The TAdTerminal supports a lazy writing mode. When this mode is active, rather than update the di...
	See also: LazyTimeDelay, UseLazyWrite


	LazyTimeDelay property
	property LazyTimeDelay : Integer

	Default: 250
	Determines the number of elapsed milliseconds before the display is forcibly repainted.
	The TAdTerminal supports a lazy writing mode. When this mode is active, rather than update the di...
	See also: LazyByteDelay, UseLazyWrite


	Line run-time, array property
	property Line[aRow : Integer] : string

	Accesses the text data for a row in the display.
	Line returns and sets the characters that make up a row in the terminal. It enables the direct ma...
	However, do notice that this direct manipulation is fairly inefficient.
	Caution: Line returns the character values that make up a row. For some terminals, the glyph you ...
	See also: Attributes, BackColor, CharSet, ForeColor


	Rows property
	property Rows : Integer

	Default: 24
	Defines the number of rows down the terminal display.
	The value of the Rows property is the number of standard-sized characters that can be written ver...
	Notice that Rows is the number of rows on the original terminal, not the number of rows in the sc...
	Altering the value of Rows may cause the underlying buffer to be resized. The terminal will attem...
	Setting the value of Rows to less than that supported by the original terminal itself is liable t...
	The rows in the terminal display are counted from 1, with the top row of the terminal being row 1.

	Scrollback property
	property Scrollback : Boolean

	Default: False
	Defines whether the terminal is in scrollback mode.
	If Scrollback is set True, the terminal is placed into scrollback mode. In this mode, keystrokes ...
	If scrollback mode is activated, the terminal will also no longer receive data from the serial de...
	See also: ScrollbackRows


	ScrollbackRows property
	property ScrollbackRows : Integer

	Default: 200
	Defines the number of rows in the scrollback buffer.
	The scrollback buffer consists of the visible part of the terminal display, together with the pre...
	The value of the ScrollbackRows property must be greater than or equal to the value of Rows. If y...
	Altering the value of ScrollbackRows may cause the underlying buffer to be resized. The terminal ...
	The rows in the terminal display are counted from 1, with the top row of the terminal being row 1...

	UseLazyDisplay property
	property UseLazyDisplay : Boolean

	Default: True
	Defines whether the terminal immediately displays new incoming data or not.
	The TAdTerminal supports a lazy writing mode. When this mode is active, rather than update the di...
	If UseLazyDisplay is False, the terminal will display every incoming character as and when it arr...
	The lazy writing mode only applied to data written to the terminal, either from the serial device...
	See also: LazyByteDelay, LazyTimeDelay


	WantAllKeys property
	property WantAllKeys : Boolean

	Default: True
	Defines whether the terminal component hooks and retrieves all keystrokes.
	Part of the job of a terminal component is the ability to map the PC keyboard onto a terminal key...
	A problem that will occur is that keys like F1, F10, Enter, Tab, and so on, have a well-defined m...
	If WantAllKeys is False, the terminal component will not perform anything special with regard to ...

	WriteChar method
	procedure WriteChar(aCh : AnsiChar);

	Writes a single character to the terminal.
	The character written to the terminal will go through the same steps that a character that had ar...
	The terminal will accept a character written with WriteChar at any time, even when it is actively...
	Note also that the lazy write mode still applies to text written to the terminal with WriteChar. ...

	WriteString method
	procedure WriteString(const aSt : string);

	Writes a string to the terminal.
	The string written to the terminal will go through the same steps that characters that have arriv...
	The terminal will accept a string written with WriteString at any time, even when it is actively ...
	Note also that the lazy write mode still applies to text written to the terminal with WriteString...




	Chapter 9: IP Telephony
	Async Professional includes components to transmit data over phone lines and networks, and compon...
	IP (Internet Protocol) Telephony is a technology where audio and video can be streamed across a n...
	IP Telephony includes the transmission of voice and video over the network. The network can be a ...
	IP Telephony in Async Professional
	The TApdVoIP component implements IP Telephony (also known as “Voice over IP”) through the servic...
	Since the TApdVoIP component requires TAPI 3.x, and TAPI 3.x is available only on Windows 2000 an...
	H.323
	TAPI 3.x implements IP Telephony through the H.323 protocol. This protocol is optimized for the t...
	Detailed discussions, and implementation specifications, are available on the ITU Web site. Knowl...


	Configuration for VoIP
	As previously stated, the Voice over IP functionality in the TApdVoIP component is available in T...
	The TApdVoIP component also automatically selects the H.323 TAPI device. If this device is not in...
	The audio and video streaming in VoIP are provided through H.323 media services (also installed b...
	Audio and video device selection
	There are four properties available in the TApdVoIP component to select which media terminal to u...
	The default values for these terminal properties are ‘’ (empty string) for the AudioInDevice, Aud...
	The AudioInDevice, AudioOutDevice and VideoInDevice properties are strings, which correspond to t...
	Figure 9.1: Media device property editor.

	Each combo box contains the terminal types associated with the given property. The “Audio input” ...

	Originating a VoIP call
	When originating a call, the TApdVoIP component initializes the underlying TAPI and H.323 layers,...
	ApdVoIP1.Connect('192.168.12.131');
	ApdVoIP1.Connect('john_work.turbopower.com');

	An attempt to create the connection is made immediately. If the connection attempt succeeds, the ...

	Receiving a VoIP call
	When receiving a call, the TApdVoIP component initializes the underlying TAPI and H.323 layers an...
	...
	ApdVoIP1.Connect('');
	...

	procedure TForm1.ApdVoIP1IncomingCall(VoIP : TApdCustomVoIP; CallerAddr: string; var Accept : Boo...
	begin
	Accept := MessageDlg('Accept incoming call from ' +
	CallerAddr, mtConfirmation, [mbYes, mbNo], 0) = mrOK;
	end;


	Terminating a VoIP call
	Once a call is established through the Connect method of the TApdVoIP component it can be termina...
	At any point in the call, the remote side could terminate, or the network could become disconnect...


	TApdVoIPTerminal Class
	The TApdVoIPTerminal class defines a media terminal. This class is used in the TApdVoIP component...
	Hierarchy
	TStrings (VCL)
	TApdVoIPTerminal (AdVoIP)


	Properties
	Reference Section
	DeviceClass read-only, run-time property
	property DeviceClass : TApdTerminalDeviceClass
	TApdTerminalDeviceClass = (
	dcHandsetTerminal, dcHeadsetTerminal, dcMediaStreamTerminal,
	dcMicrophoneTerminal, dcSpeakerphoneTerminal, dcSpeakersTerminal,
	dcVideoInputTerminal, dcVideoWindowTerm)

	Indicates the terminal class of the media terminal.
	TAPI 3.x defines several terminal classes. The following table shows which terminal classes are a...
	See also: TApdVoIP.AudioInDevice, TApdVoIP.AudioOutDevice, TApdVoIP.VideoInDevice


	DeviceInUse read-only, run-time property
	property DeviceInUse : Boolean

	Indicates whether the terminal is currently being used.
	This property is True if the terminal is being used by another process, and False if the terminal...

	DeviceName read-only, run-time property
	property DeviceName : string

	Indicates the name of the media terminal.
	This property reflects the name of the media terminal as defined by the media installer. This pro...

	MediaDirection read-only, run-time property
	property MediaDirection : TApdMediaDirection
	TApdMediaDirection = (mdCapture, mdRender, mdBidirectional);
	Indicates the directional capabilities of the media terminal.
	A media terminal can either receive media data, transmit media data, or transmit and receive medi...


	MediaType read-only, run-time property
	property MediaType : TApdTerminalMediaType
	TApdTerminalMediaType = (mtStatic, mtDynamic);

	Indicates how the terminal is instantiated.
	A media terminal can be predefined or created as needed. mtStatic terminals usually refer to hard...



	TApdVoIP Component
	The TApdVoIP component implements Voice over IP (IP Telephony) through the TAPI 3.x and H.323 int...
	Hierarchy
	TOleServer (VCL)
	u TApdBaseOleServer (OOMisc) 8
	TApdCustomVoIP (AdVoIP)
	TApdVoIP (AdVoIP)


	Properties
	Methods
	Events
	Reference Section
	AudioInDevice property
	property AudioInDevice : string

	Determines the media terminal device to use to for audio input.
	This property is the DeviceName of the TApdVoIPTerminal object that will be used to provide audio...
	This property supports the “Media options” property editor, which filters media terminals by type...
	See also: AudioOutDevice, AvailableTerminalClasses, VideoInDevice, VideoOutDevice


	AudioOutDevice property
	property AudioOutDevice : string

	Determines the media terminal device to use for audio output.
	This property is the DeviceName of the TApdVoIPTerminal object that will be used to provide audio...
	This property supports the “Media options” property editor, which filters media terminals by type...
	See also: AudioInDevice, AvailableTerminalClasses, VideoInDevice, VideoOutDevice


	AvailableTerminalDevices read-only, run-time property
	property AvailableTerminalDevices : TStrings

	Contains references to the available media terminal devices.
	When the TApdVoIP component is created, all supported media terminals are enumerated and their ca...
	See the TApdVoIPTerminal description for details on the TApdVoIPTerminal object. See “Audio and v...
	See also: AudioInDevice, AudioOutDevice, VideoInDevice, VideoOutDevice


	CallInfo read-only, run-time property
	property CallInfo : TApdVoIPCallInfo

	A structure containing details about the current call.
	The TApdVoIP component contains properties for basic call information. TAPI maintains much more i...
	CallInfo is allocated immediately after the Connect method is called, is updated periodically by ...

	CancelCall method
	procedure CancelCall;

	Terminates the current call.
	CancelCall is the universal method for terminating the current call. CancelCall can be used while...
	If an active call is present (the OnConnect event has been generated and the Connected property i...
	See also: Connect, OnConnect, OnDisconnect


	Connect method
	procedure Connect(DestAddr : string);

	Establishes a VoIP connection.
	The Connect method is used to establish a Voice over IP call. If DestAddr is an empty string, Con...
	When originating a call, DestAddr can specify either an IP address or a machine name. See “Origin...
	When receiving a call, DestAddr must be an empty string. See “Receiving a VoIP call” on page�297 ...
	When originating or receiving a call, the OnConnect event is generated when the VoIP call is conn...
	See also: CancelCall, Connected, OnConnect, OnIncomingCall, WaitingForCall


	Connected read-only, run-time property
	property Connected
	Indicates whether a connection is currently active or not.
	This property is set to True when a connection is established (when the OnConnect event is genera...
	See also: Connect, OnConnect, OnDisconnect, WaitingForCalls



	OnConnect event
	property OnConnect : TApdVoIPNotifyEvent
	TApdVoIPNotifyEvent = procedure (VoIP : TApdCustomVoIP) of object;

	Defines an event handler that is generated when a VoIP connection is established.
	The Connect method begins a background process that can take some time before actually establishi...
	When a VoIP call is originated, the OnConnect event is generated after the called station accepts...
	VoIP is the TApdCustomVoIP component that generated the event.
	See also: CancelCall, Connect, Connected, OnDisconnect, OnIncomingCall


	OnDisconnect event
	property OnDisconnect : TApdVoIPNotifyEvent
	TApdVoIPNotifyEvent = procedure (VoIP : TApdCustomVoIP) of object;

	Defines an event handler that is generated when a VoIP connection is terminated.
	This event handler is generated after calling the CancelCall method to terminate the connection f...
	VoIP is the TApdCustomVoIP component that generated the event.
	See also: CancelCall, Connect, OnConnect


	OnFail event
	property OnFail : TApdVoIPFailEvent
	TApdVoIPFailEvent = procedure(
	VoIP : TApdCustomVoIP; ErrorCode : Integer) of object;

	Defines an event handler that is generated when a VoIP call fails.
	The Connect method can fail for a variety of reasons, the remote could reject the call, the netwo...
	VoIP is the TApdCustomVoIP component that generated the event. ErrorCode is a non-zero value indi...
	See also: Connect, OnDisconnect


	OnIncomingCall event
	property OnIncomingCall : TApdVoIPIncomingCallEvent
	TApdVoIPIncomingCallEvent = procedure(
	VoIP : TApdCustomVoIP; CallerAddr: string; var Accept : Boolean);

	Defines an event handler that is generated when an incoming call is detected.
	After calling the Connect method with an empty string parameter, the TApdVoIP component begins a ...
	VoIP is the TApdCustomVoIP component that received the incoming call notification and generated t...
	See “Receiving a VoIP call” on page�297 for details and an example.
	See also: Connect, OnConnect, OnDisconnect


	ShowMediaSelectDialog method
	function ShowMediaSelectDialog : Boolean;

	Displays a dialog where the audio and video devices can be selected.
	The ShowMediaSelectDialog method displays the Media options dialog discussed in the “Audio and vi...
	If OK is clicked, the AudioInDevice, AudioOutDevice and VideoInDevice properties are updated to r...
	The dialog displayed from the ShowMediaSelectDialog method is the same dialog used for the AudioI...
	See also: AudioInDevice, AudioOutDevice, VideoInDevice


	VideoInDevice property
	property VideoInDevice : string

	Determines the media terminal device to use to for video input.
	This property is the DeviceName of the TApdVoIPTerminal object that will be used to provide video...
	This property supports the Media options property editor, which filters media terminals by type. ...
	See also: AudioInDevice, AudioOutDevice, AvailableTerminalClasses, VideoOutDevice


	VideoOutDevice property
	property VideoOutDevice : TWinControl

	Determines the control where video output is rendered.
	This property is a TWinControl descendent where the received video stream is displayed. To displa...
	See also: AudioInDevice, AudioOutDevice, AvailableTerminalClasses, VideoInDevice


	VoIPAvailable read-only, run-time property
	property VoIPAvailable : Boolean

	Indicates whether Voice over IP is supported or not.
	The TApdVoIP component implements Voice over IP (IP Telephony) using TAPI 3.x and the H.323 TAPI ...
	If VoIPAvailable is False, calling the Connect method will raise the EVoIPNotSupported exception.
	See also: Connect


	WaitingForCall read-only, run-time property
	property WaitingForCall : Boolean

	Indicates whether the TApdVoIP component is waiting for incoming calls or not.
	When the Connect method is called with an empty string, the TApdVoIP component will begin monitor...
	See also: Connect, Connected





	Chapter 10: SAPI Components
	The SAPI (Speech API) components in Async Professional provide an easy means to incorporate speec...
	SAPI Overview
	Async Professional provides speech synthesis, speech recognition and voice telephony capabilities...
	Speech synthesis
	Speech synthesis will take plain ASCII text and convert it to into digital audio. There are three...
	Table 10.1: Speech synthesis schemes
	In Async Professional, generic speech synthesis is provided through the TApdSapiEngine component....
	While great strides have been made in the quality of computer-synthesized speech, it is still eas...
	The speech synthesis engine will do it’s best to pronounce the text given to it. However, some wo...
	Some speech synthesis engines support input using the International Phonetic Alphabet (IPA). This...


	Speech recognition
	Speech recognition converts a spoken audio data stream into ASCII text. In Async Professional, ge...
	Speech recognition requires an object known as a grammar (a list of known words and possibly how ...
	Using a specific word list is generally faster and more accurate than using the full dictation gr...
	As words and phrases are recognized the OnPhraseHypothesis and OnPhraseFinish events will fire to...
	The Microsoft SAPI SDK documentation provides a full list of supported phonemes.

	Voice telephony
	Voice telephony support is provided via the TApdSapiPhone component. This component allows for sp...
	The voice telephony component has several methods for asking the user for information and then re...

	Requirements for speech synthesis and recognition
	For speech synthesis and recognition, you will need to have the following:
	A 486/33 (DX or SX) or better CPU is the bare minimum required. A Pentium is recommended.
	Speech synthesis will require an additional 1Mb of RAM to that which your program already needs. ...
	A sound card is needed for both speech synthesis and recognition. For speech recognition, a micro...
	Microsoft Windows 95 or NT 4.0 or better.
	The Microsoft SAPI controls and a speech recognition and synthesis engine is needed. A good place...
	For voice telephony, you will need TAPI, a voice capable modem and speech synthesis and recogniti...


	Considerations of speech synthesis and recognition
	For speech synthesis and recognition to work properly, there are several things that should be ta...
	For speech recognition, the most significant source of problems will be from the microphone. The ...
	Half-duplex sound cards should be avoided. A sound card is “half-duplex” if it is incapable of pl...
	Feedback between sound card’s output and the microphone can dramatically reduce the quality of th...
	Background noise will also affect the speech recognition. Background conversations, a radio, door...
	Speech recognition is not perfect. Words will be misinterpreted, or not interpreted at all., and ...

	Considerations for voice enabling your application
	There are numerous things that should be taken into account when developing voice- enabled applic...
	Speech recognition does make mistakes. If you are using speech recognition to handle commands to ...
	Speech synthesis should be used for short phrases. Computer generated voices can quickly annoy yo...
	Speech recognition control of an application as well as speech synthesis should be optional. Spee...
	In voice telephony, other options should be provided for when speech recognition fails. DTMF is u...
	Mixing prerecorded text with synthesized speech generally sounds bad. As a rule, either prerecord...
	Visual feedback should be provided for both speech recognition and synthesis.


	Distribution of speech synthesis and speech recognition engines
	There are two options for distributing voice-enabled applications. The first is to bundle the nee...
	The second option is to require the user to provide the speech engine. Many sound cards come bund...
	Async Professional does not come bundled with speech engines.


	TApdAudioOutDevice Class
	The TApdAudioOutDevice class is used by the TApdSapiEngine component to encapsulate the engines u...
	The properties of this class are laid out as arrays in which each speech recognition engine is ac...
	Hierarchy
	TObject (VCL)
	TApdAudioOutDevice (AdSapiEn)


	Properties
	Methods
	Reference Section
	Age read-only, run-time property
	property Age[x : Integer] : TApdTTSAge
	TApdTTSAge = (tsBaby, tsToddler, tsChild,
	tsAdolescent, tsAdult, tsElderly, tsUnknown);

	Indicates the age of the specified voice.
	The Age property indicates the age of the voice currently specified . The following table indicat...
	The index of the array indicates the voice that the property refers to. To get the Age property f...
	See also: CurrentVoice


	Count read-only, run-time property
	property Count : Integer

	Specifies the number of installed speech synthesis voices.
	This property indicates the number of speech synthesis voices that are installed. The voices are ...
	The active voice can be activated by setting the CurrentVoice property.
	See also: CurrentVoice


	CurrentVoice run-time property
	property CurrentVoice

	Specifies the current speech synthesis voice.
	This property is used to activate a specific voice for use in speech synthesis. This value should...
	See also: Count, Speak


	Dialect read-only, run-time property
	property Dialect[x : Integer] : string

	Indicates the dialect of the specified voice.
	Examples of dialects are “Texas” or “New York City.” The actual dialects vary from engine to engine.
	If no specific dialect is used, this property may be either “Standard” or blank.
	The index of the array indicates the voice that the property refers to. To get the Dialect proper...
	See also: CurrentVoice


	EngineFeatures read-only, run-time property
	property EngineFeatures[x : Integer] : Integer

	Indicates speech synthesis engine specific features for the specified voice.
	This property specifies features specific to the speech synthesis engine. The meaning of the valu...
	The index of the array indicates the voice that the property refers to. To get the EngineFeatures...
	See also: CurrentVoice


	EngineID read-only, run-time property
	property EngineID[x : Integer] : string

	Identifies the GUID of the speech synthesis engine.
	This property identifies the GUID for the speech synthesis engine. This GUID may be used for mult...
	The index of the array indicates the voice that the property refers to. To get the EngineID prope...
	See also: CurrentVoice


	Features read-only, run-time property
	property Features[x : Integer] : TApdTTSFeatures
	TApdTTSFeatures = set of (tfAnyWord, tfVolume, tfSpeed, tfPitch,
	tfTagged, tfIPAUnicode, tfVisual, tfWordPosition, tfPCOptimized,
	tfPhoneOptimized,tfFixedAudio, tfSingleInstance, tfThreadSafe,
	tfIPATextData, tfPreferred, tfTransplanted, tfSAPI4);

	Identifies what features the speech synthesis engine supports.
	The most common speech synthesis engine features are listed in the following table:
	The index of the array indicates the voice that the property refers to. To get the Features prope...
	See also: CurrentVoice


	Find method
	function Find(Criteria : string) : Integer;

	Finds the speech synthesis engine and voice that is the closest match for the input criteria.
	This method is used to find the best matched speech engine and voice for the requested features. ...
	<field>=<value>;<field=value>

	Legal values for field and value are:
	The following code example shows how to use Find:
	var
	EngineIdx : Integer;

	begin
	EngineIdx := ApdSapiEngine1.SSVoices.Find(
	'Gender=' + IntToStr (ApdGENDER_FEMALE));
	EngineIdx := ApdSapiEngine1.SSVoices.Find(
	'Gender=' + IntToStr(ApdGENDER_FEMALE) + ';Dialect=Texas');
	See also: Count, CurrentEngine


	Gender read-only, run-time property
	property Gender[x : Integer] : TApdTTSGender
	TApdTTSGender = (tgNeutral, tgFemale, tgMale, tgUnknown);

	Indicates the gender of the specified voice.
	The index of the array indicates the voice that the property refers to. To get the Features prope...
	See also: CurrentVoice


	Interfaces read-only, run-time property
	property Interfaces[x : Integer] : TApdTTSInterfaces
	TApdTTSInterfaces = set of (
	tiLexPronounce, tiTTSAttributes, tiTTSCentral, tiTTSDialogs,
	tiAttributes, tiIAttributes, tiLexPronounce2);

	Indicates the COM interfaces supported by the speech synthesis engine.
	The index of the array indicates the speech synthesis voice that the property refers to. To get t...
	See also: CurrentVoice


	LanguageID read-only, run-time property
	property LanguageID[x : Integer] : Integer

	Specifies the language identifier for the specified voice.
	Bits 0 through 9 indicate the primary language. Bits 10-15 indicate a sublanguage (or locale).
	More information on this can be found in the Windows SDK help under the MAKELANGID topic.
	The index of the array indicates the speech synthesis voice that the property refers to. To get t...
	See also: CurrentVoice


	MfgName read-only, run-time property
	property MfgName[x : Integer] : string

	Indicates the name of the manufacturer of the specified voice.
	The index of the array indicates the speech synthesis voice that the property refers to. To get t...
	See also: CurrentVoice


	ModeID read-only, run-time property
	property ModeID[x : Integer] : string

	Specifies the GUID for the specified voice.
	This property indicates the GUID that uniquely identifies each voice installed on the computer.
	The index of the array indicates the speech synthesis voice that the property refers to. To get t...
	See also: CurrentVoice


	ModeName read-only, run-time property
	property ModeName[x : Integer] : string

	Specifies the name of the specified text to speech mode.
	This is the default property of the TApdAudioOutDevice class. Specifying an array index without a...
	The index of the array indicates the speech synthesis mode that the property refers to. To get th...
	See also: CurrentVoice


	ProductName read-only, run-time property
	property ProductName[x : Integer] : string

	Provides the product name of the specified voice.
	The index of the array indicates the speech synthesis voice that the property refers to. To get t...
	See also: CurrentVoice


	Speaker read-only, run-time property
	property Speaker[x : Integer] : string

	Indicates the name of the specified selected speech synthesis voice.
	This property specifies the name of the voice of the specified speech synthesis voice. This prope...
	The index of the array indicates the speech synthesis voice that the property refers to. To get t...
	See also: CurrentVoice


	Style read-only, run-time property
	property Style[x : Integer] : string

	Indicates the speaking style of the specified voice.
	Common speaking styles include “Angry”, “Business”, “Calm”, “Casual”, “Computer”, “Depressed”, “E...
	The index of the array indicates the speech synthesis voice that the property refers to. To get t...
	See also: CurrentVoice




	TApdAudioInDevice Class
	The TApdAudioInDevice class is used by the TApdSapiEngine component to encapsulate the engines, m...
	The properties of this are laid out as arrays in which each speech synthesis engine is accessed b...
	Hierarchy
	TObject (VCL)
	TApdAudioInDevice (AdSapiEn)

	Properties
	Reference Section
	Count read-only, run-time property
	property Count : Integer

	Specifies the number of installed speech recognition engines.
	The engines are numbered from 0 to Count – 1. The properties of the speech recognition engines ar...
	The active speech recognition engine can be activated by setting the CurrentEngine property.
	See also: CurrentEngine


	CurrentEngine run-time property
	property CurrentEngine : Integer

	Specifies the current speech recognition engine.
	This property is used to activate a specific speech recognition engine for use in speech recognit...
	See also: Count, Listen


	Dialect read-only, run-time property
	property Dialect[x : Integer] : string

	Indicates the dialect of the specified language used by the speech recognition engine.
	Examples of dialects are “Texas” or “New York City.” The allowed dialects vary from engine to eng...
	If no specific dialect is used, this property may be either “Standard” or blank.
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	EngineFeatures read-only, run-time property
	property EngineFeatures[x : Integer] : Integer

	Indicates speech recognition engine specific features for the specified engine.
	The meaning of the value of this property will depend on the speech recognition engine.
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	EngineID read-only, run-time property
	property EngineID[x : Integer] : string

	Identifies the GUID of the speech synthesis engine.
	This property identifies the GUID for the speech recognition engine. This GUID may be used for mu...
	The index of the array indicates the speech recognition engine to which the property refers. To g...
	See also: CurrentEngine


	Features read-only, run-time property
	property Features[x : Integer] : TApdSRFeatures
	TApdSRFeatures = set of (sfIndepSpeaker, sfIndepMicrophone,
	sfTrainWord, sfTrainPhonetic, sfWildcard, sfAnyWord,
	sfPCOptimized, sfPhoneOptimized, sfGramList, sfGramLink,
	sfMultiLingual, sfGramRecursive, sfIPAUnicode, sfSingleInstance,
	sfThreadSafe,sfFixedAudio, sfIPAWord, sfSAPI4);

	Identifies what features the speech recognition engine supports.
	The following table details the meanings of the more common engine features:
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	Grammars read-only, run-time property
	property Grammars[x : Integer] : TApdSRGrammars
	TApdSRGrammars = set of (sgCFG, sgDication, sgLimitedDomain);

	Indicates the types of grammars supported by the speech recognition engine.
	They types of grammars supported by the speech recognition engine are listed in the following table:
	A speech recognition engine may support multiple grammar types.
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	Interfaces read-only, run-time property
	property Interfaces[x : Integer] : TApdSRInterfaces
	TApdSRInterfaces = set of (siLexPronounce, siSRAttributes,
	siSRCentral, siSRGramCommon, siSRDialogs, siSRGramCFG,
	siSRGramDictation, siSRGramInsertionGui, siSREsBasic,
	siSREsMerge, siSREsAudio, siSREsCorrection, siSREsEval,
	siSREsGraph, siSREsMemory, siSREsModifyGui,
	siSREsSpeaker, siSRSpeaker, siSREsScores, siSREsAudioEx,
	siSRGramLexPron, siSREsGraphEx, siLexPronounce2,
	siAttributes, siSRSpeaker2, siSRDialogs2);

	Indicates the COM interfaces supported by the speech recognition engine.
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	LanguageID read-only, run-time property
	property LanguageID[x : Integer] : Integer

	Specifies the language identifier for the specified speech recognition engine.
	Bits 0 through 9 indicate the primary language. Bits 10-15 indicate a sublanguage (or locale).
	More information on this can be found in the Windows SDK help under the MAKELANGID topic.
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	MaxWordsState read-only, run-time property
	property MaxWordsState[x : Integer] : Integer

	Indicates the maximum number of words in any grammar state for the specified engine.
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	MaxWordsVocab read-only, run-time property
	property MaxWordsVocab[x : Integer] : Integer

	Indicates the maximum number of words in a grammar for the specified speech recognition engine.
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	MfgName read-only, run-time property
	property MfgName[x : Integer] : string

	Indicates the name of the manufacturer of the specified speech recognition engine.
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	ModeID read-only, run-time property
	property ModeID[x : Integer] : string

	Specifies the GUID for the specified speech recognition engine.
	This property indicates the GUID that uniquely identifies each speech recognition engine installe...
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	ModeName read-only, run-time property
	property ModeName[x : Integer] : string

	Specifies the name of the specified speech recognition mode.
	This is the default property of the TApdAudioInDevice class. Specifying an array index without an...
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	ProductName read-only, run-time property
	property ProductName[x : Integer] : string

	Provides the product name of the specified speech recognition engine.
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine


	Sequencing read-only, run-time property
	property Sequencing[x : Integer] : TApdSRSequences
	TApdSRSequences = (ssDiscrete, ssContinuous, ssWordSpot,
	ssContCFGDiscDict, ssUnknown);

	Indicates the speech recognition scheme.
	The supported speech recognition schemes are detailed in the following table:
	The index of the array indicates the speech recognition engine that the property refers to. To ge...
	See also: CurrentEngine




	TApdCustomSapiEngine Component
	The TAPdCustomSapiEngine component provides access to the speech synthesis and recognition engine...
	The speech recognition and synthesis engines are automatically initialized at the time of creation.

	Speech Synthesis Tags
	Some speech synthesis engines support tags that allow for the changing of characteristics of the ...
	All tags begin and end with a backslash. Tags are case insensitive, but white space is significan...
	An example of tagged text would be:
	\Chr=”Business”\This is a \Chr=”monotone”\test.

	The text “This is a” would be spoken using the Business character and the word test would be spok...
	The tags for the speech synthesis engine are defined in Table 10.2.
	Table 10.2: Speech synthesis tags (continued)
	Note: Not all tags are supported by all engines.
	Please note that for the ease of reference, the properties, methods, and events of TApdCustomSapi...

	Hierarchy
	TWinControl (VCL)
	TApdBaseWinControl (OoMisc) 8
	TApdCustomSapiEngine (AdSapiEn)



	TApdSapiEngine Component
	The TApdSapiEngine component exposes the functionality in the TApdCustomSapiEngine class, but doe...
	Hierarchy
	TWinControl (VCL)
	u TApdBaseWinControl (OoMisc) 8
	TApdCustomSapiEngine (AdSapiEn) 333
	TApdSapiEngine (AdSapiEn)


	Properties
	Methods
	Events
	Reference Section
	CharSet property
	property CharSet : TApdCharacterSet
	TApdCharacterSet = (csText, csIPAPhonetic, csEnginePhonetic);

	Specifies the character set used in speed synthesis.
	csText indicates ASCII text, csIPAPhonetic indicates the International Phonetic Alphabet and csEn...

	Dictation property
	property Dictation

	Controls whether or not dictation mode is on.
	When dictation mode is on (provided the engine supports it), a larger set of words is used as the...
	See Also: WordList


	Listen method
	procedure Listen;

	Starts the speech recognition.
	Calling Listen will start the speech recognition engine recognizing spoken text. The OnPhraseHypo...
	See also: OnPhraseFinish, OnPhraseHypothesis, PauseListening, StopListening


	OnInterference event
	property OnInterference : TApdSRInterferenceEvent
	TApdSRInterferenceEvent = procedure(Sender : TObject;
	InterferenceType : TApdSRInterferenceType) of object;
	TApdSRInterferenceType = (itAudioStarted, itAudioStopped,
	itDeviceOpened, itDeviceClosed, itNoise, itTooLoud,
	itTooQuiet, itUnknown);

	Indicates when the audio input to the speech recognition is garbled.
	This event will fire when the audio input to the speech recognition less than optimal. The Interf...
	The possible values for OnInterference are shown in the following table:

	OnPhraseFinish event
	property OnPhraseFinish : TApdSRPhraseFinishEvent
	TApdSRPhraseFinishEvent = procedure(
	Sender : TObject; const Phrase : WideString) of object;

	Indicates when the user has finished speaking a phrase.
	The words the user spoke are in the Phrase parameter of the event. Multiple words may be in this ...
	See also: OnPhraseHypothesis


	OnPhraseHypothesis event
	property OnPhraseHypothesis : TApdSRPhraseHypothesisEvent
	TApdSRPhraseHypothesisEvent = procedure(
	Sender : TObject; const Phrase : WideString) of object;

	Indicates when the user has finished speaking a phrase, but the speech recognition engine is not ...
	The best guesss of what the user said will be indicated in the Phrase parameter. Multiple words m...
	See also: OnPhraseFinish


	OnSpeakStart event
	property OnSpeakStart : TApdSapiNotifyEvent
	TApdSapiNotifyEvent = procedure(Sender : TObject) of object;

	Defines an event handler for when speech synthesis starts speaking.
	This event will fire when the speech synthesis engine starts speaking to the default audio device...

	OnSpeakStop event
	property OnSpeakStop : TApdSapiNotifyEvent
	TApdSapiNotifyEvent = procedure(Sender : TObject) of object;

	Defines an event handler for when the speech synthesis stops speaking.
	This event will fire when the speech synthesis engine stops speaking to the default audio device ...

	OnSRError event
	property OnSRError : TApdOnSapiError
	TApdOnSapiError = procedure(
	Sender : TObject; Error : LongWord;
	const Details : string; const Message : string) of object;

	Defines an event handler that is called when a speech recognition error occurs.
	An error message was generated at some point during speed recognition. Error indicates the error ...

	OnSRWarning event
	property OnSRWarning : TApdOnSapiError
	TApdOnSapiError = procedure(
	Sender : TObject; Error : LongWord;
	const Details : string; const Message : string) of object;

	Defines an event handler that is called when a speech recognition warning occurs.
	A warning message was generated at some point during speed recognition. Error indicates the error...

	OnSSAttributeChanged event
	property OnSSAttributeChanged : TApdSSAttributeChanged
	TApdSSAttributeChanged = procedure(
	Sender : TObject; Attribute: Integer) of object;

	Indicates when an speech synthesis engine attribute has changed.
	Multiple applications may be using the same speech synthesis engine. Any one of those can change ...

	OnSSError event
	property OnSSError : TApdOnSapiError
	TApdOnSapiError = procedure(
	Sender : TObject; Error : LongWord; const Details : string;
	const Message : string) of object;

	Defines an event handler that is called when a speech synthesis error occurs.
	An error message was generated at some point during the speech synthesis. Error indicates the err...

	OnSSWarning event
	property OnSSWarning : TApdOnSapiError
	TApdOnSapiError = procedure(
	Sender : TObject; Error : LongWord; const Details : string;
	const Message : string) of object;

	Defines an event handler that is called when a speech synthesis warning occurs.
	A warning message was generated at some point during the speech synthesis. Error indicates the er...

	OnTrainingRequested event
	property OnTrainingRequested : TApdSRTrainingRequestedEvent
	TApdSRTrainingRequestedEvent = procedure(
	Sender : TObject; Training : TApdSRTrainingType) of object;
	TApdSRTrainingType = set of (
	ttCurrentMic, ttCurrentGrammar, ttGeneral);

	Indicates when the speech recognition engine needs further training.
	The OnTrainingRequested event will fire when the speech recognition requests further training. Th...
	See also: ShowTrainGeneralDlg, ShowTrainMicDlg


	OnVUMeter event
	property OnVUMeter : TApdSRVUMeterEvent
	TApdSRVUMeterEvent = procedure(
	Sender : TObject; Level : Integer) of object;

	Indicates the volume of the spoken data.
	This event provides a rough indicator of the volume of the spoken data heard by the speech recogn...
	See also: Listen, StopListening, SRAmplitude


	PauseListening method
	procedure PauseListening;

	Pauses speech recognition.
	PauseListening pauses the speech recognition. ResumeListening must be called to continue speech r...
	The speech recognition engine may lose data while it is paused.
	See also: ResumeListening


	PauseSpeaking method
	procedure PauseSpeaking;

	Pauses speaking.
	This method pauses speech synthesis. To resume speaking, call ResumeSpeaking.
	See also: ResumeSpeaking


	ResumeListening method
	procedure ResumeListening;

	Resumes speech recognition.
	This method resumes speech recognition after it was paused using PauseListening. Pauses are neste...
	See also: PauseListening


	ResumeSpeaking method
	procedure ResumeSpeaking;

	Resumes speaking after speaking was paused with PauseSpeaking.
	This method will resume speech synthesis after it was paused using PauseSpeaking.
	See also: PauseSpeaking


	ShowAboutDlg method
	procedure ShowAboutDlg(const Caption : string);

	Displays the speech synthesis about dialog box.
	The caption parameter provides a caption to the dialog box.

	ShowGeneralDlg method
	procedure ShowGeneralDlg(const Caption : string);

	Displays the speech synthesis general settings dialog box.
	The speech synthesis general settings dialog allows the user to access various aspects of the spe...
	The caption parameter provides a caption to the dialog box.

	ShowLexiconDlg method
	procedure ShowLexiconDlg(const Caption : string);

	Displays a dialog box for editing mispronounced words.
	This method will display a dialog box that allows the user to edit the pronunciation lexicon used...
	The caption parameter provides a caption to the dialog box.

	ShowTrainGeneralDlg method
	procedure ShowTrainGeneralDlg(const Caption : string);

	Displays the general training dialog box.
	This method will display the general training dialog box. This dialog allows the user to train th...
	The caption parameter provides a caption to the dialog box.
	See also: OnTrainingRequested


	ShowTrainMicDlg method
	procedure ShowTrainMicDlg(const Caption : string);

	Displays the microphone training dialog box.
	This method will display a dialog box in which the user can train the speech recognition engine f...
	The Caption parameter allows the application to specify a caption for the title bar of the dialog.
	Note: Not all speech recognition events will support this dialog.
	See also: OnTrainingRequested


	Speak method
	procedure Speak(Text : string);

	Speaks the specified text to the default audio device.
	Calling this method will cause the text specified by the Text parameter to be spoken to the defau...
	If toTagged is specified in the TTSOptions property, the Text parameter can contain embedded tags...
	The format of the Text parameter is controlled by the CharSet property.
	The speech synthesis engine will store the text in a series of buffers. Since each buffer is spok...
	Normally, the speech synthesis engine will start speaking the text as soon as it passed into one ...
	StopSpeaking can be called at any time to halt the flow of speech. When StopSpeaking is called, t...
	See also: CharSet, PauseSpeaking, ResumeSpeaking, SpeakFile, SpeakFileToFile, SpeakStream, SpeakT...


	SpeakFile method
	procedure SpeakFile(FileName : string);

	Speaks the contents of the specified file to the default audio device.
	Calling this method will cause the contents of the specified file to be read over the default aud...
	Note: Reading binary files may cause unexpected behavior.
	If toTagged is specified in the TTSOptions property, the Text parameter can contain embedded tags...
	The format of the Text parameter is controlled by the CharSet property.
	The speech synthesis engine will store the text in a series of buffers. Since each buffer is spok...
	Normally, the speech synthesis engine will start speaking the text as soon as it passed into one ...
	StopSpeaking can be called at any time to halt the flow of speech. When StopSpeaking is called, t...
	See also: CharSet, PauseSpeaking, ResumeSpeaking, Speak, SpeakFileToFile, SpeakStream, SpeakToFil...


	SpeakFileToFile method
	procedure SpeakFileToFile(const InFile, OutFile : string);

	Converts the contents of the specified file into an audio file.
	This method will create an audio file named by the OutFile parameter containing the spoken conten...
	Note: Reading binary files may cause unexpected behavior.
	If toTagged is specified in the TTSOptions property, the Text parameter can contain embedded tags...
	The format of the Text parameter is controlled by the CharSet property.
	The speech synthesis engine will store the text in a series of buffers. Since each buffer is spok...
	Normally, the speech synthesis engine will start speaking the text as soon as it passed into one ...
	StopSpeaking can be called at any time to halt the flow of speech. When StopSpeaking is called, t...
	See also: CharSet, PauseSpeaking, ResumeSpeaking, Speak, SpeakFile, SpeakStream, SpeakToFile, Sto...


	SpeakStream method
	procedure SpeakStream(Stream : TStream; FileName : string);

	Speaks the contents of the specified stream.
	This method will speak the contents of the specified stream.
	Note: Reading binary files may cause unexpected behavior.
	If toTagged is specified in the TTSOptions property, the Text parameter can contain embedded tags...
	The format of the Text parameter is controlled by the CharSet property.
	The speech synthesis engine will store the text in a series of buffers. Since each buffer is spok...
	Normally, the speech synthesis engine will start speaking the text as soon as it passed into one ...
	StopSpeaking can be called at any time to halt the flow of speech. When StopSpeaking is called, t...
	See also: CharSet, PauseSpeaking, ResumeSpeaking, Speak, SpeakFile, SpeakFileToFile, SpeakToFile,...


	SpeakToFile method
	procedure SpeakToFile (const Text, FileName : string);

	Converts the specified text into an audio file.
	Calling this method will cause the text specified by the Text parameter to be converted into an a...
	Note: Reading binary files may cause unexpected behavior.
	If toTagged is specified in the TTSOptions property, the Text parameter can contain embedded tags...
	The format of the Text parameter is controlled by the CharSet property.
	The speech synthesis engine will store the text in a series of buffers. Since each buffer is spok...
	Normally, the speech synthesis engine will start speaking the text as soon as it passed into one ...
	StopSpeaking can be called at any time to halt the flow of speech. When StopSpeaking is called, t...
	See also: CharSet, PauseSpeaking, ResumeSpeaking, Speak, SpeakFile, SpeakFileToFile, SpeakStream,...


	SREngines run-time property
	property SREngines : TApdAudioInDevice

	Lists the available text to speech engines and specifies the current engine.
	SSVoices run-time property
	property SSVoices : TApdAudioOutDevice

	Lists the available speech recognition engines and specifies the current engine.
	StopListening method
	procedure StopListening;

	Stops speech recognition.
	This method will halt the speech recognition engine. If you call this method before calling Liste...
	See also: Listen, PauseListening, ResumeListening


	SRAmplitude read-only, run-time property
	property SRAmplitude : Word

	Provides the loudness of words spoken to the speech recognition engine.
	Provides the current volume of the audio data spoken to the speech recognition engine. This value...
	See also: Listen, OnVUMeter


	SRAutoGain property
	property SRAutoGain : Integer

	Controls the automatic gain settings of the speech recognition engine.
	This property controls the degree to which the speech recognition engine can automatically adjust...
	Values between 0 and 100 set the percentage of gain adjustment that the speech engine can make. F...

	StopSpeaking method
	procedure StopSpeaking;

	Stops speaking.
	StopSpeaking halts the flow of speech being generated by the speech synthesis engine. This will a...
	See also: Speak, PauseSpeaking, ResumeSpeaking


	TTSOptions property
	property TTSOptions : TApdTTSOptions
	TApdTTSOptions = set of (toTagged);

	Specifies options used during speech synthesis.
	This property sets the speech synthesis options that will be used when text is spoken. The toTagg...

	WordList property
	property WordList : TStringList

	Specifies expected words to be used by the speech recognition engine.
	This property specifies those words that the speech recognition will be listening for. If Dictati...
	See Also: Dictation




	TApdSapiPhonePrompts
	The TApdSapiPhonePrompts class stores default prompts for use by the TApdCustomSapiPhone componen...
	Hierarchy
	TPersistent (VCL)
	TApdSapiPhonePrompts (AsSapiPh)

	Properties
	Reference Section
	AskAreaCode property
	property AskAreaCode : string

	Prompt for user to enter an area code.
	AskAreaCode specifies the spoken prompt used to ask the user for their area code. AskForPhoneNumb...
	See also: AskLastFour, AskNextThree


	AskLastFour property
	property AskLastFour : string

	Prompt for user to enter the last four digits of the phone number.
	AskLastFour specifies the spoken prompt used to ask the user for the last four digits of their ph...
	See also: AskAreaCode, AskNextThree


	AskNextThree property
	property AskNextThree : string

	Prompt for user to enter the middle three digits of the phone number.
	AskNextThree specifies the spoken prompt used to ask the user for middle three digits of their ph...
	See also: AskAreaCode, AskLastFour


	Help property
	property Help : string

	Specifies help text that will be spoken if the user asks for help.
	If the user asks for help during a call, first the text in the Help property will be spoken. If t...
	See also: Help2


	Help2 property
	property Help2 : string

	Specifies help text that will be spoken if the user asks for help a second time.
	If the user asks for help during a call, first the text in the Help property will be spoken. If t...
	See also: Help


	Main property
	property Main : string

	Specifies the main prompt spoken to the user.
	Main is the first prompt spoken to the user by the AskFor methods in the TApdCustomSapiPhone comp...
	See also: Main2


	Main2 property
	property Main2 : string

	Specifies the main prompt spoken to the user if the main prompt needs to be repeated.
	Main2 is alternative and generally shorter text spoken if the main prompt should need to be repea...
	See also: Main


	TooFewDigits property
	property TooFewDigits : string

	Prompt spoken to the user if too few digits were specified for an extension.
	See also: TooManyDigits

	TooManyDigits property
	property TooManyDigits : string

	Prompt spoken to the user if too many digits were specified for an extension.
	See also: TooFewDigits

	Unrecognized property
	property Unrecognized : string

	Prompt spoken to the user to indicate the speech recognition engine did not understand what they ...
	Where property
	property Where : string

	Help text spoken to the user if they ask where they are.
	The Where prompt is spoken in response when the user asks, “Where Am I?” If the user asks where t...
	See also: Where2


	Where2 property
	property Where2 : string

	Help text spoken to the user if they ask where they are a second time.
	If the user asks where they are again for a second time, the text in Where2 will be spoken.
	See also: Where




	TApdCustomSapiPhone Component
	The TApdCustomSapiPhone component is a speech-aware TAPI device. This component will automaticall...
	For this to work you will need a voice capable modem and speech synthesis and recognition engines...
	Note: Speech recognition may lag behind what is actually spoken. Setting the Dictation property o...
	Caution: When dialing a voice call, the standard TAPI Service Provider will return that it is con...
	Most SAPI calls consist of a series of questions for the user. These are handled by several metho...
	The return code for the AskFor methods lets you know what the state of the call is. The reply cod...
	Table 10.3: AskFor methods return codes (continued)
	Full and half duplex telephony connections
	Most voice modems are half duplex—that is, they cannot listen and talk at the same time. In addit...
	Please note that for the ease of reference, the properties methods and events of TApdCustomSapiPh...

	Hierarchy
	TComponent
	TApdBaseComponent (OoMisc) 8
	TApdCustomTapiDevice (AdTapi)
	TApdCustomSapiPhone (AdSapiPh)


	TApdSapiPhone Component
	The TApdSapiPhone component exposes the functionality in the TApdCustomSapiPhone class, but does ...
	Hierarchy
	TComponent
	u TApdBaseComponent (OoMisc) 8
	TApdCustomTapiDevice (AdTapi)
	TApdCustomSapiPhone (AdSapiPh)
	TApdSapiPhone (AdSapiPh)

	Properties
	Methods
	Reference Section
	AskForDate method
	function AskForDate(
	var OutDate : TDateTime; var ParsedText : string;
	NewPrompt1 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError, prUnknown);

	Asks the user for a date.
	The user will be prompted for the date with the value in NewPrompt1. If this value is blank, then...
	The date is returned in OutDate as a TDateTime. The date returned may be unreliable. If this is t...
	See also: AskForDateEx, Prompts


	AskForDateEx method
	function AskForDateEx(var OutDate : TDateTime;
	var ParsedText : string; NewPrompt1 : string;
	NewPrompt2 : string; NewHelp1 : string;
	NewHelp2 : string; NewWhere1 : string;
	NewWhere2 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a date.
	The user will be prompted for the date using the prompts passed into the method. These prompts co...
	The date is returned in OutDate as a TDateTime. The date returned may be unreliable. If this is t...
	See also: AskForDate, Prompts


	AskForExtension method
	function AskForExtension(var Extension : string;
	NewPrompt1 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a telephone extension.
	The user will be prompted for the telephone extension with the value in NewPrompt1. If this value...
	The extension is assumed to be a series of digits and is returned as a string in the Extension pa...
	See also: AskForExtensionEx, Prompts


	AskForExtensionEx Method
	function AskForExtensionEx(var Extension : string;
	NewPrompt1 : string; NewPrompt2 : string;
	NewTooManyDigits : string; NewTooFewDigits : string;
	NewNumDigits : Integer; NewHelp1 : string;
	NewHelp2 : string; NewWhere1 : string;
	NewWhere2 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a telephone extension.
	The user will be prompted for the telephone extension using the prompts passed into the method. T...
	The extension is assumed to be a series of digits and is returned as a string in the Extension pa...
	See also: AskForExtension, Prompts


	AskForList method
	function AskForList(List : TStringList; var OutIndex : Integer;
	NewPrompt1 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a value in a list.
	The user will be prompted for an entry in a list with the value in NewPrompt1. If this value is b...
	The list of items the user is asked to select an item from is provided in the List parameter. If ...
	See also: AskForListEx, Prompts


	AskForListEx method
	function AskForListEx(List : TStringList;
	var OutIndex : Integer; NewPrompt1 : string;
	NewPrompt2 : string; NewHelp1 : string;
	NewHelp2 : string; NewWhere1 : string;
	NewWhere2 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a value in a list.
	The user will be prompted for the value in a list using the prompts passed into the method. These...
	The list of items the user is asked to select an item from is provided in the List parameter. If ...
	See also: AskForList, Prompts


	AskForPhoneNumber method
	function AskForPhoneNumber(var PhoneNumber : string;
	NewPrompt1 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a phone number.
	The user will be prompted for the phone number with the value in NewPrompt1. If this value is bla...
	If AskForPhoneNumber is unable to obtain the phone number, it will ask for the number in pieces u...
	The phone number is returned as a string in the PhoneNumber property.
	See also: AskForPhoneNumberEx, Prompts


	AskForPhoneNumberEx method
	function AskForPhoneNumberEx(var PhoneNumber : string;
	NewPrompt1 : string; NewPrompt2 : string;
	NewAskAreaCode : string; NewAskNextThree : string;
	NewAskLastFour : string; NewHelp1 : string;
	NewHelp2 : string; NewWhere1 : string;
	NewWhere2 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a phone number.
	The user will be prompted for the phone number using the prompts passed into the method. These pr...
	If AskForPhoneNumber is unable to obtain the phone number, it will ask for the number in pieces u...
	The phone number is returned as a string in the PhoneNumber property.
	See also: AskForPhoneNumber, Prompts


	AskForSpelling method
	function AskForSpelling(
	var SpelledWord : string;
	NewPrompt1 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a spelled word.
	The user will be prompted using the value in NewPrompt1 to spell out a reply. If NewPrompt1 is bl...
	The reply from the user is returned in the SpelledWord parameter.
	See also: AskForSpellingEx, Prompts


	AskForSpellingEx method
	function AskForSpellingEx(
	var SpelledWord : string; NewPrompt1 : string;
	NewPrompt2 : string; NewHelp1 : string; NewHelp2 : string;
	NewWhere1 : string; NewWhere2 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a spelled word.
	The user will be prompted using the prompts passed into the method to spell out a reply. The prom...
	The reply from the user is returned in the SpelledWord parameter.
	See also: AskForSpelling, Prompts


	AskForTime method
	function AskForTime(
	var OutTime : TDateTime; var ParsedText : string;
	NewPrompt1 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a time.
	The user will be prompted for the time with the value in NewPrompt1. If this value is blank, then...
	The date is returned in OutTime as a TDateTime. The date returned may be unreliable. If this is t...
	See also: AskForTimeEx, Prompts


	AskForTimeEx method
	function AskForTimeEx(
	var OutTime : TDateTime; var ParsedText : string;
	NewPrompt1 : string; NewPrompt2 : string; NewHelp1 : string;
	NewHelp2 : string; NewWhere1 : string;
	NewWhere2 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a time.
	The user will be prompted for the time using the prompts passed into the method. These prompts co...
	The date is returned in OutTime as a TDateTime. The date returned may be unreliable. If this is t...
	See also: AskForTime, Prompts


	AskForYesNo method
	function AskForYesNo(
	var Reply : Boolean; NewPrompt1 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a yes or no reply.
	The user will be prompted for a yes or no reply using the value in NewPrompt1. If this value is b...
	The date is returned in the Reply parameter as a Boolean. A value of True indicates yes and a val...
	See also: AskForYesNoEx, Prompts


	AskForYesNoEx method
	function AskForYesNoEx(
	var Reply : Boolean; NewPrompt1 : string;
	NewPrompt2 : string; NewHelp1 : string;
	NewHelp2 : string; NewWhere1 : string;
	NewWhere2 : string) : TApdSapiPhoneReply;
	TApdSapiPhoneReply = (prOk, prAbort, prNoResponse,
	prOperator, prHangUp, prBack, prWhere, prHelp, prRepeat,
	prSpeakFaster, prSpeakSlower, prCheck, prError,
	prUnknown);

	Asks the user for a yes or no reply.
	The user will be prompted for the reply using the prompts passed into the method. These prompts c...
	The date is returned in the Reply parameter as a Boolean. A value of True indicates yes and a val...
	See also: AskForYesNo, Prompts


	NoAnswerMax property
	property NoAnswerMax : Integer

	Specifies the number of times the user can not answer a prompt before returning an error.
	This is used by the AskFor methods. If there is no answer, these methods will return prNoResponse.
	See also: NoAnswerTime


	NoAnswerTime property
	property NoAnswerTime : Integer

	Specifies in seconds the amount of time for a user to answer a prompt.
	This is used by the AskFor methods. If the user does not reply in NoAnswerTime seconds NoAnswerMa...
	See also: NoAnswerMax


	NumDigits property
	property NumDigits : Integer

	Specifies the number of digits in the extension asked for by AskForExtension and AskForExtensionEx.
	Options property
	property Options : TApdSapiPhoneSettings
	TApdSapiPhoneSettings = set of (psVerify, psCanGoBack,
	psDisableSpeedChange, psEnableOperator,
	psEnableAskHangup, psFullDuplex);

	Specifies options supported by the call.
	Various options can be enabled for a SAPI call. These are detailed in the following table:

	Prompts property
	property Prompts : TApdSapiPhonePrompts

	Specifies the default spoken prompts used in getting information from the user.
	SapiEngine property
	property SapiEngine : TApdCustomSapiEngine

	Specifies the TApdCustomSapiEngine component to use for speech synthesis and recognition.
	Speak method
	procedure Speak(const Text : string);

	Speaks the specified text to the user.



	Chapter 11: Remote Access Service (RAS) Components
	Async Professional provides two RAS components that make it easy to add RAS dialing capability to...
	The TApdRasDialer provides an easy to use interface to the Microsoft Remote Access Services API t...
	The TApdRasStatus component provides a dialing status dialog for use on machines whose RAS DLL do...
	Overview
	Remote Access Services (RAS) is the Windows service that handles dial-up networking connections v...
	Key to RAS operations is Window’s concept of a phonebook. An entry in the phonebook contains the ...

	TApdRasDialer Component
	The TApdRasDialer provides an interface to Microsoft’s Remote Access Service (RAS) API. The compo...
	The TApdRasDialer requires that RAS has been installed on the machine that the application is to ...
	Dialing is performed by the Dial and DialDlg (WinNT) methods. Both asynchronous and synchronous d...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomRasDialer (AdRas)
	TApdRasDialer (AdRas)


	Properties
	Methods
	Events
	Reference
	CallBackNumber property
	property CallBackNumber : string

	Specifies a callback number for the current phonebook entry.
	An empty string indicates that callback should not be used. This string is ignored unless the use...

	CompressionMode property
	property CompressionMode : TApdRasCompressionMode
	TApdRasCompressionMode = (
	cmDefault, cmCompressionOn, cmCompressionOff);

	Specifies whether software compression is to be used.
	If the application is not running under Windows NT, this property is ignored.

	Connection run-time, read-only property
	property Connection : TRasConnHandle

	Contains the RAS connection handle for the current phonebook entry.
	This property is available if needed, but will probably not be of use to the user.

	ConnectState property
	property ConnectState : Integer

	Contains connection state for the current phonebook entry.
	Use ConnectState to determine the connect status for the current phonebook entry. This value can ...
	See also: GetStatusText


	CreatePhonebookEntry method
	function CreatePhonebookEntry : Integer;

	Creates a new entry in the current phonebook.
	A dialog box is displayed in which the user enters the information for the new entry.
	A return value other than ecOK indicates that an error occurred and the return value is the error...
	See also: DeletePhonebookEntry, EditPhonebookEntry, GetErrorText


	DeletePhonebookEntry method
	function DeletePhonebookEntry : Integer;

	Deletes the current phonebook entry.
	If the EntryName property specifies an existing phonebook entry, that entry will be deleted and t...
	A return value other than ecOK indicates that an error occurred and the return value is the error...
	See also: CreatePhonebookEntry, EditPhonebookEntry, EntryName, GetErrorText


	DeviceName run-time, read-only property
	property DeviceName : string

	Contains the device name for the current active connection.
	DeviceName contains the name of the current device, if available. This could be the name of the m...
	See also: ConnectState, DeviceType


	DeviceType run-time, read-only property
	property DeviceType : string

	Contains the device type name for the current active connection.
	DeviceType contains a string that identifies the type of the current device, if available. Common...
	See also: ConnectState, DeviceName


	Dial method
	function Dial : Integer;

	Establishes a Remote Access Service (RAS) connection.
	Use Dial to establish a Remote Access Service (RAS) connection between a RAS client and a RAS ser...
	During asynchronous dialing (DialMode = dmAsync), Dial returns immediately before the connection ...
	During synchronous dialing (DialMode is set to dmSync), Dial does not return until the connection...
	Connection status information is also available via the ConnectState property until the applicati...
	Dial does not display a logon dialog box. This is currently done through the Remote Networking ap...
	See also: ConnectState, DialMode, GetErrorText, Hangup, OnConnected, OnDialError, OnDialStatus, S...


	DialDlg method
	function DialDlg : Integer;

	Establishes a RAS connection using synchronous Ras dial dialog (WinNT).
	If the application is not running under Windows NT, DialDlg will return a ecFunctionNotSupported ...
	DialDlg commences synchronous dialing and displays dialog boxes during the connection operation t...
	DialDlg returns when the connection is established, or when the user cancels the operation.
	No progress events are fired so the function return value must be examined to determine the statu...
	Connection status information is also available via the ConnectState property until the applicati...
	See also: ConnectState, DialMode, GetErrorText, Hangup


	DialMode property
	property DialMode : TApdRasDialMode
	TApdRasDialMode = (dmSync, dmAsync);

	Default: dmAsync
	Specifies whether dialing is performed asynchronously or not.
	When asynchronous dialing is specified, a call to the Dial method returns immediately and connect...
	See also: Dial, OnConnected, OnDialStatus


	DialOptions property
	property DialOptions : TApdRasDialOptions
	TApdRasDialOption = (doPrefixSuffix, doPausedStates,
	doDisableConnectedUI, doDisableReconnectUI,
	doNoUser, doPauseOnScript);
	TApdRasDialOptions = set of TApdRasDialOption;

	Specifies dialing options for the current phonebook entry.
	If the application is not running under Windows NT, this property is ignored.

	Domain property
	property Domain : string

	Specifies a string containing the domain on which authentication is to occur.
	An empty string specifies the domain in which the remote access server is a member. An asterisk s...

	EditPhonebookEntry method
	function EditPhonebookEntry : Integer;

	Edits the current phonebook entry.
	A dialog box is displayed in which the user can modify the information for the entry specified by...
	A return value other than ecOK indicates that an error occurred and the return value is the error...
	See also: CreatePhonebookEntry, DeletePhonebookEntry, EntryName, GetErrorText


	EntryName property
	property EntryName : string

	Specifies a string containing the phonebook entry to use to establish a connection.
	An empty string specifies a simple modem connection on the first available modem port, in which c...

	GetDialParameters method
	function GetDialParameters : Integer;

	Retrieves stored dialing parameters.
	The connection information saved by the last successful call to Dial or SetDialParameters for the...
	A return value other than ecOK indicates that an error occurred and the return value is the error...
	See also: GetErrorText, SetDialParameters


	GetErrorText method
	function GetErrorText(Error : Integer) : string;

	Returns the text string for the specified RAS error.
	Use GetErrorText to obtain the text for a given RAS error.
	Example:
	with ApdRasDialer1 do
	ShowMessage(GetErrorText(DialDlg));
	Error code constants are defined in ADRASEC.INC
	See also: OnDialError



	GetStatusText method
	function GetStatusText(State : TRasState) : string;

	Returns the text string for the specified RAS connection state.
	Use GetStatusText to obtain the text for a given RAS connection state.
	Example:
	with ApdRasDialer1 do
	ShowMessage(GetStatusText(ConnectState));
	Connection state constants are defined in ADRASCS.INC
	See also: ConnectState, OnDialStatus



	Hangup method
	procedure Hangup;

	Terminates the active RAS connection.
	Hangup releases all RASAPI32.DLL resources associated with the connection. Hangup must be called ...
	See also: Dial, DialDlg


	HangupOnDestroy property
	property HangupOnDestroy : Boolean

	Default: True
	Specifies whether or not an active connection is terminated when the component is destroyed.
	If an active RAS connection has been established by calling either Dial or DialDlg, a connection ...

	ListConnections method
	function ListConnections(List : TStrings) : Integer;

	Obtains a list of all active RAS connections.
	Use ListConnections to obtain a string list of all active RAS connections. The List argument must...
	Example:
	...
	ComboBox1.Clear;
	ApdRasDialer1.ListConnections(ComboBox1.Items);
	A return value other than ecOK indicates that an error occurred and the return value is the error...


	ListEntries method
	function ListEntries(List : TStrings) : Integer;

	Obtains a list of all entry names in the current RAS phonebook.
	Use ListEntries to obtain a string list of all entries in the current RAS phonebook. The List arg...
	Example:
	...
	ComboBox1.Clear;
	ApdRasDialer1.ListEntries(ComboBox1.Items);
	...
	ApdRasDialer1.EntryName :=
	ComboBox1.Items[ComboBox1.ItemIndex];
	...
	A return value other than ecOK indicates that an error occurred and the return value is the error...
	See also: GetErrorText



	MonitorDlg method
	function MonitorDlg : Integer;

	Displays the status of a connection using the Ras status dialog (WinNT).
	Use MonitorDlg to display a a dialog showing the status of a connection. This is the same dialog ...
	A return value other than ecOK indicates that an error occurred and the return value is the error...
	See also: GetErrorText


	OnConnected event
	property OnConnected : TApdRasConnectedEvent
	TApdRasConnectedEvent = procedure(Sender : TObject) of object;

	Defines an event handler that is called when a RAS connection has been established.
	During asynchronous dialing (DialMode = dmAsync), OnConnected is called to notify that the connec...
	During synchronous dialing (DialMode = dmSync), this event is not used and the ConnectState prope...
	See also: ConnectState, Dial, DialDlg, DialMode


	OnDialError event
	property OnDialError : TApdRasErrorEvent
	TApdRasErrorEvent = procedure(
	Sender : TObject; Error : Integer) of object;

	Defines an event handler that is called when an error occurs during dialing.
	OnDialError is called whenever an error occurs while attempting to complete a RAS connection. If ...
	The Error parameter may be passed to GetErrorText to obtain the corresponding error text.
	Error code constants are defined in ADRASUTL.PAS
	See also: GetErrorText


	OnDialStatus event
	property OnDialStatus : TApdRasStatusEvent
	TApdRasStatusEvent = procedure(
	Sender : TObject; State : TRasConnState) of object;

	Defines an event handler that is called to provide status during dialing.
	During asynchronous dialing (DialMode = dmAsync), OnDialStatus is called periodically to provide ...
	The State parameter may be passed to GetStatusText to obtain the corresponding text string.
	Connection state constants are defined in ADRASUTL.PAS
	See also: ConnectState, Dial, DialMode, GetStatusText


	OnDisconnected event
	property OnDisconnected : TNotifyEvent

	Defines an event handler that is called when an active connection is terminated.
	If an active RAS connection has been established by calling either Dial or DialDlg, the OnDisconn...
	See also: ConnectionStatus, OnConnected


	Password property
	property Password : string

	Specifies a string containing the user’s password.
	Password is used to authenticate the user’s access to the remote access server.
	See also: UserName


	Phonebook property
	property Phonebook : string

	Specifies the full path and filename of the phonebook file.
	For applications running under Windows NT, Phonebook can be an empty string, and typically is, in...
	For applications running under Windows 95/98, Phonebook is ignored. Dial-up networking stores pho...

	PhonebookDlg method
	function PhonebookDlg : Integer;

	Displays the main Dial-Up Networking dialog box. (WinNT).
	PhonebookDlg displays the main Dial-Up Networking modal dialog box from which the user can edit, ...
	A return value other than ecOK indicates that an error occurred and the return value is the error...
	See also: GetErrorText


	PhoneNumber property
	property PhoneNumber : string

	Specifies a string containing an overriding phone number.
	An empty string indicates that the phonebook entry’s phone number should be used. If EntryName co...
	See also: EntryName


	PlatformID run-time, read-only property
	property PlatformID : DWord

	Identifies the platform supported by the operating system.
	PlatformID can have one of the following values:

	SetDialParameters method
	function SetDialParameters : Integer;

	Updates stored dialing parameters.
	This function changes the connection information saved by the last call to Dial or SetDialParamet...
	A return value other than ecOK indicates that an error occurred and the return value is the error...
	See also: GetDialParameters, GetErrorText


	SpeakerMode property
	property SpeakerMode : TApdRasSpeakerMode
	TApdRasSpeakerMode = (smDefault, smSpeakerOn, smSpeakerOff);

	Specifies the modem speaker setting for the current phonebook entry.
	For applications not running under Windows NT, this property is ignored.

	StatusDisplay property
	property StatusDisplay : TApdRasStatus

	Specifies an attached dialing status dialog.
	The StatusDisplay provides a mechanism to display a TApdRasStatus dialog while establishing a con...
	See also: Dial, DialDlg


	UserName property
	property UserName : string

	Specifies a string containing the user’s identification name.
	UserName is used to authenticate the user’s access to the remote access server.
	See also: Password




	TApdRasStatus Component
	The TApdRasStatus provides a standard RAS dialing status dialog with a Cancel button to abort dia...
	TApdRasStatus has no methods that you must call or properties that you must adjust. You might wan...
	Figure 11.1 shows the display that is associated with a TApdRasStatus component.
	Figure 11.1: TApdRasStatus component display.

	Hierarchy
	TComponent (VCL)
	TApdBaseComponent (OOMisc) 8
	TApdCustomRasStatus (AdRas)
	TApdRasStatus (AdRStat)




	Chapter 12: TAPI Components
	The Telephony Application Programming Interface (TAPI) is a collection of DLLs and a documented p...
	TAPI also provides a smaller, though much more visible, service in managing modems as system devi...
	Another advantage of TAPI is that applications can share serial ports. For example, assume that a...
	The TAPI components do have some drawbacks. TAPI may not be installed, or properly configured, on...
	The second major disadvantage of TAPI is that it doesn’t provide the level of visibility or contr...
	The third major disadvantage of TAPI is that TAPI doesn’t provide support for direct, modemless c...
	The fourth major disadvantage of TAPI is the difficulty of assuring proper modem configuration. T...
	No matter how the modem is installed, the end result is that TAPI now knows everything it needs t...
	The default property values for the modem chosen by Microsoft or the modem vendor are the values ...
	The final major disadvantage of TAPI is that resources often do not get properly released followi...
	All of these issues are likely to improve over time, making TAPI the choice for current and futur...
	Async Professional provides components that make use of TAPI modem management. These components p...
	Async Professional also supports TAPI 1.3 functions in 16-bit applications for Windows 3.1 and Wi...
	The Async Professional TAPI components provide all the services necessary for selecting TAPI devi...
	Sells, Windows Telephony Programming: A Developer’s Guide to TAPI, Addison�Wesley, ISBN 0/201/634...
	TAPI Reference Manual, included with the TAPI SDK and with the Windows 95/98 SDK.
	“Create Communications Programs for Windows 95 with the Win32 Comm API”, Microsoft Systems Journa...
	Programming Windows 95 Unleashed (SAMS Publishing). Although only one out of 37 chapters is devot...
	The C++ sample program TAPICOMM, available on the Microsoft Developer Network CD.

	TAPI Device Control from an Application
	Without TAPI, the TApdComPort component opens the physical serial port directly using the appropr...
	With TAPI, a TApdComPort is still required, but it is not initially involved in establishing the ...
	Once the connection is established, TAPI’s role is essentially over. TAPI remains in charge of th...
	When the modem connection is broken, TApdTapiDevice automatically closes the associated TApdComPo...
	The TApdComPort property TapiMode determines whether the port is in charge of the physical serial...
	TapiMode : TTapiMode;
	TTapiMode = (tmNone, tmAuto, tmOn, tmOff);
	When TapiMode is tmAuto (the default), the TApdComPort is in charge unless a TApdTapiDevice is ad...
	You can give control back to the TApdComPort by setting TapiMode to tmOff, meaning that the port ...

	TAPI events
	TAPI dials outgoing calls and waits for incoming calls in the background. Applications are inform...
	OnTapiStatus
	procedure(
	CP : TObject; First, Last : Boolean; Device, Message,
	Param1, Param2, Param3 : DWORD) of object;
	Generated at various intervals while dialing an outgoing call or answering an incoming call. The ...


	OnTapiLog
	procedure(CP : TObject; Log : TTapiLogCode) of object;
	Generated at the start and finish of each TAPI call (either outgoing or incoming) and at various ...

	OnTapiPortOpen
	procedure(CP : TObject) of object;
	Generated immediately after TAPI has established a connection and has the serial port handle avai...

	OnTapiPortClose
	procedure(CP : TObject) of object;
	Generated immediately after TAPI closes the serial port due to a broken connection. See the OnTap...

	OnTapiConnect
	procedure(CP : TObject) of object;
	Generated immediately after TAPI establishes a connection. See the OnTapiConnect event on page 393.

	OnTapiFail
	procedure(CP : TObject) of object;
	Generated immediately after TAPI tries but fails to establish a connection. See the OnTapiFail ev...


	TAPI status processing
	TAPI handles the details of controlling, dialing, and answering the modem. The OnTapiStatus event...
	TAPI actually uses a callback procedure to inform an application program of its progress. TApdTap...
	...
	ApdTapiDevice1: TApdTapiDevice;
	Msg: TLabel;
	Num: TLabel;
	...
	procedure ApdTapiDevice1TapiStatus(
	CP : TObject; First, Last : Boolean; Device, Message, Param1,
	Param2, Param3 : LongInt);
	end;

	procedure TForm1.ApdTapiDevice1TapiStatus(
	CP : TObject; First, Last : Boolean; Device, Message,
	Param1, Param2, Param3 : LongInt);
	begin
	if First then
	...do setup stuff
	else if Last then
	...do cleanup stuff
	else begin
	{Update status}
	Msg.Caption := ApdTapiDevice1.TapiStatusMsg(Message, Param2);
	Num.Caption := ApdTapiDevice1.Number;
	end;
	end;
	ApdTapiDevice1TapiStatus handles the OnTapiStatus event by updating a form at each call. First is...
	The remaining parameters mirror the parameters that TAPI sends to the hidden callback procedure. ...
	Async Professional contains resource strings for all of the values of Message and Param1 that TAp...
	Message is a constant that describes the class of change since the previous OnTapiStatus event. T...
	Table 12.1: Possible TAPI messages
	The first three values are a subset of the possible TAPI messages. These are the only values that...
	Line_CallState indicates that the progress of the call, what TAPI calls the “state” of the call, ...
	Line_LineDevState indicates that the state of the device (modem, phone, or whatever) changed. TAp...
	Line_Reply indicates that TAPI has accepted, but not necessarily completed, the requested backgro...
	Line_APDSpecific is generated during periods when TAPI does not generate events, such as after di...
	Param1 provides additional information about Message. For example, when Message is Line_CallState...

	Table 12.2: Corresponding Param1 values to Message values
	These are only subsets of the possible values of Param1 for each of the Message states, but they ...
	Other TApdTapiDevice properties can also be used in OnTapiStatus. Some examples are Number, which...


	Automatic status display
	Async Professional includes a mechanism for providing automatic TAPI status display without progr...
	property StatusDisplay : TApdAbstractTapiStatus

	The TApdAbstractTapiStatus class is described in more detail on page 440. For each OnTapiStatus e...
	When a TApdTapiDevice component is created, either dynamically or when dropped on a form, it sear...


	TAPI logging
	Dialing and answering calls is often an automated process. For example, an application might auto...
	The TApdTapiDevice provides an event that is ideal for logging automated dial or answer applicati...
	procedure TForm1.ApdTapiDevice1TapiLog(
	CP : TObject; Log : TTapiLogCode);
	var
	HisFile : Text;
	begin
	...open HisFile

	{Write the log entry}
	with TapiDevice do begin
	case Log of
	ltapiNone : ;
	ltapiCallStart :
	WriteLn(HisFile, DateTimeToStr(Now), ' : call started');
	ltapiCallFinish :
	WriteLn(HisFile, DateTimeToStr(Now), ' :
	call finished'^M^J);
	ltapiDial :
	WriteLn(
	HisFile, DateTimeToStr(Now), ' : dialing ', Number);
	ltapiAnswer :
	WriteLn(HisFile, DateTimeToStr(Now), ' : answering');
	ltapiConnect :
	WriteLn(HisFile, DateTimeToStr(Now), ' : connected');
	ltapiCancel :
	WriteLn(HisFile, DateTimeToStr(Now), ' : cancelled');
	ltapiDrop :
	WriteLn(HisFile, DateTimeToStr(Now), ' : dropped');
	ltapiBusy:
	WriteLn(HisFile, DateTimeToStr(Now), ' : busy');
	ltapiDialFail :
	WriteLn(HisFile, DateTimeToStr(Now), ' : dial failed');
	end;
	end;
	...close HisFile
	end;
	This example shows every possible logging value. The meanings of the various logging conditions a...
	Table 12.3: TAPI logging conditions
	A call is always started with an ltapiCallStart event and finished with an ltapiCallFinish event....


	ltapiCallStart call started
	ltapiDial number dialed
	ltapiBusy called number was busy
	ltapiDial number re-dialed
	ltapiConnect a connection was established
	ltapiDrop the connection was dropped
	ltapiCallFinish the call is finished

	Automatic TAPI logging
	Async Professional includes a mechanism for providing automatic TAPI logging without programming,...
	property TapiLog : TApdTapiLog

	The TApdTapiLog class is described in more detail on page 445. For each OnTapiLog event, TApdTapi...
	When a TApdTapiDevice component is created, either dynamically or when dropped on a form, it sear...


	Making calls
	TApdTapiDevice provides a method for placing outgoing calls. When Dial is called, TAPI sends the ...
	The number passed to Dial should not contain any modem commands. It should contain the telephone ...
	TApdTapiDevice generates OnTapiStatus events during the dialing process. If a connection is not e...
	Once the connection is established, the TApdTapiDevice is no longer directly used. All subsequent...
	If a dial attempt fails due to a busy signal or other error, TApdTapiDevice can try the call agai...

	Dialing example
	This example demonstrates how to construct and use the TApdTapiDevice to dial a number. This exam...
	Create a new project, add the following components, and set the property values as indicated in T...
	Table 12.4: Example components and property values
	Double-click on the Dial button’s OnClick event handler within the Object Inspector and modify th...

	procedure TForm1.DialClick(Sender : TObject);
	begin
	ApdTapiDevice1.Dial('1-847-262-6000');
	end;
	The phone number passed to Dial is the number of the U.S. Robotics BBS. Modify it if you want to ...
	Next, double-click on the Hangup button’s OnClick event handler within the Object Inspector and m...

	procedure TForm1.HangupClick(Sender : TObject);
	begin
	ApdTapiDevice1.CancelCall;
	end;
	This method cancels the dial operation, or hangs up the phone after the connection is established.
	Finally, double-click on the OnTapiPortOpen event handler within the Object Inspector and modify ...

	procedure TForm1.ApdTapiDevice1TapiPortOpen(Sender : TObject);
	begin
	ApdTerminal1.SetFocus;
	end;
	This event handler gives the focus to the terminal window as soon as TAPI establishes a connectio...
	This example is in the EXTAPID project in the \ASYNCPRO\EXAMPLES directory.


	Answering calls
	The process of answering the modem is very similar to dialing. The TApdTapiDevice component gener...
	The TApdTapiDevice waits for incoming calls in the background. No events are generated while wait...
	Once the connection is established, the TApdTapiDevice is no longer directly used. All subsequent...

	Answering example
	The following example demonstrates how to construct and use the TApdTapiDevice to answer an incom...
	Create a new project, add the following components, and set the property values as indicated in t...
	Table 12.5: Example components and property values
	Double-click on the Answer button’s OnClick event handler within the Object Inspector and modify ...

	procedure TForm1.AnswerClick(Sender : TObject);
	begin
	ApdTapiDevice1.AutoAnswer;
	end;
	AutoAnswer instructs TAPI to listen for incoming calls. It does not immediately begin answering a...
	Next, double-click on the Hangup button’s OnClick event handler within the Object Inspector and m...

	procedure TForm1.HangupClick(Sender : TObject);
	begin
	ApdTapiDevice1.CancelCall;
	end;
	This method tells TAPI to stop listening for incoming calls. If a call is in the process of being...
	Finally, double-click on the OnTapiPortOpen event handler within the Object Inspector and modify ...

	procedure TForm1.ApdTapiDevice1TapiPortOpen(Sender : TObject);
	begin
	ApdTerminal1.SetFocus;
	end;
	This event handler gives the focus to the terminal window as soon as TAPI establishes a connection.
	This example is in the EXTAPIA project in the \ASYNCPRO\EXAMPLES directory.


	TAPI Service Providers
	TAPI itself doesn’t implement any of the features necessary for controlling serial ports and tele...
	Even if TAPI is properly installed, it will not function unless a service provider is also instal...
	Since UNIMDM.TSP is the service provider that your application is most likely to encounter, it’s ...
	UNIMDM does not provide support for caller identification (caller ID). The CallerID property of T...
	UNIMDM does not support “no dialtone” detection. TAPI will attempt to dial whether a dialtone is ...

	Microsoft has released an extension for Unimodem called UNIMODEM/V. UNIMODEM/V provides additiona...

	Using TAPI for configuration only
	Although UNIMDM.TSP provides basic dial and answer services it does not provide all of the modem ...
	However, TAPI (along with UNIMDM and modem information files) contains a wealth of configuration ...
	Although in passthrough mode, TAPI doesn’t send any modem initialization commands, TApdTapiDevice...
	After calling ConfigAndOpen, TAPI is in control of the call, just as though it had dialed or answ...
	You should use TAPI passthrough mode if you need to support TAPI, but require modem operations th...

	Wave file support
	The TApdTapiDevice class now includes the ability to play and record wave files through a TAPI de...
	Windows 95/98/ME or Windows 2000.
	UNIMODEM/V or UNIMODEM/5.
	A voice modem with a wave driver.
	A wave file.

	UNIMODEM/V is a set of DLLs that provides voice support for voice modems under Windows 95/98. Voi...
	To use the voice extensions provided by UNIMODEM/V, you must have a voice modem. For wave support...
	The TApdTapiDevice component allows you to set the wave file format used for playback and recordi...
	Wave files used for playback with Async Professional can be created with the Microsoft Sound Reco...
	Recording options include the ability to detect silence on the line and take action when silence ...

	Dual Tone Multiple Frequency (DTMF)
	Dual Tone Multiple Frequency (DTMF) tones are generated by a telephone touch pad over telephone l...


	TApdTapiDevice Component
	TApdTapiDevice provides modem dialing, answering and configuration services using Windows built-i...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomTapiDevice (AdTapi)
	TApdTapiDevice (AdTapi)


	Properties
	Methods
	Events
	Reference Section
	AnswerOnRing property
	property AnswerOnRing : Byte
	Default: 2


	The number of times the TAPI device should allow the incoming call to ring before answering it.
	The default for AnswerOnRing is two rings because problems can occur with caller-ID enabled modem...

	ApiVersion read-only, run-time property
	property ApiVersion : LongInt

	Returns the negotiated TAPI version level.
	When an application initializes TAPI, it negotiates for a supported version of TAPI. Features and...
	The TApdTapiDevice always attempts to negotiate for version 1.4, but can use 1.3 if that is all t...

	Attempt read-only, run-time property
	property Attempt : Word

	Indicates the number of times the current number has been dialed.
	If the dialed number is busy, TAPI waits briefly and calls the number again. It tries up to MaxAt...
	See also: MaxAttempts, OnTapiStatus, RetryWait


	AvgWaveInAmplitude read-only, run-time property
	property AvgWaveInAmplitude : Integer
	Indicates the average relative amplitude of a recorded wave sample.
	When a wave file is being recorded the AvgWaveInAmplitude property is updated to reflect the aver...
	This property can also be used to determine a usable value for the SilenceThreshold property. Sil...
	This property is valid while a wave file is being recorded, which is after the StartWaveRecord me...
	See also: OnTapiWaveSilence, SilenceThreshold, StartWaveRecord, StopWaveRecord, TrimSeconds



	AutoAnswer method
	procedure AutoAnswer;

	Instructs TAPI to listen for and answer incoming calls.
	AutoAnswer returns immediately after instructing TAPI to listen for calls. TAPI listens for calls...
	See “Answering calls” on page�402 for more information and an example.

	AutomatedVoiceToComms method
	procedure AutomatedVoiceToComms;

	AutomatedVoiceToComms changes the TAPI media mode from voice to data communications.
	Call AutomatedVoiceToComms when switching from an automated voice mode (DTMF tone detection, wave...
	The OnTapiPortOpen event will be generated once TAPI successfully switches media modes (from Auto...
	See also: OnTapiPortOpen


	BPSRate read-only, run-time property
	property BPSRate : DWORD

	The rate of the current call in bits per second.
	BPSRate is the rate negotiated between the local and remote modems for the current call. If a cal...
	The following example shows an OnTapiConnect event handler that updates a TLabel on the current f...
	TForm1 = class(TForm)
	...
	ApdTapiDevice1 : TApdTapiDevice;
	Connect : TLabel;
	...
	end;

	procedure TForm1.ApdTapiDevice1TapiConnect(Sender : TObject);
	begin
	Connect.Caption :=
	'Connected at ' + IntToStr(ApdTapiDevice1.BPSRate);
	...
	end;


	CallerID read-only, run-time property
	property CallerID : string

	Contains the caller identification string of the current incoming call.
	Many telephony environments make a caller identification string available. This string usually co...
	If the telephony environment doesn’t supply caller identification information, CallerID is an emp...
	The following example shows an OnTapiConnect event handler that updates a TLabel on the current f...
	TForm1 = class(TForm)
	...
	ApdTapiDevice1 : TApdTapiDevice;
	CallerID : TLabel;
	...
	end;

	procedure TForm1.ApdTapiDevice1TapiConnect(Sender : TObject);
	begin
	CallerID.Caption := 'Caller: ' + ApdTapiDevice1.CallerID;
	...
	end;


	CallerIDName read-only, run-time property
	property CallerIDName : string

	Contains the caller identification name information, if available.
	The name information is not available everywhere that caller ID is available. Some localities onl...
	See also: CallerID


	CancelCall method
	procedure CancelCall;

	Disconnects the current call.
	CancelCall is the TApdTapiDevice universal method for terminating the current call. It can be use...
	CancelCall is usually a background operation. It instructs TAPI to cancel the call and TAPI perfo...
	See also: Cancelled, OnTapiFail, OnTapiPortClose


	Cancelled run-time, read-only property
	property Cancelled : Boolean

	Returns True if an OnTapiFail event fires due to user action.
	An OnTapiFail event is generated any time a call is terminated before the final connection is mad...
	See also: CancelCall, OnTapiFail


	ComPort property
	property ComPort : TApdCustomComPort

	Determines the TApdComPort component used by the TApdTapiDevice.
	A properly initialized TApdComPort must be assigned to this property before dialing or answering ...
	ComPort is usually set automatically at design time to the first TApdComPort component the TApdTa...
	Setting the ComPort property at run time is necessary only when using a dynamically created TApdC...

	ConfigAndOpen method
	procedure ConfigAndOpen;

	Configures the modem and leaves the port open in passthrough mode.
	ConfigAndOpen takes advantage of the TAPI modem configuration facilities, even though TAPI isn’t ...
	You could not, for example, use the following logic:
	var
	ApdComPort1 : TApdComPort;
	ApdTapiDevice : TApdTapiDevice;
	...
	ApdTapiDevice1.ConfigAndOpen;
	ApdComPort1.Output := 'ready';
	...more port I/O
	ApdComPort1.Open := False;
	This is incorrect. After the call to ConfigAndOpen you must wait for TAPI to open the TApdComPort...
	The following example shows the proper way to use ConfigAndOpen:

	procedure TForm1.OpenTheLine;
	begin
	ApdTapiDevice1.ConfigAndOpen;
	end;
	...
	procedure TForm1.ApdTapiDevice1TapiPortOpen(Sender : TObject);
	begin
	ApdComPort1.Output := 'ready';
	...more port I/O
	end;
	...
	procedure TForm1.CloseTheLine;
	begin
	ApdTapiDevice1.CancelCall;
	end;
	See “Using TAPI for configuration only” on page�405 for more information.


	CopyCallInfo method
	procedure CopyCallInfo(var CallInfo : PCallInfo);

	Returns a record containing details about the current call.
	The TApdTapiDevice contains properties for the basic call information that a typical “dialer” pro...
	CallInfo is a pointer to a PCallInfo structure, which is allocated by CopyCallInfo and filled in ...
	The fields in the TCallInfo record are not described here. See page 393 for a list of TAPI refere...

	DeviceCount read-only, run-time property
	property DeviceCount : LongInt

	The number of currently installed TAPI devices.
	DeviceCount is the number of TAPI devices installed on the machine and available for use by TAPI ...
	See also: FilterUnsupportedDevices, SelectedDevice


	Dial method
	procedure Dial(ANumber : string);

	Dials a phone number in the background.
	Dial instructs TAPI to prepare the modem for dialing, then to dial ANumber. All of these operatio...
	If EnableVoice is False (you are attempting a data connection), the OnTapiPortOpen event should b...
	If a busy signal is detected and MaxAttempts is greater than one, Dial redials the number after w...
	Due to a limitation of the Microsoft supplied TAPI Service Providers, the OnTapiConnect event is ...
	The following example shows how to dial the U.S. Robotics BBS, waiting 5 minutes after a busy sig...
	ApdTapiDevice1.RetryWait := 300;
	ApdTapiDevice1.MaxAttempts := 10;
	ApdTapiDevice1.Dial('1-847-262-6000');
	See also: AutoAnswer, MaxAttempts, Number, RetryWait


	Dialing read-only, run-time property
	property Dialing : Boolean

	Determines whether TAPI is placing an outgoing call or listening for an incoming call.
	Dialing is True when TAPI is placing an outgoing call, False when TAPI is listening for or answer...
	The following example shows an OnTapiStatus event handler that uses Dialing to update a TLabel on...
	TForm1 = class(TForm)
	...
	ApdTapiDevice1 : TApdTapiDevice;
	Direction : TLabel;
	...
	end;

	procedure TForm1.ApdTapiDevice1TapiStatus(
	CP : TObject; First, Last : Boolean; Device, Message, Param1,
	Param2, Param3 : LongInt);
	const
	DirectionStr : array[Boolean] of string = (
	'Incoming', 'Outgoing');
	begin
	...
	Direction.Caption := DirectionStr[ApdTapiDevice1.Dialing];
	...
	end;
	See also: Number


	EnableVoice property
	property EnableVoice : Boolean
	Default: False


	Determines whether the initial mode of calls is DataModem (Fax or Data) or AutomatedVoice (Voice/...
	If EnableVoice is True and a TAPI device is selected, Async Professional first verifies that Auto...
	See also: OnTapiDTMF, OnTapiWave, PlayWaveFile, SendTone


	FailureCode read-only, run-time property
	property FailureCode : Integer

	FailureCode indicates the last TAPI failure.
	During a Dial or AutoAnswer attempt, TAPI could detect a failure and generate the OnTapiFail even...
	The FailureCodeMsg function will convert a FailureCode into a descriptive string based on the str...
	The following example determines the reason for the failure and displays a corrective action to t...
	uses
	AdTUtil; { for the error constants }

	procedure TForm1.ApdTapiDevice1TapiFail(Sender: TObject);
	begin
	case ApdTapiDevice1.FailureCode of
	LineDisconnectMode_Busy : ShowMessage(
	'The number was busy, try again later');
	LineDisconnectMode_NoAnswer : ShowMessage(
	'No answer, try again later');
	LineDisconnectMode_NoDialtone : ShowMessage(
	'No dialtone, check your phone line');
	else

	ShowMessage(
	ApdTapiDevice1.FailureCodeMsg(ApdTapiDevice1.FailureCode));
	end;
	end;
	See also: FailureCodeMsg, OnTapiFail


	FailureCodeMsg method
	function FailureCodeMsg(const FailureCode : Integer) : string;

	FailureCodeMsg converts a FailureCode into a descriptive string.
	FailureCodeMsg will return a text message describing the failure code. FailureCode is the failure...
	See also: FailureCode, OnTapiFail, TapiStatusMsg


	FilterUnsupportedDevices property
	property FilterUnsupportedDevices : Boolean

	Default: True
	Determines whether unsupported devices are displayed in the TAPI device selection dialog box.
	The TApdTapiDevice support TAPI line devices, with the DataModem and AutomatedVoice media modes. ...
	See also: SelectDevice


	GetDevConfig method
	function GetDevConfig : TTapiConfigRec;

	Returns the configuration of the currently selected device.
	The Data is binary, and described in the TAPI documentation as an “opaque” structure, meaning tha...
	The record used by GetDevConfig (and the following configuration methods) is defined as follows:
	TTapiConfigRec = record
	DataSize : Cardinal;
	Data : array[0..1023] of Byte;
	end;
	See also: SetDevConfig, ShowConfigDialogEdit


	InterruptWave run-time property
	property InterruptWave : Boolean
	Default: True


	Indicates whether the current wave file should stop when a DTMF tone is detected.
	If InterruptWave is True, the currently playing wave file will stop when a DTMF tone is detected....
	See also: OnTapiDTMF, PlayWaveFile, StopWaveFile


	MaxAttempts property
	property MaxAttempts : Word
	Default: 3


	Determines the number of times Dial automatically dials a number.
	This is the number of times a phone number is dialed, it is not the number of retries. When MaxAt...
	See also: Attempt, RetryWait


	MaxMessageLength run-time property
	property MaxMessageLength : LongInt
	Default: 60


	The maximum allowed message length, in seconds, for messages recorded over the TAPI waveform audi...
	Use this parameter to specify the maximum length of recorded messages. A 60-second message will r...
	If the TrimSeconds property is set to a non-zero value then wave recording may terminate before M...

	Number read-only, run-time property
	property Number : string

	The last phone number dialed.
	Number is intended primarily for use in status routines, to display the last number dialed. Numbe...
	The following example shows an OnTapiStatus event handler that displays the last number dialed.
	TForm1 = class(TForm)
	...
	ApdTapiDevice1 : TApdTapiDevice;
	NumberDialed : TLabel;
	...
	end;

	procedure TForm1.ApdTapiDevice1TapiStatus(
	CP : TObject; First, Last : Boolean; Device, Message, Param1,
	Param2, Param3 : LongInt);
	begin
	...
	if Dialing then
	NumberDialed.Caption := ApdTapiDevice1.Number
	else
	NumberDialed.Caption := '';
	...
	end;
	...
	ApdTapiDevice1.Dial('1-847-262-6000');
	See also: Dial, Dialing


	OnTapiCallerID event
	property OnTapiCallerID : TTapiCallerIDEvent
	TTapiCallerIDEvent = procedure(
	CP : TObject; ID, IDName : String) of object;

	Defines an event handler that is called after a connection is made and both a Caller ID string an...
	The OnTapiCallerID event makes it easy to access Caller ID information without having to know whe...
	The following example shows how to use the OnTapiCallerID event to get the Caller ID information ...
	procedure TForm1.ApdTapiDevice1TapiCallerID(
	CP : TObject; ID, IDName : string);
	begin
	CallerId.Text := ID;
	CallerIdName.Text := IDName;
	end;
	See also: CallerID, CallerIDName


	OnTapiConnect event
	property OnTapiConnect : TNotifyEvent

	Defines an event handler that is called when a connection is established.
	Dial and AutoAnswer operations take place in the background. If a connection is established after...
	No parameters are passed to the OnTapiConnect event. The OnTapiConnect event is most useful and r...

	OnTapiDTMF event
	property OnTapiDTMF : TTapiDTMFEvent
	TTapiDTMFEvent = procedure(
	CP : TObject; Digit : Char; ErrorCode : Longint;) of object;

	Defines an event handler that is called when a DTMF tone is detected.
	Digit is a character that represents the phone button that was pressed on the remote phone device...
	The following example builds a string of up to ten DTMF tones (characters) in the global variable S.
	procedure TForm1.ApdTapiDevice1TapiDTMF(
	CP : TObject; Digits : Char; ErrorCode : LongInt);
	begin
	if Length(S) < 11 then
	S := S + Digit;
	end;
	See also: EnableVoice


	OnTapiFail event
	property OnTapiFail : TNotifyEvent

	Defines an event handler that is called when a connection attempt fails.
	Dial and AutoAnswer operations take place in the background. If an attempt to establish a connect...
	No parameters are passed to OnTapiFail. It is a notification to the application that a connection...
	The FailureCode property will contain the most severe error reported by TAPI. See the description...
	See also: FailureCode, FailureCodeMsg


	OnTapiLog event
	property OnTapiLog : TTapiLogEvent
	TTapiLogEvent = procedure(
	CP : TObject; Log : TTapiLogCode) of object;

	Defines an event handler that is called at designated points during a dial or answer attempt.
	The primary purpose of this event is to give the application a chance to log auditing information...
	CP is the TAPI component that generated the event. Log is a code that indicates the state of the ...
	See “TAPI logging” on page 397 for more information.
	See also: Dialing, Number, TapiLog


	OnTapiPortClose event
	property OnTapiPortClose : TNotifyEvent

	Defines an event handler that is called immediately after TApdTapiDevice closes its associated TA...
	The TApdTapiDevice component is responsible for opening and closing the associated TApdComPort at...
	The serial port handle is invalid once the OnTapiPortClose event is generated, attempts to access...
	Applications can use this event to perform additional port cleanup activities.
	See also: OnTapiPortOpen


	OnTapiPortOpen event
	property OnTapiPortOpen : TNotifyEvent

	Defines an event handler that is called immediately after TApdTapiDevice opens its associated TAp...
	The TApdTapiDevice component is responsible for opening and closing the associated TApdComPort at...
	The serial port associated with the selected TAPI device is valid, and available when this event ...
	Note that this event is not generated during a voice connection. When a voice connection is made ...
	Applications can use this event to perform additional port setup activities.
	See also: OnTapiPortClose


	OnTapiStatus event
	property OnTapiStatus : TTapiStatusEvent
	TTapiStatusEvent = procedure(CP : TObject; First, Last : Boolean;
	Device, Message, Param1,Param2, Param3 : Cardinal) of object;

	Defines an event handler that is called regularly during a TAPI dial or answer attempt.
	TAPI performs dial and answer activities in the background, calling a callback routine whenever t...
	CP is the TApdTapiDevice component that generated the event.
	First is True on the first OnTapiStatus event to signal the status routine to perform its start- ...
	The other parameters are the ones passed by TAPI to the callback routine. The only parameters tha...
	The remaining parameters (Device, Param2, and Param3) are intended for use in applications that e...
	TAPI generates callbacks only when it perceives a change in the state of the line or call. TAPI, ...
	To solve this problem, TApdTapiDevice generates additional OnTapiStatus events, based on an inter...

	OnTapiWaveNotify event
	property OnTapiWaveNotify : TTapiWaveNotify
	TTapiWaveEvent = procedure(
	CP : TObject; Msg : TWaveMessage) of object;
	TWaveMessage = (waPlayOpen, waPlayDone, waPlayClose,
	waRecordOpen, waDataReady, waRecordClose);

	Defines an event handler that is called when a wave file status changes.
	The possible values for Msg are:
	The following example sets the Caption of a label after a wave file has finished playing:
	procedure TForm1.ApdTapiDevice1TapiWaveEvent(
	CP : TObject; Msg : TWaveMessage);
	begin
	if Msg = waPlayDone then
	Label4.Caption := 'Wave Device Idle...';
	end;
	See also: PlayWaveFile, StartWaveRecord, StopWaveFile, StopWaveRecord


	OnTapiWaveSilence event
	FOnTapiWaveSilence : TTapiWaveSilence
	TTapiWaveSilence = procedure(CP : TObject;
	var StopRecording : Boolean; var Hangup : Boolean) of object;

	Defines an event handler that is called when silence is detected while recording a wave file.
	StopRecording is a var Boolean parameter that determines whether wave recording should stop. This...
	This event works in conjunction with the TrimSeconds property. If TrimSeconds is 0 then OnTapiWav...
	See also: StartWaveRecord, StopWaveRecord, TrimSeconds


	PlayWaveFile method
	procedure PlayWaveFile(FileName : String);

	Plays a wave file.
	FileName is the name of the wave file. The wave file starts playing immediately if there is not a...
	The following example plays a wave file through the TAPI device:
	ApdTapiDevice1.PlayWaveFile('greeting.wav');
	See also: InterruptWave, OnTapiWaveNotify, StopWaveFile, UseSoundCard


	RetryWait property
	property RetryWait : Word
	Default: 60


	The number of seconds to wait after a busy signal before trying the number again.
	After encountering a busy signal, TApdTapiDevice checks to see if it should try this number again...
	See also: Attempts, MaxAttempts


	SaveWaveFile method
	procedure SaveWaveFile(FileName : String; Overwrite : Boolean);

	Saves recorded wave data to disk.
	FileName is the file to save. Overwrite indicates whether an existing file should be overwritten....
	The following example starts recording wave data on a button click and saves the recorded data wh...
	procedure TForm1.Button1Click(Sender : TObject);
	begin
	ApdTapiDevice1.StartWaveRecord;
	end;

	procedure TForm1.ApdTapiDevice1TapiWaveNotify(
	CP : TObject; Msg : TWaveMessage);
	begin
	if Msg = waDataReady then
	ApdTapiDevice1.SaveWaveFile('Call01.wav', True);
	end;
	See also: OnTapiWaveNotify, StartWaveRecord, StopWaveRecord


	SelectDevice method
	procedure SelectDevice;

	Displays a dialog box to select a TAPI device.
	SelectDevice uses the same dialog box as the property editor for SelectedDevice. You can call Sel...
	See SelectedDevice for the displayed dialog box.
	See also: FilterUnsupportedDevices, ShowTapiDevices


	SelectedDevice property
	property SelectedDevice : string

	Determines the TAPI device to be used for dialing and answering.
	TAPI assigns names to each installed modem. TApdTapiDevice components select among those devices ...
	Because the name specified in SelectedDevice must exactly match a TAPI device name, you should us...
	SelectedDevice must be set before calling Dial, AutoAnswer, or ShowConfigDialog or they will rais...

	SendTone method
	procedure SendTone(Digits : string);

	Sends a DTMF tone to a remote telephone.
	SendTone replicates the press of a telephone touch pad button from within an application. Digits ...
	You can also use a comma (,) between characters for a short delay between the tones. Multiple com...
	The following example demonstrates how to use SendTone to send multiple tones with a delay.
	SendTone('123456789,,0');
	See also: EnableVoice, OnTapiDTMF


	SetDevConfig method
	procedure SetDevConfig(const Config : TTapiConfigRec);

	Sets the selected device to the configuration defined in Config.
	The selected device does not have to be “open” at the time of configuration. Config must originat...
	See also: GetDevConfig, ShowConfigDialogEdit


	SetRecordingParams method
	procedure SetRecordingParams(NumChannels : Byte;
	NumSamplesPerSecond : Integer; NumBitsPerSample : Byte);

	Sets the parameters used to record a wave file.
	NumChannels is the number of channels to use for recording. A value of 1 indicates mono, and a va...
	By default recording parameters are set to 1 channel (mono), 8000 samples per second, 16 bits per...
	See also: StartWaveRecord


	ShowConfigDialog method
	procedure ShowConfigDialog;

	Displays the TAPI property sheets for the selected TAPI device.
	TAPI maintains a set of port properties for each TAPI device. These property sheets are accessibl...

	ShowConfigDialogEdit method
	function ShowConfigDialogEdit(
	const Init : TTapiConfigRec) : TTapiConfigRec;

	Shows a TAPI configuration dialog for the selected device.
	Init must be initialized with a TTapiConfigRec obtained from a call to GetDevConfig with the same...
	See also: GetDevConfig, SetDevConfig


	ShowPorts property
	property ShowPorts : Boolean
	Default: True


	Controls whether serial ports are displayed by the SelectDevice method.
	ShowPorts is used in conjunction with ShowTapiDevices to determine what is displayed in the Devic...
	If ShowPorts is True, the available serial ports are displayed in the drop-down box in the Device...
	When ShowPorts is True, the available serial ports will be displayed in the dialog box. If one of...
	See also: SelectedDevice, ShowTapiDevices


	ShowTapiDevices property
	property ShowTapiDevices : Boolean
	Default: True


	Controls whether TAPI devices are displayed by the SelectDevice method.
	If ShowTapiDevices is True, SelectDevice shows both TAPI devices and available serial ports. If S...
	See also: SelectDevice, ShowPorts


	SilenceThreshold run-time property
	property SilenceThreshold : Integer
	Default: 50


	Specifies a value that is used as a measure of silence.
	When the TrimSeconds property is set to a non-zero value, the wave data is examined as it is reco...
	See also: OnTapiWaveSilence, StartWaveRecord, StopWaveRecord, TrimSeconds


	StartWaveRecord method
	procedure StartWaveRecord;

	Starts the wave device recording.
	Use StartWaveRecord to begin recording a wave file using the TAPI waveform audio device. Recordin...
	When recording stops, the OnTapiWaveNotify event is generated with Msg set to waDataReady. After ...
	The following example sets the maximum message length to 45 seconds, starts recording wave data o...
	procedure TForm1.Button1Click(Sender : TObject);
	begin
	ApdTapiDevice1.MaxMessageLength := 45;
	ApdTapiDevice1.StartWaveRecord;
	end;

	procedure TForm1.ApdTapiDevice1TapiWaveNotify(
	CP : TObject; Msg : TWaveMessage);
	begin
	if Msg = waDataReady then
	ApdTapiDevice1.SaveWaveFile('Call01.wav');
	end;
	See also: MaxMessageLength, PlayWaveFile, SaveWaveFile, StopWaveRecord, TrimSeconds


	StatusDisplay property
	property StatusDisplay : TApdAbstractTapiStatus

	An instance of a TAPI status window.
	If StatusDisplay is nil (the default), TApdTapiDevice does not provide an automatic status window...
	If you create an instance of a class derived from TApdAbstractTapiStatus or use the supplied TApd...
	StatusDisplay is usually set automatically at design time to the first TApdAbstractStatus or deri...
	Setting the StatusDisplay property at run time is necessary only when using a dynamically created...

	StopWaveFile method
	procedure StopWaveFile;

	Stops the wave file that is currently playing.
	The wave file is halted regardless of the value of the InterruptWave property. StopWaveFile gener...
	if ApdTapiDevice1.WaveState = wsPlaying then
	ApdTapiDevice1.StopWaveFile;
	See also: InterruptWave, OnTapiWaveNotify, PlayWaveFile, WaveStatus


	StopWaveRecord method
	procedure StopWaveRecord;

	Stops the wave file that is recording.
	It is not always necessary to call this function since wave recording may be halted as the result...
	See also: MaxMessageLength, OnTapiWaveNotify, SaveWaveFile, StartWaveRecording, TrimSeconds


	TapiLog property
	property TapiLog : TApdTapiLog

	An instance of a TAPI logging component.
	If TapiLog is nil (the default), TApdTapiDevice does not provide automatic logging. You can insta...
	TapiLog is usually set automatically at design time to the first TApdTapiLog or derived component...
	Setting the TapiLog property at run time is necessary only when using a dynamically created loggi...

	TapiState read-only, run-time property
	property TapiState : TTapiState
	TTapiState = (tsIdle, tsOffering, tsAccepted, tsDialTone,
	tsDialing, tsRingback, tsBusy, tsSpecialInfo, tsConnected,
	tsProceeding, tsOnHold, tsConferenced, tsOnHoldPendConf,
	tsOnHoldPendTransfer, tsDisconnected, tsUnknown);
	Default: tsNone


	The state of the TAPI operation.
	When TapiState is referenced, APRO retrieves state information from TAPI and returns the result a...
	Note: Since APRO retrieves this value from TAPI every time you check it, you should avoid calling...

	TapiStatusMsg method
	function TApdCustomTapiDevice.TapiStatusMsg(
	const Message, State, Reason : DWORD) : string;

	Returns a text message for the progress of the current TAPI call.
	TapiStatusMsg is intended primarily for use in OnTapiStatus event handlers. Message is the Messag...
	The following example shows an OnTapiStatus event handler that calls TapiStatusMsg and displays t...
	TForm1 = class(TForm)
	...
	ApdTapiDevice1 : TApdTapiDevice;
	StatusStr : TLabel;
	...
	end;

	procedure TForm1.ApdTapiDevice1TapiStatus(
	CP : TObject; First, Last: Boolean; Device, Message, Param1,
	Param2, Param3 : LongInt);
	begin
	...
	StatusStr.Caption :=
	ApdTapiDevice1.TapiStatusMsg(Message, Param1, Param2);
	...
	end;
	See also: OnTapiStatus


	TranslateAddress method
	function TranslateAddress(CanonicalAddr : String) : String;

	Translates a canonical address into a dialable address.
	A canonical address is an address that contains the country code as well as the phone number. TAP...
	See also: Dial


	TrimSeconds run-time property
	property TrimSeconds : Integer
	Default: 2


	Sets the number of seconds of silence to detect when recording wave files.
	Wave recording can be terminated in one of three ways. First, you can manually terminate recordin...
	When TrimSeconds is set to a non-zero value, the wave data is examined as it is recorded. Silence...
	See also: OnTapiWaveSilence, SilenceThreshold, StartWaveRecord, StopWaveRecord


	UseSoundCard run-time property
	property UseSoundCard : Boolean
	Default: False


	Determines where the output from PlayWaveFile is sent.
	UseSoundCard determines whether the output from PlayWaveFile goes to the TAPI device or to the so...
	The following example plays a wave file through the sound card rather than over the phone line an...
	ApdTapiDevice1.UseSoundCard := True;
	ApdTapiDevice1.PlayWaveFile('Call01.wav');
	ApdTapiDevice1.UseSoundCard := False;
	See also: PlayWaveFile


	WaveFileName read-only, run-time property
	property WaveFileName : TFileName

	The name of the current wave file.
	If a wave file is currently playing, WaveFileName is the name of the file. If no wave file is cur...
	The following example sets a label’s Caption to the name of the current wave file:
	Label1.Caption := ApdTapiDevice1.WaveFileName;
	See also: PlayWaveFile


	WaveState read-only, run-time property
	property WaveState : TWaveState
	TWaveState = (wsIdle, wsPlaying, wsRecording, wsData);

	The current state of the TAPI waveform device.
	The possible values for wsData are:
	The following example stops a wave file if one is currently playing:
	if ApdTapiDevice1.WaveState = wsPlaying then
	ApdTapiDevice1.StopWaveFile;
	See also: PlayWaveFile, StartWaveRecord, StopWaveFile, StopWaveRecord




	TApdAbstractTapiStatus Class
	TApdAbstractTapiStatus is an abstract class that defines the methods and properties needed by a c...
	However, TApdTapiStatus shows a particular set of information about a call in a predefined format...
	The TApdAbstractTapiStatus class contains an instance of a TForm that holds controls used to disp...
	TApdAbstractTapiStatus overrides the standard VCL properties Ctl3D, Position, and Visible and the...
	Once you create an instance of your TApdAbstractTapiStatus descendant, you must assign it to the ...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdAbstractTapiStatus (AdTapi)


	Properties
	Methods
	Reference Section
	CreateDisplay dynamic abstract method
	procedure CreateDisplay; dynamic; abstract;

	An abstract method that creates a form to display dialing and answering status.
	A descendant of TApdAbstractTapiStatus must override this method with a routine that creates a TF...
	CreateDisplay must then assign the instance of this form to the Display property.
	See also: DestroyDisplay, Display


	DestroyDisplay dynamic abstract method
	procedure DestroyDisplay; dynamic; abstract;

	An abstract method that destroys the display form.
	A descendant of TApdAbstractTapiStatus must override this method to destroy the TForm instance cr...
	See also: CreateDisplay, Display


	Display run-time property
	property Display : TForm

	A reference to the form created by CreateDisplay.
	CreateDisplay must assign a properly initialized instance of a TForm to this property. UpdateDisp...
	See also: CreateDisplay, UpdateDisplay


	TapiDevice property
	property TapiDevice : TApdCustomTapiDevice

	The TApdTapiDevice component that is using the status component.
	When you derive components from TApdAbstractTapiStatus, you will probably reference TApdTapiDevic...

	UpdateDisplay virtual abtract method
	procedure UpdateDisplay(First, Last : Boolean;
	Device, Message, Param1, Param2, Param3 : DWORD);
	virtual; abstract;

	An abstract method that writes the contents of the status window.
	A descendant of TApdAbstractTapiStatus must override this method to update the display form. The ...
	On the first call to UpdateDisplay, First equals True and UpdateDisplay should call the Show meth...
	For all other calls to UpdateDisplay, First and Last are both False. During these calls UpdateDis...
	The CancelClick event handler, if one is provided, should call the CancelCall method of TApdTapiD...



	TApdTapiStatus Component
	TApdTapiStatus is a descendant of TApdAbstractTapiStatus that implements a standard TAPI status d...
	TApdTapiStatus overrides all the abstract methods of TApdAbstractTapiStatus. TApdTapiStatus has n...
	Figure 12.1 shows the TStandardTapiDisplay form that is associated with a TApdTapiStatus component.
	Figure 12.1: TStandardTapiDisplay form.

	For an example of using a TApdTapiStatus component, see either the dial or answer examples in “Ma...
	Hierarchy
	TComponent (VCL)
	TApdBaseComponent (OOMisc) 8
	TApdAbstractTapiStatus (AdTapi) 440
	TApdTapiStatus (AdTStat)



	TApdTapiLog Class
	TApdTapiLog is a small class that can be associated with a TApdTapiDevice to provide automatic TA...
	TApdTapiLog creates or appends to a text file whose name is given by the TapiHistoryName property...
	Following is a sample of the text file created by TApdTapiLog:
	5/7/96 10:11:34 PM : call started
	5/7/96 10:11:34 PM : dialing 262-6000
	5/7/96 10:11:53 PM : cancelled
	5/7/96 10:11:53 PM : call finished

	5/7/96 10:50:50 PM : call started
	5/7/96 10:50:50 PM : dialing 262-6000
	5/7/96 10:51:02 PM : busy
	5/7/96 10:51:02 PM : dial failed
	5/7/96 10:51:07 PM : dialing 262-6000
	5/7/96 10:51:11 PM : cancelled
	5/7/96 10:51:11 PM : call finished

	5/7/96 11:11:34 PM : call started
	5/7/96 11:11:34 PM : dialing 262-6000
	5/7/96 11:11:53 PM : connected
	5/7/96 11:30:07 PM : call finished

	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdTapiLog (AdTapi)


	Properties
	Methods
	Reference Section
	TapiDevice property
	property TapiDevice : TApdCustomTapiDevice

	The TAPI component that is using the log component.
	TapiDevice is automatically initialized when the TapiLog property of the owning TAPI component is...

	TapiHistoryName property
	property TapiHistoryName : string
	Default: “APROTAPI.HIS”


	Determines the name of the TAPI log file.
	The value of TapiHistoryName should be set before calling Dial or AutoAnswer. However, because th...
	See also: TApdTapiDevice.AutoAnswer, TApdTapiDevice.Dial


	UpdateLog virtual method
	procedure UpdateLog(const Log : TTapiLogCode); virtual;
	TTapiLogCode = (ltapiNone, ltapiCallStart,
	ltapiCallFinish, ltapiDial, ltapiAnswer, ltapiConnect,
	ltapiCancel, ltapiDrop, ltapiBusy, ltapiDialFail);

	Called for each TAPI logging event.
	The Log parameter has the same values passed to the OnTapiLog event handler of TApdTapiDevice. Up...
	TApdTapiLog contains a field named TapiDevice that UpdateLog uses to obtain additional informatio...
	See also: TApdTapiDevice.OnTapiLog





	Chapter 13: Modem Components
	Async Professional provides a modem database and several components for configuring, dialing, and...
	The modem components provide routines for retrieving modem information from the libmodem database...
	For projects ported from previous versions of Async Professional, the TAdModem, TApdSModem and su...
	AdMdm
	Contains a component (TAdModem) that provides a simple interface for accessing the most commonly ...

	AdLibMdm
	Contains TApdLibModem, a VCL component that provides an interface to the libmodem modem database.

	AdMdmDlg
	Contains a modem status dialog for use with the TAdModem component.

	modemcap and libmodem
	The TAdModem component uses a Windows version of libmodem to obtain modem configuration informati...

	TApdLibModem Component
	The TApdLibModem component is a Windows implementation of libmodem. This class provides several r...
	Detailed configuration, response and feature information for a wide variety of modems is stored i...
	Several data structures are used to describe the modem cap index and the modem detail files. Thes...
	The TApdLibModem class uses the following structures. Several fields are TLists, each item points...
	{ an entry from modemcap.xml describing the location and identification of a single modem }
	PLmModemName = ^TLmModemName;
	TLmModemName = record
	ModemName : string;
	Manufacturer : string;
	Model : string;
	ModemFile : string;
	end;

	{ a modem response }
	PLmResponseData = ^TLmResponseData;
	TLmResponseData = record
	Response : string;
	ResponseType : string;
	end;

	{ lots of modem responses }
	PLmResponses = ^TLmResponses;
	TLmResponses = record
	OK : TList; // LmResponseData
	NegotiationProgress : TList; // LmResponseData
	Connect : TList; // LmResponseData
	Error : TList; // LmResponseData
	NoCarrier : TList; // LmResponseData
	NoDialTone : TList; // LmResponseData
	Busy : TList; // LmResponseData
	NoAnswer : TList; // LmResponseData
	Ring : TList; // LmResponseData
	VoiceView1 : TList; // LmResponseData
	VoiceView2 : TList; // LmResponseData
	VoiceView3 : TList; // LmResponseData
	VoiceView4 : TList; // LmResponseData
	VoiceView5 : TList; // LmResponseData
	VoiceView6 : TList; // LmResponseData
	VoiceView7 : TList; // LmResponseData
	VoiceView8 : TList; // LmResponseData
	RingDuration : TList; // LmResponseData
	RingBreak : TList; // LmResponseData
	Date : TList; // LmResponseData
	Time : TList; // LmResponseData
	Number : TList; // LmResponseData
	Name : TList; // LmResponseData
	Msg : TList; // LmResponseData
	SingleRing : TList; // LmResponseData
	DoubleRing : TList; // LmResponseData
	TripleRing : TList; // LmResponseData
	Voice : TList; // LmResponseData
	Fax : TList; // LmResponseData
	Data : TList; // LmResponseData
	Other : TList; // LmResponseData
	end;

	{ a modem command }
	PLmModemCommand = ^TLmModemCommand;
	TLmModemCommand = record
	Command : string;
	Sequence : Integer;
	end;

	{ fax commands and responses }
	TLmFaxClassDetails = record
	ModemResponseFaxDetect : string;
	ModemResponseDataDetect : string;
	SerialSpeedFaxDetect : string;
	SerialSpeedDataDetect : string;
	HostCommandFaxDetect : string;
	HostCommandDataDetect : string;
	ModemResponseFaxConnect : string;
	ModemResponseDataConnect : string;
	AnswerCommand : TList;
	end;

	{ more fax commands and responses }
	TLmFaxDetails = record
	ExitCommand : string;
	PreAnswerCommand : string;
	PreDialCommand : string;
	ResetCommand : string;
	SetupCommand : string;
	EnableV17Recv : string;
	EnableV17Send : string;
	FixModemClass : string;
	FixSerialSpeed : string;
	HighestSendSpeed : string;
	LowestSendSpeed : string;
	HardwareFlowControl : string;
	SerialSpeedInit : string;
	Cl1FCS : string;
	Cl2DC2 : string;
	Cl2lsEx : string;
	Cl2RecvBOR : string;
	Cl2SendBOR : string;
	Cl2SkipCtrlQ : string;
	Cl2SWBOR : string;
	Class2FlowOff : string;
	Class2FlowHW : string;
	Class2FlowSW : string;
	FaxClass1 : TLmFaxClassDetails;
	FaxClass2 : TLmFaxClassDetails;
	FaxClass2_0 : TLmFaxClassDetails;
	end;

	{ supported wave formats }
	PLmWaveFormat = ^TLMWaveFormat;
	TLmWaveFormat = record
	ChipSet : string;
	Speed : string;
	SampleSize : string;
	end;

	{ wave details }
	TLmWaveDriver = record
	BaudRate : string;
	WaveHardwareID : string;
	WaveDevices : string;
	LowerMid : string;
	LowerWaveInPid : string;
	LowerWaveOutPid : string;
	WaveOutMixerDest : string;
	WaveOutMixerSource : string;
	WaveInMixerDest : string;
	WaveInMixerSource : string;
	WaveFormat : TList; // LmWaveFormat
	end;

	{ voice modem properties }
	TLmVoiceSettings = record
	VoiceProfile : string;
	HandsetCloseDelay : Integer;
	SpeakerPhoneSpecs : string;
	AbortPlay : string;
	CallerIDOutSide : string;
	CallerIDPrivate : string;
	TerminatePlay : string;
	TerminateRecord : string;
	VoiceManufacturerID : string;
	VoiceProductIDWaveIn : string;
	VoiceProductIDWaveOut : string;
	VoiceSwitchFeatures : string;
	VoiceBaudRate : Integer;
	VoiceMixerMid : string;
	VoiceMixerPid : string;
	VoiceMixerLineID : string;

	CloseHandset : TList; // LmModemCommand;
	EnableCallerID : TList; // LmModemCommand;
	EnableDistinctiveRing : TList; // LmModemCommand;
	GenerateDigit : TList; // LmModemCommand;
	HandsetPlayFormat : TList; // LmModemCommand;
	HandsetRecordFormat : TList; // LmModemCommand;
	LineSetPlayFormat : TList; // LmModemCommand;
	LineSetRecordFormat : TList; // LmModemCommand;
	OpenHandset : TList; // LmModemCommand;
	SpeakerPhoneDisable : TList; // LmModemCommand;
	SpeakerPhoneEnable : TList; // LmModemCommand;
	SpeakerPhoneMute : TList; // LmModemCommand;
	SpeakerPhoneSetVolumeGain : TList; // LmModemCommand;
	SpeakerPhoneUnMute : TList; // LmModemCommand;
	StartPlay : TList; // LmModemCommand;
	StartRecord : TList; // LmModemCommand;
	StopPlay : TList; // LmModemCommand;
	StopRecord : TList; // LmModemCommand;
	VoiceAnswer : TList; // LmModemCommand;
	VoiceDialNumberSetup : TList; // LmModemCommand;
	VoiceToDataAnswer : TList; // LmModemCommand;
	WaveDriver : TLmWaveDriver;
	end;

	{ lots of specialized modem commands }
	TLmModemSettings = record
	Prefix : string;
	Terminator : string;
	DialPrefix : string;
	DialSuffix : string;
	SpeakerVolume_High : string;
	SpeakerVolume_Low : string;
	SpeakerVolume_Med : string;
	SpeakerMode_Dial : string;
	SpeakerMode_Off : string;
	SpeakerMode_On : string;
	SpeakerMode_Setup : string;
	FlowControl_Hard : string;
	FlowControl_Off : string;
	FlowControl_Soft : string;
	ErrorControl_Forced : string;
	ErrorControl_Off : string;
	ErrorControl_On : string;
	ErrorControl_Cellular : string;
	ErrorControl_Cellular_Forced: string;
	Compression_Off : string;
	Compression_On : string;
	Modulation_Bell : string;
	Modulation_CCITT : string;
	Modulation_CCITT_V23 : string;
	SpeedNegotiation_On : string;
	SpeedNegotiation_Off : string;
	Pulse : string;
	Tone : string;
	Blind_Off : string;
	Blind_On : string;
	CallSetupFailTimer : string;
	InactivityTimeout : string;
	CompatibilityFlags : string;
	ConfigDelay : Integer;
	end;

	{ modem hardware settings }
	TLmModemHardware = record
	AutoConfigOverride : string;
	ComPort : string;
	InvalidRDP : string;
	IoBaseAddress : Integer;
	InterruptNumber : Integer;
	PermitShare : Boolean;
	RxFIFO : string;
	RxTxBufferSize : Integer;
	TxFIFO : string;
	Pcmcia : string;
	BusType : string;
	PCCARDAttributeMemoryAddress: Integer;
	PCCARDAttributeMemorySize : Integer;
	PCCARDAttributeMemoryOffset : Integer;
	end;

	{ the whole shebang }
	PLmModem = ^TLmModem;
	TLmModem = record
	Inheritance : string;
	AttachedTo : string;
	FriendlyName : string;
	Manufacturer : string;
	Model : string;
	ModemID : string;
	InactivityFormat : string;
	Reset : string;
	DCB : string;
	Properties : string;
	ForwardDelay : Integer;
	VariableTerminator : string;
	InfPath : string;
	InfSection : string;
	ProviderName : string;
	DriverDesc : string;
	ResponsesKeyName : string;
	Default : string;
	CallSetupFailTimeout : Integer;
	InactivityTimeout : Integer;
	SupportsWaitForBongTone : Boolean;
	SupportsWaitForQuiet : Boolean;
	SupportsWaitForDialTone : Boolean;
	SupportsSpeakerVolumeLow : Boolean;
	SupportsSpeakerVolumeMed : Boolean;
	SupportsSpeakerVolumeHigh : Boolean;
	SupportsSpeakerModeOff : Boolean;
	SupportsSpeakerModeDial : Boolean;
	SupportsSpeakerModeOn : Boolean;
	SupportsSpeakerModeSetup : Boolean;
	SupportsSetDataCompressionNegot : Boolean;
	SupportsSetErrorControlProtNegot : Boolean;
	SupportsSetForcedErrorControl : Boolean;
	SupportsSetCellular : Boolean;
	SupportsSetHardwareFlowControl : Boolean;
	SupportsSetSoftwareFlowControl : Boolean;
	SupportsCCITTBellToggle : Boolean;
	SupportsSetSpeedNegotiation : Boolean;
	SupportsSetTonePulse : Boolean;
	SupportsBlindDial : Boolean;
	SupportsSetV21V23 : Boolean;
	SupportsModemDiagnostics : Boolean;
	MaxDTERate : Integer;
	MaxDCERate : Integer;
	CurrentCountry : string;
	MaximumPortSpeed : Integer;
	PowerDelay : Integer;
	ConfigDelay : Integer;
	BaudRate : Integer;
	Responses : TLmResponses;
	Answer : TList;
	Fax : TList;
	FaxDetails : TLmFaxDetails;
	Voice : TLmVoiceSettings;
	Hangup : TList;
	Init : TList;
	Monitor : TList;
	Settings : TLmModemSettings;
	Hardware : TLmModemHardware;
	BaudRates : TStringList;
	Options : TStringList;
	end;
	Not all of the proceeding structures and fields are used in Async Professional, they are included...

	Hierarchy
	TComponent (VCL)
	TApdLibModem(AdLibMdm)


	Properties
	Methods
	Reference Section
	AddModem method
	function AddModem(
	const ModemDetailFile : string; Modem : TLmModem) : Integer;

	Adds a modem definition to modemcap.
	AddModem adds the modem specified by Modem to the modem detail file specified by ModemDetailFile....
	See also: AddModemRecord


	AddModemRecord method
	function AddModemRecord(
	ModemRecord : TLmModemRecord) : Integer;

	Adds a modem record to the list of available modems.
	AddModemRecord adds the modem record specified by ModemRecord to the list of available modems to ...
	See also: AddModem


	CreateNewDetailFile method
	function CreateNewDetailFile(
	const ModemDetailFile : string) : Integer;
	Creates a new modem detail file.
	The CreateNewDetailFile method creates a new modem detail file with the appropriate XML headers.
	ModemDetailFile is the name of the new modem detail file. If ModemDetailFile already exists, it w...


	DeleteModem method
	function DeleteModem(
	const ModemDetailFile : string; Modem : TLmModem) : Integer;

	Deletes a modem detail record from a modem list.
	DeleteModem will search the modem detail file specified by ModemDetailFile for the modem pointed ...
	See also: DeleteModemRecord


	DeleteModemRecord method
	function DeleteModemRecord(
	ModemRecord : TLmModemRecord) : Integer;

	Deletes a modem record from a modemcap index.
	DeleteModemRecord will search the modemcap index for the modem record pointed to by ModemRecord. ...
	See also: DeleteModem


	GetModem method
	function GetModem(const ModemDetailFile,
	ModemName : string; var Modem : TLmModem) : Integer;
	Retrieves a specific modem from the modem detail file.
	GetModem retrieves a modem definition from modemcap. ModemDetailFile is the name of the modem det...
	If this method is successful, the return value is ecOK. If the ModemDetailFile is not found, the ...
	See also: SelectModem



	GetModems method
	function GetModems(
	const ModemDetailFile : string) : TStringList;
	Retrieves all modems from a modem detail file.
	GetModems retrieves all modem definitions contained in a specific modem detail file. ModemDetailF...
	The return value is a TStringList containing an item for each modem contained in the modem detail...


	ModemCapFolder property
	property ModemCapFolder : string
	Defines the location of the modemcap modem database.
	ModemCapFolder determines where the TApdLibModem component will find the modemcap modem database....


	SelectModem method
	function SelectModem(
	var ModemFile, ModemManufacturer, ModemName: string;
	var LmModem : TLmModem) : Boolean;
	Displays modem selection dialog box.
	Call the SelectModem method to display the modem selection dialog and select a modem definition. ...
	The ModemFile and ModemName parameters are used to filter the displayed modems, as well as to ret...
	If the OK button is selected to close the dialog, ModemFile will contain the name of the modem de...
	See also: GetModem





	TAdModem Component
	The TAdModem component combines the features of libmodem-based device selection and configuration...
	There are many similarities between the TAdModem and TApdTapiDevice components. The TApdTapiDevic...
	The TAdModem component requires libmodem and the modemcap database. See “TApdLibModem Component” ...
	Modem selection
	When using the TAdModem component, the appropriate modem definition must be loaded from modemcap....
	Figure 13.1: TAdModem.SelectModem dialog box.

	The “Manufacturer” combo box will be filled with a list of known modem manufacturers (those that ...
	To select a modem programatically, assign a TAdModemNameProp object to the SelectedDevice property

	Connectionless connections
	The TAdModem can establish a connection direct to the port through the ConfigAndOpen method. This...

	Dialing
	The TAdModem can also establish connections by dialing. To dial a number through the modem, and h...

	Answering an incoming call
	The TAdModem can also establish a connection by answering an incoming call. The TAdModem will ans...
	When the modem dials the number, or answers an incoming call, the modem will attempt to establish...

	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent(OOMisc) 8
	TAdCustomModem(AdMdm)
	TAdModem(AdMdm)


	Properties
	Methods
	Events
	Reference Section
	AnswerOnRing property
	property AnswerOnRing : Byte

	Default: 2
	The number of times the component should allow the incoming call to ring before answering it.
	The AnswerOnRing property determines the number of “RING” responses that the TAdModem detects bef...
	Caller ID information is transmitted between the first and second rings in most countries. The An...
	See also: AutoAnswer, RingWaitTimeout


	AutoAnswer method
	procedure AutoAnswer;

	Prepares the modem to answer a call after a specified number of rings.
	After AutoAnswer sets the appropriate variables and triggers, control returns to the program and ...
	Once the “RING” response is received, the ModemState changes from msAutoAnswerBackground to msAut...
	Auto answer mode can be cancelled by calling CancelCall. The auto answer mode is cancelled regard...
	Calling AutoAnswer does not turn on the auto answer (AA) light on an external modem. The AutoAnsw...
	See also: CancelCall, ModemState, OnModemCallerID, OnModemConnect, OnModemFail, StatusDisplay


	BPSRate read-only, run-time property
	property BPSRate : DWORD

	The rate of the current call in bits per second.
	BPSRate is the rate negotiated between the local and remote modems for the current call. If a cal...
	See also: OnModemConnect


	CancelCall method
	procedure CancelCall;

	Terminates a connection attempt or disconnects the current call.
	If a dial or an answer attempt is in progress, calling this method aborts the attempt and returns...
	If you call CancelCall while the TAdModem component is in auto answer mode, the modem component i...
	CancelCall is the TAdModem universal method for terminating the current call. It can be used whil...
	CancelCall returns when the connection, or connection attempt, has terminated. The OnModemDisconn...
	See also: AutoAnswer, Dial, OnModemDisconnect


	ComPort property
	property ComPort : TApdCustomComPort

	Determines the serial port to which the modem is connected.
	ComPort is usually set automatically at design time to the first TApdComPort component the TAdMod...
	Setting the ComPort property at run time is necessary only when using a dynamically created TApdC...
	Note that some properties of the TApdComPort may be overridden with properties retrieved from mod...
	See also: TApdCustomComPort


	ConfigAndOpen method
	procedure ConfigAndOpen;

	Configures the modem and provides access to the modem without a connection.
	The ConfigAndOpen method configures the modem according to the configuration settings retrieved f...
	ConfigAndOpen is used primarily to configure the modem to a known state where it can be used with...
	While the modem is being configured, several TApdDataPackets will be initialized to capture the r...
	Note that ConfigAndOpen establishes a connection to the port, not through the modem to another de...
	See also: AutoAnswer, CancelCall, Dial, OnModemConnect


	Dial method
	procedure Dial(ANumber : string);

	Dials the specified telephone number.
	Dial initializes the modem and then dials the number specified by the ANumber parameter. When the...
	Several TApdDataPackets are initialized to detect modem responses during initialization and to mo...
	Dial returns immediately. The OnModemConnect event is generated when the appropriate connection r...
	A dial operation can be cancelled at any time by calling CancelCall.
	The ANumber parameter to this event should contain all parameters required for your modem to dial...
	ApxModem1.Dial('9 555-1212');
	See also: AutoAnswer, CancelCall, ConfigAndOpen, DialTimeout, OnModemConnect, OnModemFail, Status...


	DialTimeout property
	property DialTimeout : Integer

	Default: 60
	The number of seconds to wait for a connection after dialing the number.
	When a dial attempt begins, the TAdModem component allows DialTimeout seconds for a connection re...
	See also: Dial, FailureCode, OnModemFail


	FailureCode read-only, run-time property
	property FailureCode : Integer

	The numerical code indicating the last failure.
	FailureCode is the result of the last AutoAnswer, ConfigAndOpen, or Dial method that was called. ...
	This property is used primarily in the OnModemFail event handler to determine the reason for the ...
	See also: AutoAnswer, ConfigAndOpen, Dial, FailureCodeMsg, OnModemFail


	FailureCodeMsg method
	function FailureCodeMsg(const FailureCode : Integer) : string;

	Converts a numerical FailureCode into a string describing the error.
	The FailureCodeMsg method converts a FailureCode into a human-readable string describing the error.
	See also: FailureCode, OnModemFail


	GetDevConfig method
	function GetDevConfig : TLmModem;

	Returns the modem configuration structure.
	The modemcap database file contains a list of modems and their configuration. The GetDevConfig me...
	This method can be used to confirm the modem configuration prior to use, or to make changes to th...
	See also: SetDevConfig


	ModemCapFolder property
	property ModemCapFolder : string

	Default: Empty string
	The name of the directory where the modemcap modem database has been installed.
	The modemcap database file contains a list of modems and their configuration strings. This folder...
	See also: SelectDevice, SelectedDevice


	ModemLogToString method
	function ModemLogToString(
	const LogCode : TAdModemLogCode) : string;

	Returns an English string describing an error code.
	The ModemLogToString method references the string resource for the log code and returns a text de...
	See also: OnModemLog


	ModemState read-only, run-time property
	property ModemState : TAdModemState
	TApdModemState = (msUnknown, msIdle, msInitializing,
	msAutoAnswerBackground, msAutoAnswerWait, msAnswerWait,
	msDialWait, msDialCycle, msConnectWait, msConnected,
	msHangup, msCancel);

	The current state of the TAdModem component.
	Default: msUnknown
	ModemState is used internally to track modem responses and controlling the state of the TAdModem ...
	ModemState values are:
	See also: ModemStateMsg, OnModemStatus


	NegotiationResponses read-only, run-time property
	property NegotiationResponses : TStringList

	Contains the modem’s reported negotiated connection parameters.
	During a connection attempt, either answering or dialing, the modem may return several lines of t...
	During an AutoAnswer operation, NegotiationResponses will contain all modem responses from the TA...
	See also: AutoAnswer, Dial


	OnModemCallerID method
	property OnModemCallerID : TModemCallerIDEvent
	TModemCallerIDEvent = procedure(
	Modem : TAdCustomModem; ID, IDName : string) of object;

	Defines an event handler that is generated when Caller ID information is detected.
	If the modemcap structure supports Caller ID configurations, the modem will be appropriately init...
	Modem is the TAdCustomModem component that generated the event. ID is the identification reported...
	In most countries, the telephone company supplies the Caller ID information between the first and...
	DATE: MM/DD/YY<CR><LF>
	TIME: HH:MM:SS<CR><LF> {24-hour format}
	NUMBER: {variable content}<CR><LF>
	NAME: {variable content}<CR><LF>
	Some telephone companies provide information in a different order, different format, or even diff...

	OnModemConnect method
	property OnModemConnect : TModemNotifyEvent
	TModemNotifyEvent = procedure(
	Modem : TAdCustomModem) of object;

	Defines an event handler that is generated when a connection is established.
	The OnModemConnect event is generated when dialing or answering after the modem returns the conne...
	Modem is the TAdCustomModem component that generated the event. No other parameters are provided.
	The TAdModem will watch for the connection responses as defined by the modemcap entry for the sel...
	See also: AutoAnswer, ConfigAndOpen, Dial, OnModemDisconnect


	OnModemDisconnect method
	property OnModemDisconnect : TModemNotifyEvent
	TModemNotifyEvent = procedure(
	Modem : TAdCustomModem) of object;

	Defines an event handler that is generated when a connection is terminated.
	The OnModemDisconnect event is generated when the TAdModem detects the connection has been termin...
	Modem is the TAdCustomModem that generated the event. No other parameters are provided.
	Note that some devices and protocols routinely toggle DCD. For these situations, consult the devi...
	See also: AutoAnswer, ConfigAndOpen, Dial, OnModemConnect


	OnModemFail method
	property OnModemFail : TModemNotifyEvent
	TModemNotifyEvent = procedure (
	Modem : TAdCustomModem) of object;

	Defines an event handler that is generated when a modem or connection failure is detected.
	The OnModemFail event is generated if the modem could not be initialized, or if a connection coul...
	Modem is the TAdCustomModem that generated the event. No other parameters are provided. The reaso...
	See also: AutoAnswer, ConfigAndOpen, Dial, FailureCode, FailureCodeMsg


	OnModemLog method
	property OnModemLog : TModemLogEvent
	TModemLogEvent = procedure(
	Modem : TAdCustomModem; LogCode : TApdModemLogCode) of object;

	Defines an event handler that is generated at designated points during a dial or answer attempt.
	The primary purpose of this event is to give the application a chance to log auditing information...
	Modem is the TAdCustomModem that generated the event. LogCode is the TAdModemLogCode that describ...
	TAdModemLogCode can have one of the following values:
	See also: ModemLogToString


	OnModemStatus method
	property OnModemStatus : TModemStatusEvent
	TModemStatusEvent = procedure(
	Modem : TAdCustomModem; ModemState : TAdModemState) of object;

	Defines an event handler that is generated when the state of the component changes.
	The OnModemStatus event is generated periodically when the ModemState property is changed. This e...
	Modem is the TAdCustomModem that generated the event. ModemState is the new state of the componen...
	See also: ModemState, ModemStatusMsg


	RingCount run-time, read-only property
	property RingCount : Byte

	Default: 0
	The number of ring signals detected for the current call.
	When the TAdModem is in AutoAnswer mode, the RingCount property indicates the number of ring sign...
	See also: AutoAnswer, RingWaitTimeout


	RingWaitTimeout property
	property RingWaitTimeout : DWORD

	Default: 1200
	Determines the number of milliseconds to wait before resetting an AutoAnswer attempt.
	Most phone companies generate the ring indicator signal every six seconds. When the TAdModem is i...
	See also: AutoAnswer, RingCount


	SelectDevice method
	function SelectDevice : Boolean;

	Displays the modem selection dialog.
	SelectDevice displays the modem selection dialog, which lists the modems defined in the modemcap ...
	To select a modem from modemcap, the manufacturer and modem name must be selected. The “Manufactu...
	If the AutoAnswer, ConfigAndOpen, or Dial methods are called without a valid modem specified in S...
	Selecting a new modem configuration through the SelectedDevice property of the SelectDevice metho...
	See also: GetDevConfig, SelectedDevice, SetDevConfig


	SelectedDevice property
	property SelectedDevice : TAdModemNameProp
	TAdModemNameProp = class(TPersistent)
	published
	property Manufacturer : string;
	property Name : string;
	end;

	The currently selected modem.
	SelectedDevice displays the modem manufacturer, model, and name of the modem that has been select...
	To change modems configurations at run time, you may either call the SelectDevice method to displ...
	Selecting a new modem configuration through the SelectedDevice property or SelectDevice method wh...
	See also: GetDevConfig, SelectDevice, SetDevConfig


	SendCommand method
	function SendCommand(const Command : string) : Boolean;

	Provides a convenient method to send a custom command to the modem.
	The SendCommand method can be used to send a modem command to the modem. SendCommand returns when...
	See also: FailureCode, FailureCodeMsg


	SetDevConfig method
	procedure SetDevConfig(const Config : TLmModem);

	Forces a modem configuration structure.
	The modemcap database file contains a list of modems and their configuration. The SetDevConfig me...
	This method is intended to be used after the GetDevConfig method provides the default configurati...
	See also: GetDevConfig


	StatusDisplay property
	property StatusDisplay : TApdAbstractModemStatus

	The status dialog used to provide visual status indications.
	During AutoAnswer or Dial operations, the status dialog specified by the StatusDisplay property c...
	The provided TAdModemStatus component encompasses several status indicators to illustrate the sta...
	See also: OnModemStatus




	TAdModemStatus Component
	The TAdModemStatus component is a descendant of the TApdAbstractModemStatus class that implements...
	Figure 13.2 shows the dialog box that the TAdModemStatus component displays.
	Figure 13.2: TAdModemStatus dialog box.

	The Status label displays a string describing the current TAdModem.ModemState property value, and...
	The Cancel button will cancel the operation by calling the CancelCall method of the TAdModem comp...
	The down arrow button will display a more detailed status dialog, as shown in Figure 13.3.
	Figure 13.3: TAdModemStatus expanded dialog box.

	To return to the compact display, click the up arrow button.
	To create a custom status dialog box, the OnModemStatus event of the TAdModem component can be us...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent(OOMisc) 8
	TApdAbstractModemStatus(AdMdmDlg)
	TAdModemStatus(AdMdmDlg)


	Properties
	Methods
	Reference Section
	Caption property
	property Caption : string

	Default: “Modem status”
	Determines the caption for the status dialog box.
	The Caption property sets the StatusDialog.Caption property. If your window manager supports titl...
	See also: StatusDialog


	Started run-time, read-only property
	property Started : Booleanproperty Started : Boolean

	Default: False
	Indicates whether the status dialog box has been created and initialized.
	The TForm descendant specified by the StatusDialog component is created and initialized when the ...
	Started is used by the TAdModemStatus dialog, it is available, but not required, for custom statu...
	See also: StatusDialog, UpdateDisplay


	StatusDialog property
	property StatusDialog : TForm

	Determines the status form to display.
	The TAdModemStatus component defines the TAdModemStatusDialog for displaying modem status. The di...
	The UpdateDisplay method updates StatusDialog to provide status indications. The dialog propertie...
	To provide a different dialog, create a new component, descend from the TApdAbstractModemStatus c...
	See also: UpdateDisplay


	UpdateDisplay method
	procedure UpdateDisplay(
	Modem : TAdCustomModem; const Str0, Str1, Str2, Str3 : string);

	Updates the StatusDialog.
	The UpdateDisplay method updates the dialog specified by StatusDialog. When creating a custom dis...
	Modem is the TAdCustomModem whose status has changed. Str0, Str1, Str2 and Str3 are strings that ...
	See also: StatusDialog





	Chapter 14: File Transfer Protocols
	Many communications applications need to transfer files or other large amounts of data from one m...
	That’s why Async Professional provides standard, tested, reliable, high performance file transfer...
	Async Professional offers the most widely used industry standard file transfer protocols, as show...
	Table 14.1: Available Async Professional file transfer protocols (continued)
	Three related classes are also described in this chapter. TApdAbstractStatus defines a mechanism ...

	General Issues
	The Async Professional protocol engine is implemented in a group of units with names like AwAbsPc...
	The protocol engine works in the background by using Async Professional timer, data available, an...
	The following subsections document issues that arise for all types of file transfers that use the...
	Buffer sizes
	When a TApdComPort component is created, you specify the input and output buffer sizes that the W...
	Once a file transfer starts, it is likely that the user will work in another window until the fil...
	To different degrees, all file transfer protocols are time-critical. They must respond to incomin...
	In practice, it takes a very ill-behaved program or unusual user (e.g., someone who spends 30 sec...
	One of the things your program can do is use a large input buffer. The Windows communications dri...
	A large output buffer is also valuable when transmitting files. Streaming protocols such as Ymode...
	If the status trigger message is delayed because another Windows application didn’t yield, the Wi...
	When transmitting files under protocol control, the output buffer size must be at least 2078 byte...
	In summary, your application should use input and output buffers that are as small as possible. H...

	Protocol events
	The protocol component generates several kinds of events. General descriptions of these events fo...
	OnProtocolAccept
	procedure(CP : TObject; var Accept : Boolean;
	var FName : string) of object;
	Generated as soon as the protocol window knows the name of an incoming file. This provides an opp...


	OnProtocolError
	procedure(CP : TObject; ErrorCode : SmallInt) of object;
	Generated when an unrecoverable error occurs. Recoverable errors do not generate this message bec...

	OnProtocolFinish
	procedure(CP : TObject; ErrorCode : SmallInt) of object;
	Generated after all files have been transferred or after the protocol terminates due to an unreco...

	OnProtocolLog
	procedure(CP : TObject; Log : Word) of object;
	Generated at the start and end of transferring each file. This provides an opportunity to log the...

	OnProtocolNextFile
	procedure(CP :TObject; var FName : string) of object;
	Generated whenever it is time to transmit another file. By default this message is handled by the...

	OnProtocolStatus
	procedure(CP : TObject; Options : Word) of object;
	Generated at regular intervals so that programs can display the progress of the protocol. See OnP...


	Aborting a protocol
	There will certainly be times when a protocol in progress must be canceled (e.g., when something ...
	To cancel any protocol simply call the CancelProtocol method of the TApdProtocol component. This ...
	When protocol transfers take place over a modem link it is a good idea to monitor the DCD (data c...
	Some protocols quickly detect that the remote isn’t acknowledging after the connection is broken....
	The protocol component provides an option to handle dropped carrier automatically. Set the AbortN...
	Using the AbortNoCarrier property is better than checking DCD and calling CancelProtocol in your ...

	Error handling
	All protocol transfers are subject to errors, including parity errors, files not found, and other...
	procedure Form1.ApdProtocol1ProtocolError(
	CP : TObject; ErrorCode : SmallInt);
	begin
	ShowMessage('Fatal protocol error: ' + ErrorMsg(ErrorCode));
	end;
	This event handler’s sole task is to display a message about the error. ErrorMsg is a function fr...
	See “Error Handling and Exception Classes” on page�900 for additional information about errors.


	Protocol status
	A protocol transfer can last a few seconds or several hours depending on the size and speed of th...
	During a protocol transfer the protocol window frequently generates an OnProtocolStatus event. Th...
	TForm1 = class(TForm)
	...
	FN: TLabel;
	BT: TLabel;
	BR: TLabel;
	...
	end;

	procedure TForm1.ApdProtocol1ProtocolStatus(
	CP : TObject; Options : Word);
	begin
	case Options of
	apFirstCall :
	...do setup stuff
	apLastCall :
	...do cleanup stuff
	else
	{show status}
	FN.Caption := ApdProtocol.FileName;
	BT.Caption := IntToStr(ApdProtocol.BytesTransferred);
	BR.Caption := IntToStr(ApdProtocol.BytesRemaining);
	end;
	end;
	The method named ApdProtocol1ProtocolStatus handles the OnProtocolStatus event by updating a form...

	apFirstCall = 1;
	apLastCall = 2;
	Options is set to apFirstCall the first time the protocol generates the event after being started...
	The rest of the information about protocol progress is obtained by reading the values of various ...
	BlockCheckMethod - the type of block check calculation used by the protocol. See the reference se...
	BlockErrors - the number of errors for the current block. This is the number of times the protoco...
	BlockLength - the current transfer block length. Although this value is usually static, some prot...
	BlockNumber - the number of blocks transmitted so far. This is obtained by dividing the number of...
	BytesRemaining - the size of the file minus BytesTransferred. When the file size isn’t known, Byt...
	BytesTransferred - the number of bytes transmitted or received so far. When transmitting, this nu...
	ElapsedTicks - the number of ticks elapsed since the protocol started. In order to provide accura...
	FileDate - the date and time of the file being transmitted or received. If the protocol does not ...
	FileLength - the size of the file being transmitted or received. For transmitted files the file s...
	FileName - the fully qualified name of the file that is being received or transmitted. When recei...
	InitialPosition - used only for resumed file transfers using the Zmodem protocol. To display an a...
	ProtocolError - the code of the last error encountered by the protocol. This equals zero except f...
	ProtocolStatus - a code that indicates the current state of the protocol. Table 14.2 shows all of...
	Table 14.2: Possible values for the ProtocolStatus property of TApdProtocol (continued)
	ProtocolType - the protocol type, which is one of ptXmodem, ptXmodemCRC, ptXmodem1K, ptXmodem1KG,...
	TotalErrors - the number of errors encountered since the current file was started. It is reset on...
	Various properties that describe the option settings for the protocol may also be used within the...
	The StatusInterval property, which defaults to 18, is the maximum number of ticks between OnProto...
	Async Professional includes a mechanism for providing an automatic protocol status display withou...
	property StatusDisplay : TApdAbstractStatus

	The TApdAbstractStatus class is described in more detail beginning on page TApdAbstractStatus Cla...
	When a protocol component is created, either dynamically or when dropped on a form, it searches t...
	Async Professional also provides a non-abstract implementation of a TApdAbstractStatus class call...



	Protocol logging
	File transfer is often an automated process. For example, an application might send all of the da...
	The Async Professional protocol logging feature is ideal for this kind of application. It provide...
	To support logging, the protocol component generates on OnProtocolLog event at the start and end ...
	procedure TForm1.ApdProtocol1ProtocolLog(
	CP : TObject; Log : Word);
	begin
	case Log of
	lfReceiveStart,
	lfTransmitStart :
	CurrentFile.Caption := ApdProtocol1.FileName;

	lfReceiveOk,
	lfTransmitOk :
	GoodList.Items.Add(ApdProtocol1.FileName);

	lfReceiveFail,
	lfTransmitFail :
	BadList.Items.Add(ApdProtocol1.FileName);

	lfReceiveSkip
	lfTransmitSkip :
	SkipList.Items.Add(ApdProtocol1.FileName);
	end;
	end;
	The example shows every possible logging value. The meaning of the various logging conditions sho...
	This example uses a TLabel control named CurrentFile to display the name of the file currently be...
	The logging routine isn’t limited to just writing status information. It also can take care of fi...
	Async Professional includes a mechanism for providing automatic protocol logging without programm...
	property ProtocolLog : TApdProtocolLog

	The TApdProtocolLog component is described in more detail beginning on page 583. TApdProtocolLog ...
	When a protocol component is created, either dynamically or when dropped on a form, it searches t...


	NextFile processing
	Several of the protocols provided by Async Professional can transmit and receive batches of files...
	In most cases, you don’t need to worry about handling this event because the protocol component d...
	For non-batch protocols like Xmodem the file mask should not contain wildcards. Such protocols ar...
	When the filemask technique is not adequate, you can write an event handler that implements whate...
	Here is an OnProtocolNextFile event handler that provides custom NextFile processing.
	const
	FileIndex : Word = 0;
	File1 = 'C:\AUTOEXEC.BAT';
	File2 = 'C:\CONFIG.SYS';
	File3 = 'C:\ASYNCPRO\ADPORT.PAS';
	...
	procedure TForm.ApdProtocol1ProtocolNextFile(
	CP : TObject; var FName : string);
	begin
	Inc(FileIndex);
	case FileIndex of
	1 : FName := File1;
	2 : FName := File2;
	3 : FName := File3;
	else FName := '';
	end;
	end;
	This example sends only the three files named by the constants File1, File2, and File3. The event...
	Async Professional does not provide built-in support for transmitting an arbitrary list of files....


	AcceptFile processing
	When receiving files, there may be times when you don’t want the incoming file. Consider, for exa...
	As another example, suppose that a BBS has a well-publicized rule that it accepts only LZH upload...
	The OnProtocolAccept event can be used to build such behavior into your application.
	Note that Zmodem, alone among the Async Professional protocols, has built-in functionality for ce...
	Once the protocol knows the name of an incoming file, but before it starts receiving data, it gen...
	For all protocols except Zmodem, the first rejected file terminates the entire batch transfer. Zm...
	The OnProtocolAccept event also provides an opportunity to rename an incoming file if its current...
	Note that all protocols have built-in options for handling incoming file name collisions. See the...
	Here is an event handler that rejects all files with the ARC extension:
	procedure TForm1.ApdProtocol1ProtocolAccept(
	CP : TObject; var Accept : Boolean; var FName : string);
	begin
	Accept := AnsiCompareText(ExtractFileExt(FName), '.ARC') <> 0;
	end;
	This example examines the extension of the incoming file and sets Accept to False if it matches “...


	Internal logic
	The protocol component has so far been described as a black box—you initialize it and call StartT...

	Receiving files
	When receiving files, the protocol window employs the following logic shown in Figure 14.1. This ...
	Figure 14.1: Protocol window logic when receiving files.

	The protocol first attempts to “handshake” with the remote machine. A handshake consists of a val...
	If the handshake is successful, the transmitter is asked for the name of the next file to transmi...
	The protocol generates the OnProtocolLog event to give the application an opportunity to record t...
	Next the protocol generates the OnProtocolAccept event. If the message handler sets Accept to Fal...
	The received file is created using the name from the file name header, perhaps as modified by the...
	The actual transfer of data comes next in step 7. The internal operations of this step vary treme...
	After the file transfer is complete, the file is closed in step 8. Then the OnProtocolLog event i...
	In a batch protocol, control returns to the top of the loop to get another file header. If one is...

	Transmitting files
	When transmitting files, the protocol window employs the following logic as shown in Figure 14.2....
	Figure 14.2: Protocol window logic when transmitting files.

	The protocol first attempts to handshake with the remote machine. A handshake consists of sending...
	If the handshake is successful, the protocol generates an OnProtocolNextFile event. The default h...
	The protocol generates the OnProtocolLog event to give the application an opportunity to record t...
	The outgoing file is opened in step 4. This step also allocates work buffers and initializes vari...
	The actual transfer of data comes next in step 5. The file is read in 8K byte blocks and sent usi...
	After the file transfer is complete, the file is closed and buffers are disposed in step 6. Then ...
	In a batch protocol, control returns to the top of the loop to get another file to send. If one i...


	Xmodem
	Xmodem is the oldest protocol supported by Async Professional. It was developed and first impleme...
	Xmodem is also the simplest, and perhaps the slowest, protocol supported by Async Professional. X...
	What follows is a simplified description of the Xmodem protocol, although it describes far more t...
	Figure 14.3: The format for XModem blocks.

	The <SOH> character marks the start of the block. Next comes a one byte block number followed by ...
	Table 14.3: Description of a typical XModem protocol transfer
	The receiver always starts the protocol by issuing a <NAK>, also called the handshake character. ...
	If the receiver does get a block, it compares the checksum it calculates to the received checksum...
	Either side can cancel the protocol at any time by sending three <CAN> characters (^X). However, ...
	From this description several things become clear. First, this protocol does not transfer any inf...
	The receiver also doesn’t know the exact size of the file, even after it is completely received. ...
	Xmodem often exhibits a start-up delay. The transmitter always waits for a <NAK> from the receive...
	Xmodem offers no escaping of binary control characters. Escaping means that characters can be tra...
	The only merit of the basic Xmodem protocol is that it is so widespread that it’s probably suppor...

	Xmodem extensions
	Xmodem has been tweaked and improved through the years. Some of these variations have become stan...
	The first of these improvements is called Xmodem CRC, which substitutes a 16 bit CRC (cyclic redu...
	The receiver indicates that it wants to use Xmodem CRC by sending the character ‘C’ instead of <N...
	Another popular extension is called Xmodem 1K. This derivative builds on Xmodem CRC by using 1024...
	A larger block size can greatly speed up the protocol because it reduces the number of times the ...
	The final Xmodem extension supported by Async Professional is Xmodem 1KG. This streaming protocol...
	You shouldn’t even consider using this streaming protocol unless you are using error correcting m...


	Ymodem
	Ymodem is a derivative of Xmodem that is different enough to be called a unique protocol. The det...
	Ymodem is essentially Xmodem 1K with batch facilities added, which means that a single protocol s...
	Ymodem achieves this by adding block zero to the Xmodem 1K protocol. Block zero is transferred fi...
	Figure 14.4: File information and format for a YModem block zero transfer.

	The <name> field is the only required field. It supplies the name of the file in lower case lette...
	The <len> field specifies the file length as an ASCII string. This field allows the receiver to t...
	The <date> field is the date and time stamp of the file. It is transmitted as the number of secon...
	Async Professional takes care of properly formatting this block. You don’t need to do anything bu...
	Table 14.4 describes a typical YModem protocol transfer.
	Table 14.4: Description of a typical YModem protocol transfer
	As with the Xmodem protocols, the Ymodem protocol starts when the receiver sends a handshake char...

	Ymodem extensions
	The Ymodem specification permits Ymodem to use a combination of 128 and 1024 byte blocks. Most Ym...
	Like Xmodem, Ymodem also offers a streaming extension called Ymodem G. This is similar in perform...


	Zmodem
	Of all the protocols supported by Async Professional, Zmodem offers the best overall mix of speed...
	Zmodem was developed for the public domain by Chuck Forsberg under contract to Telenet. The origi...
	What follows is a simplified explanation of Zmodem that provides more than enough information to ...
	Zmodem borrows some concepts from Xmodem, Ymodem, and Kermit but is really a completely new proto...
	Due to the complexity and variety of the Zmodem header and data subpacket formats, they are not a...
	Table 14.5: Description of a typical ZModem protocol transfer (continued)
	The ZXxx tags are the header types that the two computers trade back and forth as they decide wha...
	In most cases all data in the file is sent in one ZData frame (the ZData header followed by as ma...
	Typically, once a file transfer is underway, the receiver interrupts the transmitter only if it r...
	The protocol can be canceled at any time if either side sends five <CAN> characters (^X).

	Control character escaping
	Zmodem escapes certain control characters. Escaping means that characters are transformed before ...
	Escaping isn’t something you need to enable or disable because it’s always on. It is mentioned he...
	Zmodem always escapes the following characters:
	<DLE> Data link escape character (10h, ^P)
	<XON> XOn character (11h, ^Q)
	<XOFF> XOff character (13h, ^S)
	<CAN> Zmodem escape character (18h, ^X)
	<DLE*> Data link escape character with high bit set (90h)
	<XON*> XOn character with high bit set (91h)
	<XOFF*> XOff character with high bit set (93h)
	Zmodem escapes all control characters when requested to by the remote protocol.


	Protocol options
	While the Zmodem specification describes all sorts of features, not all Zmodem implementations ar...
	Since this process is handled automatically, you generally don’t need to worry about it. For your...
	Async Professional supports the following Zmodem protocol options:
	True full duplex for data and control channels.
	Receiving data during disk I/O.
	Sending a break signal.
	Using 32 bit CRCs.
	Escaping all control characters.

	Async Professional does not support the following protocol options:
	Encryption.
	LZ data compression.
	Escaping the 8th bit.
	End-of-line conversion for Unix newline characters.
	Sparse files.


	Transfer resume
	The Zmodem specification describes an option called recover/resume. This option is requested by t...
	When this condition exists, the receiver opens the existing file and moves the file pointer to th...
	This option can also be used to append new data to a remote copy of a file.
	In either case, you use this option as follows:
	ApdProtocol.FileMask := 'BIGFILE';
	ApdProtocol.ZmodemRecover := True;
	ApdProtocol.StartTransmit;


	File management options
	Zmodem has a variety of file management options built into it. These are simple rules that tell Z...
	Table 14.6: ZModem file management options
	The zfoWriteCrc option, which requests that a file be transferred only if its CRC is different fr...
	The file management options are always requested by the transmitter. To use them, assign a value ...
	ApdProtocol.ZmodemFileOption := zfoWriteClobber;

	Even though the transmitter sets the file management options, Async Professional allows the recei...

	ApdProtocol.ZmodemOptionOverride := True;
	ApdProtocol.ZmodemFileOption := zfoWriteNewer;
	Setting this property to True tells Zmodem to ignore the file management options requested by the...
	Another file management property called ZmodemSkipNoFile is available. Set this property to True ...
	Whatever file management rules are in effect, the receiver applies them and either accepts each f...
	Don’t forget that you can implement your own file management rules with an OnProtocolAccept event...


	Automatic block size control
	The Zmodem protocol decreases or increases the number of bytes transmitted per block in response ...
	The protocol employs the following logic to control the block size. If the transmitter receives a...
	Similar logic is employed with 8K Zmodem, which uses 8192 byte blocks by default. The block size ...
	Block size control is automatic and cannot be disabled. While this behavior is not documented in ...

	Large block support
	Async Professional Zmodem also includes support for 8K byte blocks. This behavior is outside the ...
	The output buffer size of the port object used by the protocol window must also be large enough t...


	Kermit
	The Kermit protocol was developed to allow file transfers in environments that other protocols ca...
	Kermit is a public domain protocol that was developed at Columbia University. (The name refers to...
	Character quoting
	Character quoting means pretty much the same thing that escaping means in Zmodem. The character i...
	Although Zmodem transforms only a few critical characters such as <XON> and <XOFF>, Kermit quotes...
	Kermit quotes control characters by replacing them with a quote character and a modified version ...
	Ctl(x) = x xor 40h;

	This operation is its own inverse, that is, Ctl(Ctl(x)) = x.
	Kermit also quotes characters with their eighth bit set, which allows it to transmit 8 bit data o...
	Binary numbers in Kermit packet headers and in repeated character strings are also transformed to...
	Kermit has a simple built-in data compression mechanism called run length encoding. When it sees ...

	Kermit packets
	Figure 14.5 shows the general format of a Kermit packet.
	Figure 14.5: The format for a typical Kermit packet.

	The <SOH> character, also called the mark field, indicates the start of a Kermit packet.
	The length byte specifies the number of bytes that follow. Since it must be transmitted as a prin...
	The <seq> byte is a packet sequence number in the range of 0 to 63. After 63 it cycles back to 0.
	The <type> byte describes the various Kermit packet types, which are analogous to the Zmodem fram...
	The data field contains up to 91 bytes including all quote characters. The number of actual data ...
	The standard Kermit <check> field is a single-byte checksum. Kermit offers two optional block che...
	The <term> character is the packet terminator which equals carriage return (ASCII 13) by default....
	Table 14.7 describes a typical Kermit protocol transfer.
	Table 14.7: A description of a typical Kermit protocol transfer
	The KXxx tags are the packet types that the two computers exchange as they decide what is to be d...


	Kermit options
	Like Zmodem, Kermit offers a variety of options. An implementation of Kermit is not required to s...
	Table 14.8 shows the Kermit options that Async Professional supports and the default values each ...
	Table 14.8: Kermit property options and default values
	KermitMaxLen is the maximum number of bytes you want Kermit to include in one packet. The normal ...
	KermitTimeoutSecs is the amount of time, in seconds, that a Kermit transmitter will wait for an a...
	KermitPadCount and KermitPadCharacter describe padding that can be added at the front of all Kerm...
	KermitTerminator is the character that follows the check field in a packet. Although all Kermit p...
	KermitCtlPrefix is the control character prefix that Kermit uses when performing “Ctl” quoting to...
	KermitHighbitPrefix specifies how Kermit transforms high-bit characters into characters without t...
	BlockCheckMethod specifies the type of block checking Kermit should perform. ‘1’ corresponds to t...
	KermitRepeatPrefix is the repeated-character prefix that Kermit uses when compressing long string...
	KermitMaxWindows is the number of sliding windows requested. Setting this to a value between 1 an...
	The two sides of a Kermit protocol automatically negotiate which options to use, so no interventi...
	Async Professional does not provide Kermit server functions and does not support file attribute p...


	Long packets
	Async Professional includes support for long packets, which is an extension to standard Kermit th...
	Although the specification allows for packets up to 9024 bytes, Async Professional limits long pa...
	The specification also recommends the use of the higher-order checksums with long packets, but do...

	Sliding Windows Control
	Async Professional includes supports for the Kermit extension known as Sliding Windows Control, a...
	Send-ahead means that the transmitter sends many blocks without waiting for an acknowledgement fo...
	SWC operates by keeping a circular table of transmitted packets. The maximum number of packets in...
	Sliding window support is off by default. It is enabled by setting the KermitMaxWindows property ...
	On the sender’s side, each transmitted packet is added to the table. When an acknowledgement is e...
	On the receiver’s side, each received packet is added to the table and remains there until the ta...
	It is possible to enable long packets and SWC simultaneously, but memory consumption rises dramat...


	ASCII
	The term ASCII protocol is a bit of a misnomer, because in an ASCII transfer neither side of the ...
	A typical use for the ASCII protocol is when you need to transfer a text file to a minicomputer t...
	The ASCII protocol provides options for tailoring such transfers to the remote machine’s speed, w...
	It is difficult for the receiver to know when an ASCII transfer is over because there is no agree...
	End-of-line translations
	Computer systems sometimes use different character sequences to terminate each line of a text fil...
	The ASCII protocol provides a number of options for translating from one end-of-line sequence to ...
	Table 14.9: ACII protocol enumerated property values


	FTP
	Async Professional provides two File Transfer Protocol (FTP) components that make it easy to impl...
	The TApdFtpClient component takes care of the FTP protocol details and presents a friendly interf...
	The TApdFtpLog component automates the process of logging an FTP client-server dialog for auditin...
	Overview of FTP
	File Transfer Protocol (FTP) is used to transfer files from one location on the Internet to anoth...
	When an FTP client establishes a control connection with an FTP server, the server will respond w...

	FTP error codes
	If an FTP server rejects a command from an FTP client for one reason or another, the server will ...
	Table 14.10: Common FTP errors


	TApdProtocol Component
	TApdProtocol implements all of the Async Professional file transfer capabilities in one comprehen...
	Note that certain properties that are described in the following reference section are specific t...
	Example
	This example shows how to construct and use a protocol component. It includes a terminal window s...
	Create a new project, add the following components, and set the property values as indicated in T...
	Table 14.11: Example components and property values
	Double-click on the Upload button’s OnClick event handler within the Object Inspector and modify ...

	procedure TForm1.UploadClick(Sender : TObject);
	begin
	ApdProtocol1.StartTransmit;
	end;
	This method starts a Zmodem background protocol transmit session for all of the files matching th...
	Double-click on the Download button’s OnClick event handler within the Object Inspector and modif...

	procedure TForm1.DownloadClick(Sender : TObject);
	begin
	ApdProtocol1.StartReceive;
	end;
	This method starts a Zmodem background session to receive whatever files the transmitter sends.
	The form includes a TApdProtocolStatus component, which is automatically displayed by the protoco...
	This example is in the EXPROT project in the \ASYNCPRO\EXAMPLES directory.


	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomProtocol (AdProtcl)
	TApdProtocol (AdProtcl)


	Properties
	Methods
	Events
	Reference Section
	AbortNoCarrier property
	property AbortNoCarrier : Boolean

	Default: False
	Determines whether the protocol is canceled automatically when the DCD modem signal drops.
	Using the AbortNoCarrier property is better than checking DCD and calling CancelProtocol in your ...
	Note that when transferring through Winsock the DCD signal is not present (Winsock does not conta...
	See also: CancelProtocol


	ActualBPS run-time property
	property ActualBPS : LongInt

	Determines the data transfer rate used by EstimateTransferSecs.
	This property can be used to set a bit per second (bps) rate that differs from the associated com...
	Without setting ActualBPS, the protocol would base transfer rate calculations on a bps rate of 19...
	See also: EstimateTransferSecs


	AsciiCharDelay property
	property AsciiCharDelay : Word

	Default: 0
	Determines the number of milliseconds to delay between characters during an ASCII file transfer.
	The default delay of zero should be retained whenever possible to maximize performance. However, ...
	The following example sets the inter-character delay to 2 milliseconds and the inter-line delay t...
	ApdProtocol1.AsciiCharDelay := 2;
	ApdProtocol1.AsciiLineDelay := 50;
	See also: AsciiLineDelay


	AsciiCRTranslation property
	property AsciiCRTranslation : TAsciiEOLTranslation
	TAsciiEOLTranslation = (
	aetNone, aetStrip, aetAddCRBefore, aetAddLFAfter);

	Default: aetNone
	Determines the end-of-line translation mode for carriage returns.
	Acceptable values to assign to this property are as follows:
	aetAddCRBefore does not apply to AsciiCRTranslation, so it is treated as aetNone.
	The following example causes all <LF> characters to be stripped while <CR> characters are transmi...
	ApdProtocol1.ProtocolType := ptAscii;
	ApdProtocol1.AsciiCRTranslation := aetNone;
	ApdProtocol1.AsciiLFTranslation := aetStrip;
	ApdProtocol1.StartTransmit;
	See also: AsciiEOLChar, AsciiLFTranslation


	AsciiEOFTimeout property
	property AsciiEOFTimeout : Word

	Default: 364
	Determines the number of ticks before an ASCII transfer is automatically terminated.
	Because most text files are terminated by a ^Z character (ASCII 26), the ASCII protocol closes th...

	AsciiEOLChar property
	property AsciiEOLChar : Char

	Default: ^M (ASCII 13)
	Determines the character that triggers an inter-line delay.
	After an ASCII file transmit sends the character specified by this property, it pauses for the nu...
	Note that this character is not involved in on-the-fly translation of end-of-line characters read...
	The default end-of-line character is <CR> or ^M. If you are transmitting Unix files, which use <L...
	See also: AsciiLineDelay


	AsciiLFTranslation property
	property AsciiLFTranslation : TAsciiEOLTranslation
	TAsciiEOLTranslation = (
	aetNone, aetStrip, aetAddCRBefore, aetAddLFAfter);

	Default: aetNone
	Determines the end-of-line translation mode for line feeds.
	Acceptable values to assign to this property are as follows:
	aetAddLFAfter does not apply to AsciiLFTranslation, so it is treated as aetNone.
	See also: AsciiCRTranslation, AsciiEOLChar


	AsciiLineDelay property
	property AsciiLineDelay : Word

	Default: 0
	Determines the number of milliseconds to delay between lines during an ASCII file transfer.
	The default delay of zero should be retained whenever possible to maximize performance. However, ...
	See also: AsciiCharDelay


	AsciiSuppressCtrlZ property
	property AsciiSuppressCtrlZ : Boolean

	Default: False
	Determines whether an ASCII protocol stops transmitting when it encounters the first ^Z in the file.
	If this property is False, the ASCII protocol transmits all characters in the file, including ^Z ...

	Batch read-only, run-time property
	property Batch : Boolean

	Returns True if the current protocol supports batch transfers.
	Batch transfers are those that allow sending more than one file in the same protocol session. Bat...
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...

	BlockCheckMethod property
	property BlockCheckMethod : TBlockCheckMethod
	TBlockCheckMethod = (
	bcmNone, bcmChecksum, bcmChecksum2, bcmCrc16, bcmCrc32, bcmCrcK);

	Determines the error checking method used by the protocol.
	The default error checking method depends on the protocol. See the section describing each protoc...
	The following values can be assigned to the property:
	The Xmodem1K, Xmodem1KG, Ymodem, YmodemG, and ASCII protocols provide either no error checking or...
	Assigning bcmCrc16 to BlockCheckMethod converts an Xmodem protocol into an XmodemCrc protocol. Co...
	The Zmodem protocol accepts only the bcmCrc16 and bcmCrc32 types. The Kermit protocol accepts onl...
	No error is generated if an unaccepted type is assigned, but the assignment is ignored. You shoul...
	See also: ProtocolType


	BlockErrors read-only, run-time property
	property BlockErrors : Word

	The number of errors that have occurred while transferring the current block.
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...
	See also: TotalErrors


	BlockLength read-only, run-time property
	property BlockLength : Word

	The number of bytes currently being transferred per block.
	For some protocols this value remains fixed (e.g., Xmodem always uses 128 byte blocks); for other...
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...

	BlockNumber read-only, run-time property
	property BlockNumber : Word

	The number of blocks transferred so far.
	This is obtained by dividing the number of bytes transferred by the current block length, so it w...
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...

	BytesRemaining read-only, run-time property
	property BytesRemaining : LongInt

	The number of bytes still to be transferred in the current file.
	This is computed as the FileLength minus the value of BytesTransferred. When the file size isn’t ...
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...
	See also: BytesTransferred, FileLength


	BytesTransferred read-only, run-time property
	property BytesTransferred : LongInt

	The number of bytes transferred so far in the current file.
	When transmitting, this number is sometimes only an estimate. The uncertainty comes from the fact...
	Unfortunately, this calculation is still imperfect because it’s impossible to know how much of th...
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...
	See also: BytesRemaining


	CancelProtocol method
	procedure CancelProtocol;

	Cancels the protocol currently in progress.
	CancelProtocol cancels the protocol regardless of its current state. If appropriate, a cancel str...
	The following example shows how to cancel a protocol from within a protocol status dialog box:
	procedure TStandardDisplay.CancelClick(Sender: TObject);
	begin
	ApdProtocol1.CancelProtocol;
	end;
	See also: InProgress, OnProtocolError


	ComPort property
	property ComPort : TApdCustomComPort

	Determines the serial port used by the protocol.
	A properly initialized comport component must be assigned to this property before using the proto...
	The comport should almost always be set to use 8 data bits, 1 stop bit, and no parity. It should ...

	DestinationDirectory property
	property DestinationDirectory : string

	Determines the directory where received files are stored.
	If the value specifies only a drive (e.g., “D:”), files are stored in the current directory on th...
	See also: FileName


	ElapsedTicks read-only, run-time property
	property ElapsedTicks : LongInt

	The time elapsed since the protocol started.
	In order to provide accurate character per second transfer rates, the protocol engine doesn’t sta...
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...
	See also: EstimateTransferSecs


	EstimateTransferSecs method
	function EstimateTransferSecs(const Size : LongInt) : LongInt;

	Returns the amount of time to transfer a file.
	You can call EstimateTransferSecs in a status event handler to obtain the approximate number of s...
	EstimateTransferSecs automatically accounts for the baud rate of the port’s connection and variou...
	To compute the transfer time, EstimateTransferSecs first computes an effective transfer rate usin...
	ActualCPS = ActualBPS div 10

	Efficiency = ratio of data bytes to highest possible number of
	bytes, calculated as follows:
	BlockLength -------------------------------------------------

	BlockLength + Overhead + ((TurnDelay * ActualCPS)
	div 1000)
	EffectiveCPS = ActualCPS * Efficiency
	Then the estimated transfer time is Size divided by EffectiveCPS.
	The following example calls EstimateTransferSecs in a status routine to get the total and remaini...

	procedure TForm1.ProtocolStatus(CP : TObject; Options : Word);
	var
	TotalTime, RemainingTime : LongInt;
	begin
	with TApdProtocol1(CP) do begin
	...
	TotalTime := EstimateTransferSecs(FileLength);
	RemainingTime := EstimateTransferSecs(BytesRemaining);
	....
	end;
	end;
	See also: ActualBPS, OnProtocolStatus, Overhead, TurnDelay


	FileDate read-only, run-time property
	property FileDate : TDateTime

	Returns the date and time of the file being transferred.
	For transmitted files the file timestamp is always known. For received files the timestamp is kno...
	If the timestamp is not known, FileDate returns zero.
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...
	See also: FileLength, FileName


	FileLength� read-only, run-time property
	property FileLength : LongInt

	Returns the size of the file being transferred.
	For transmitted files the file size is always known. For received files the file size is known on...
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...
	See also: FileDate


	FileMask property
	property FileMask : TFileName

	Determines the file mask to use when transmitting files.
	FileMask can specify a single file or can contain DOS wildcards to transmit multiple files using ...
	Only a single mask can be used for each transfer. To transfer a group of files that cannot be des...
	The following example transmits all files with a ZIP extension in the C:\UPLOAD directory:
	ApdProtocol1.FileMask := 'C:\UPLOAD\*.ZIP';
	ApdProtocol1.StartTransmit;
	See also: Batch


	FileName property
	property FileName : string

	Determines the name of the file currently being received.
	This should be considered a read-only property for all protocols except Xmodem and ASCII, which d...
	If FileName does not include drive or path information, the incoming file is stored in the curren...
	The following example stores a file received via Xmodem to C:\DOWNLOAD\RECEIVE.TMP:
	ApdProtocol1.ProtocolType := ptXmodem;
	ApdProtocol1.FileName := 'C:\DOWNLOAD\RECEIVE.TMP';
	ApdProtocol1.StartReceive;
	See also: DestinationDirectory, HonorDirectory


	FinishWait property
	property FinishWait : Word

	Default: 364
	Determines how long the receiver waits for an end-of-transmission signal before timing out.
	This property applies only to Xmodem, Ymodem, and Zmodem protocols.
	At the end of an Xmodem or Ymodem file transfer the transmitter sends an <EOT> to the receiver to...
	Similarly, in a Zmodem transfer the transmitter sends a ZFin packet to the receiver to signal the...
	See also: ZmodemFinishRetry


	HandshakeRetry property
	property HandshakeRetry : Word

	Default: 10
	Determines the retry count for protocol handshaking.
	This property controls how many times each protocol attempts to detect the initial handshake from...
	See also: HandshakeWait


	HandshakeWait property
	property HandshakeWait : Word

	Default: 182
	Determines the wait between retries for protocol handshaking.
	This property is the number of ticks a protocol waits when a handshake attempt fails before it tr...
	See also: HandshakeRetry


	HonorDirectory property
	property HonorDirectory : Boolean

	Default: False
	Determines whether a protocol honors the directory name of a file being received.
	If HonorDirectory is set to True, a received file is stored in the directory specified by the tra...
	See also: IncludeDirectory


	IncludeDirectory property
	property IncludeDirectory : Boolean

	Default: False
	Determines whether the complete pathname is transmitted.
	If IncludeDirectory is set to True, the protocol sends the drive and directory along with the fil...
	See also: HonorDirectory


	InitialPosition read-only, run-time property
	property InitialPosition : LongInt

	The initial file offset for a resumed transfer.
	This property applies only to Zmodemprotocols, which support resumed file transfers. For a transf...
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...
	The following example shows how to compute the character per second transfer rate in a protocol s...
	CPS :=
	(91*(ApdProtocol.BytesTransferred-ApdProtocol.InitialPosition))
	div (5*ApdProtocol.ElapsedTicks);
	See also: BytesTransferred


	InProgress read-only, run-time property
	property InProgress : Boolean

	Returns True if a protocol is currently in progress.
	A property such as this is important because Async Professional protocols run in the background. ...
	InProgress is True immediately after StartTransmit or StartReceive is called. InProgress is False...
	Use InProgress to determine whether a file transfer is already taking place or not before trying ...
	See also: OnProtocolFinish


	KermitCtlPrefix property
	property KermitCtlPrefix : Char

	Default: ‘#’
	Determines the character Kermit uses to quote control characters.
	See “Character quoting” on page�513 for more information.
	See also: KermitHighbitPrefix, KermitRepeatPrefix


	KermitHighbitPrefix property
	property KermitHighbitPrefix : Char

	Default: ‘Y’
	Determines the technique Kermit uses to quote characters that have their eighth bit set.
	The value specified by this property is not always transmitted literally as a quote character. If...
	If KermitHighbitPrefix equals ‘&’ or is in the ASCII range 33-62 or 96-126, it indicates that the...
	If C equals ‘N’ or any other value not listed here, the protocol won’t use high bit quoting at al...
	See “Character quoting” on page�513 for more information.
	See also: KermitCtlPrefix, KermitRepeatPrefix


	KermitLongBlocks read-only, run-time property
	property KermitLongBlocks : Boolean

	Returns True if Kermit long packets are in use.
	See also: KermitMaxLen

	KermitMaxLen property
	property KermitMaxLen : Word

	Default: 80
	Determines the maximum number of bytes in one Kermit packet.
	The normal maximum value is 94, but the default value of 80 is suggested by the Kermit Protocol M...
	See “Kermit options” on page�515 for more information.
	See also: KermitMaxWindows


	KermitMaxWindows property
	property KermitMaxWindows : Word

	Default: 0
	Determines whether Kermit sliding windows control is enabled.
	If KermitMaxWindows is set to a value between 1 and 27, sliding windows are enabled with the spec...
	See “Sliding Windows Control” on page�518 for more information.
	See also: KermitWindowsTotal, KermitWindowsUsed


	KermitPadCharacter property
	property KermitPadCharacter : Char

	Default: ‘ ’ (ASCII 32)
	Determines the character that Kermit uses to pad the beginning of each packet.
	See “Kermit options” on page�515 for more information.
	See also: KermitTerminator


	KermitPadCount property
	property KermitPadCount : Word

	Default: 0
	Determines the number of pad characters that Kermit transmits at the beginning of each packet.
	See “Kermit options” on page�515 for more information.
	See also: KermitPadCharacter


	KermitRepeatPrefix property
	property KermitRepeatPrefix : Char

	Default: ‘~’
	Determines the prefix that Kermit uses when compressing strings of repeated characters.
	When Kermit sees four or more equal and adjacent characters, it compresses the sequence into a qu...
	See “Character quoting” on page�513 for more information.
	See also: KermitCtlPrefix, KermitHighbitPrefix


	KermitSWCTurnDelay property
	property KermitSWCTurnDelay : Word

	Default: 0
	Determines the turnaround delay used by EstimateTransferSecs when a Kermit sliding windows protoc...
	This property is the time in milliseconds for a data block to transit from the sender to the rece...
	When Kermit sliding windows control is enabled, the transmitter does not generally wait for ackno...
	EstimateTransferSecs uses the value of the TurnDelay property for Kermit transfers when sliding w...
	See also: Overhead, TurnDelay


	KermitTerminator property
	property KermitTerminator : Char

	Default: ^M (ASCII 13)
	Determines the character used to terminate a Kermit data packet.
	This character is used only by Kermit hosts that cannot start processing a data line until a term...
	See “Kermit options” on page�515 for more information.
	See also: KermitPadCharacter


	KermitTimeoutSecs property
	property KermitTimeoutSecs : Word

	Default: 5
	Determines how long Kermit waits for the next expected byte.
	If a Kermit transmitter waits more than KermitTimeoutSecs for an acknowledgement, it resends the ...
	See also: TransmitTimeout


	KermitWindowsTotal read-only, run-time property
	property KermitWindowsTotal : Word

	Returns the total number of Kermit sliding windows negotiated for the current transfer.
	If sliding windows control is disabled, KermitWindowsTotal returns 0.
	See also: KermitMaxWindows, KermitWindowsUsed


	KermitWindowsUsed read-only, run-time property
	property KermitWindowsUsed : Word

	Returns the number of Kermit sliding windows that currently contain data.
	If sliding windows control is disabled, KermitWindowsUsed returns 0.
	See also: KermitMaxWindows, KermitWindowsTotal


	OnProtocolAccept event
	property OnProtocolAccept : TProtocolAcceptEvent
	TProtocolAcceptEvent = procedure(CP : TObject;
	var Accept : Boolean; var FName : TPassString) of object;
	TPassString = string[255];

	Defines an event handler that is called as soon as the name of an incoming file is known.
	This event handler provides an opportunity for the receiver to reject or rename the incoming file...
	CP is the protocol component that is receiving the file. The event handler should set Accept to T...
	See “AcceptFile processing” on page�495 for more information.
	See also: OnProtocolNextFile, WriteFailAction


	OnProtocolError event
	property OnProtocolError : TProtocolErrorEvent
	TProtocolErrorEvent = procedure(
	CP : TObject; ErrorCode : SmallInt) of object;

	Defines an event handler that is called when an unrecoverable protocol error occurs.
	This event is generated only for unrecoverable errors. Most protocol errors caused by line noise ...
	CP is the protocol component that generated the error. ErrorCode is a number indicating the type ...
	Note that the OnProtocolFinish event is generated soon after the OnProtocolError event and passes...
	See “Error handling” on page�488 for more information.
	See also: BlockErrors, OnProtocolFinish


	OnProtocolFinish event
	property OnProtocolFinish : TProtocolFinishEvent
	TProtocolFinishEvent = procedure(
	CP : TObject; ErrorCode : SmallInt) of object;

	Defines an event handler that is called when a protocol transfer ends.
	This event is generated whether the protocol ends successfully or not. If it ends successfully, E...
	An application could use this handler to display a completion dialog box (needed only if a protoc...
	The following example displays a message whenever a protocol finishes, and enables an associated ...
	procedure TForm1.ApdProtocol1ProtocolFinish(
	CP : TObject; ErrorCode : SmallInt);
	begin
	ShowMessage('Protocol finished: '+ErrorMsg(ErrorCode));
	ApdTerminal1.Active := True;
	end;
	See also: InProgress, OnProtocolError


	OnProtocolLog event
	property OnProtocolLog : TProtocolLogEvent
	TProtocolLogEvent = procedure(CP : TObject; Log : Word) of object;

	Defines an event handler that is called at well-defined points during a protocol transfer.
	The primary purpose of this event is to give applications a chance to log statistical information...
	CP is the protocol component that needs to be logged. Log is a code that indicates the current st...
	No other information is passed along with the event. Use protocol status properties such as FileN...
	See “Protocol logging” on page�493 for more information.
	See also: ProtocolLog


	OnProtocolNextFile event
	property OnProtocolNextFile : TProtocolNextFileEvent
	TProtocolNextFileEvent = procedure(
	CP : TObject; var FName : TPassString) of object;
	TPassString = string[255];

	Defines an event handler that is called to determine the next file to transmit in a batch transfer.
	If no handler is installed for this event, Async Professional transmits the files that match the ...
	CP is the protocol component that is transmitting. The event handler should return the next file ...
	See “NextFile processing” on page�494 for more information.
	See also: FileMask


	OnProtocolStatus event
	property OnProtocolStatus : TProtocolStatusEvent
	TProtocolStatusEvent = procedure(
	CP : TObject; Options : Word) of object;

	Defines an event handler that is called regularly during a file transfer.
	This event is generated for each block transmitted or received, after the completion of each majo...
	CP is the protocol component that is in progress. A number of the properties of this component ca...
	A predefined status component called TApdProtocolStatus is supplied with Async Professional. For ...
	See “Protocol status” on page�489 for more information.
	See also: StatusDisplay, StatusInterval


	Overhead property
	property Overhead : Word

	Determines the number of overhead bytes per data block used by EstimateTransferSecs.
	When a protocol transfers a data block, not all of the bytes are actually data from the file bein...
	When you select a protocol by assigning to the ProtocolType property, the TApdProtocol component ...
	See also: EstimateTransferSecs, TurnDelay


	ProtocolError read-only, run-time property
	property ProtocolError : Integer

	Returns the code of the last error returned by the protocol.
	This property returns zero except for the first call after an error is encountered. See “Error Ha...
	See also: ProtocolStatus


	ProtocolLog property
	property ProtocolLog : TApdProtocolLog

	An instance of a protocol logging component.
	If ProtocolLog is nil, as it is by default, the protocol does not perform any automatic logging. ...
	If you create an instance of a TApdProtocolLog class (see page 583), or a descendant thereof, and...

	ProtocolStatus read-only, run-time property
	property ProtocolStatus : Word

	Returns a code that indicates the current state of the protocol.
	This property is most useful within an OnProtocolStatus event handler. See “Protocol status” on p...
	See also: ProtocolError


	ProtocolType property
	property ProtocolType : TProtocolType
	TProtocolType = (ptNoProtocol, ptXmodem, ptXmodemCRC, ptXmodem1K,
	ptXmodem1KG, ptYmodem, ptYmodemG, ptZmodem, ptKermit, ptAscii);

	Default: ptZmodem
	Determines the type of file transfer protocol.
	Async Professional encapsulates all of the file transfer protocols that it supports into a single...
	Assigning a new value to ProtocolType first deallocates any protocol-specific memory used by the ...
	You should generally not assign ptNoProtocol to ProtocolType, but it can be used to deallocate pr...
	See also: BlockCheckMethod


	RTSLowForWrite property
	property RTSLowForWrite : Boolean

	Default: False
	Determines whether protocols force RTS low while writing received data to disk.
	When RTSLowForWrite is set to True, hardware flow control is used to prevent the transmitter from...
	In order for this option to be effective, disk write caching must be disabled.
	If the protocol is transferring files using a modem, it might also be necessary to configure the ...

	StartReceive method
	procedure StartReceive;

	Tells the protocol to start receiving files.
	The steps leading up to calling StartReceive look something like this:
	1. Create a port component.
	2. Create a protocol component.
	3. Set ProtocolType.
	4. Set other properties to customize the protocol.
	5. Write suitable handlers for protocol events.
	6. Call StartReceive.
	StartReceive returns immediately and receives files in the background, occasionally generating ev...
	See also: ProtocolType, StartTransmit



	StartTransmit method
	procedure StartTransmit;

	Tells the protocol to start transmitting files.
	The steps leading up to calling StartTransmit look something like this:
	1. Create a port component.
	2. Create a protocol component.
	3. Set ProtocolType.
	4. Set other properties to customize the protocol.
	5. Write suitable handlers for protocol events.
	6. Set FileMask or use an OnProtocolNextFile event handler to return a list of files to transmit.
	7. Call StartTransmit.
	StartTransmit returns immediately and transmits files in the background, occasionally generating ...
	See also: FileMask, OnProtocolNextFile, ProtocolType, StartReceive



	StatusDisplay property
	property StatusDisplay : TApdAbstractStatus

	An instance of a protocol status window.
	If StatusDisplay is nil, as it is by default, the protocol does not provide an automatic status w...
	If you create an instance of a class derived from TApdAbstractStatus, such as the provided TApdPr...

	StatusInterval property
	property StatusInterval : Word

	Default: 18
	The maximum number of clock ticks between OnProtocolStatus events.
	The OnProtocolStatus event is generated for each block transmitted or received, after the complet...
	This property also determines how frequently the StatusDisplay window is updated.
	See also: OnProtocolStatus, StatusDisplay


	StatusMsg method
	function StatusMsg(const Status : Word) : string;

	Returns an English string for a protocol status code.
	This routine is intended primarily for use in protocol status routines. It returns a status strin...
	The returned string is never longer than MaxMessageLen (80) characters.
	See also: ProtocolStatus


	TotalErrors read-only, run-time property
	property TotalErrors : Word

	The number of errors encountered since the current file transfer was started.
	This error count is reset whenever a new file is started. This property is most useful within an ...
	See also: BlockErrors


	TransmitTimeout property
	property TransmitTimeout : Word

	Default: 1092
	Determines the maximum time a sender will wait for the receiver to release flow control.
	If the receiver blocks flow control for longer than TransmitTimeout ticks (60 seconds by default)...

	TurnDelay property
	property TurnDelay : Word

	Default: 0
	Determines the turnaround delay, in milliseconds, per data block used by EstimateTransferSecs.
	When a protocol transfers a data block, the transmitter must often wait for an acknowledgement fr...
	When you select a protocol by assigning to the ProtocolType property, the TApdProtocol component ...
	See also: EstimateTransferSecs, Overhead


	UpcaseFileNames property
	property UpcaseFileNames : Boolean

	Default: True
	Determines whether the protocol converts file names to upper case.
	Applications provide file names to protocols in the OnProtocolNextFile event or by setting the Fi...
	Windows 95/98 and Windows NT preserve the specified case in file names, although they don’t norma...

	WriteFailAction property
	property WriteFailAction : TWriteFailAction
	TWriteFailAction = (
	wfWriteNone, wfWriteFail, wfWriteRename, wfWriteAnyway);

	Default: wfWriteRename
	Determines the receiver’s behavior when the destination file already exists.
	You should assign one of the following values to WriteFailAction:
	When wfWriteRename is selected and the destination file already exists, the first character in th...
	The logic that handles these overwrite options is executed after the OnProtocolAccept event has b...
	See also: OnProtocolAccept, ZmodemFileOption


	XYmodemBlockWait property
	property XYmodemBlockWait : Word

	Default: 91
	Determines the number of ticks Xmodem and Ymodem wait between blocks for a response from the remote.
	If the wait exceeds XYmodemBlockWait ticks, a sending protocol retransmits the block and a receiv...
	See also: TransmitTimeout


	Zmodem8K property
	property Zmodem8K : Boolean

	Default: False
	Determines whether 8K blocks are enabled.
	See “Large block support” on page�512 for more information.

	ZmodemFileOption property
	property ZmodemFileOption : TZmodemFileOptions
	TZmodemFileOptions = (zfoNoOption, zfoWriteNewerLonger,
	zfoWriteCrc, zfoWriteAppend, zfoWriteClobber, zfoWriteNewer,
	zfoWriteDifferent, zfoWriteProtect);

	Default: zfoWriteNewer
	Determines the Zmodem file management options to use.
	It should be assigned one of the following values:
	Regardless of the value of this property, new incoming files are accepted unless the ZmodemSkipNo...
	The logic that handles these file management options is executed after the OnProtocolAccept event...
	See also: ZmodemOptionOverride, ZmodemSkipNoFile


	ZmodemFinishRetry property
	property ZmodemFinishRetry : Word;

	Default: 0
	Specifies the number of times to retry the final handshake of a Zmodem protocol session.
	A Zmodem transmitter signals that it has no more files to transmit by sending a ZFin frame. The r...
	The Zmodem specification indicates that this portion of the protocol isn’t critical (since all fi...
	DSZ retries after a ZFin timeout, which can sometimes cause unneeded packet transfers when the ha...
	ZmodemFinishRetry is the number of times to resend the ZFin in response to a timeout. When Zmodem...
	See also: FinishWait


	ZmodemOptionOverride property
	property ZmodemOptionOverride : Boolean

	Default: False
	Determines whether a remote sender’s options are ignored.
	If ZmodemOptionOverride is set to True, a receiving protocol component ignores the sender’s optio...
	See also: ZmodemFileOption


	ZmodemRecover property
	property ZmodemRecover : Boolean

	Default: False
	Determines whether Zmodem performs file recovery.
	Zmodem is capable of resuming interrupted file transfers if the receiver kept the partial file wh...
	See “Transfer resume” on page�510 for more information.
	See also: InitialPosition


	ZmodemSkipNoFile property
	property ZmodemSkipNoFile : Boolean

	Default: False
	Determines whether a Zmodem receiver should skip all files that don’t already exist.
	See also: ZmodemFileOption



	TApdFtpClient Component
	The TApdFtpClient component is a specialized TApdWinsockPort that implements client- side file tr...
	Connecting and logging on to an FTP server is performed by the Login method. Logging off and disc...
	Only one FTP operation is allowed at any given time, however these methods operate in an asynchro...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	v TApdComPort (AdPort) 22
	w TApdWinsockPort (AdWnPort) 106
	TApdCustomFtpClient (AdFtp)
	TApdFtpClient (AdFtp)


	Properties
	Methods
	Events
	Reference
	Abort method
	procedure Abort;

	Terminates a file transfer in progress.
	Calling Abort stops a file transfer that is in progress.
	See also: Retrieve, Store


	Account property
	property Account : string

	Specifies the user’s account information.
	Account information is required by some FTP servers for login or storing files. If the server req...
	See also: Password, Login, UserName


	BytesTransferred read-only, run-time property
	property BytesTransferred : Longint

	The number of bytes transferred so far in the current file.
	When sending a file, BytesTransferred is the number of bytes written to the Winsock buffer, which...
	See also: OnFtpStatus


	ChangeDir method
	function ChangeDir(const RemotePathName : string) : Boolean;

	Changes the current working directory on the FTP server.
	RemotePathName specifies the directory at the server. If RemotePathName contains an empty string,...
	If the directory is successfully changed at the server, the OnFtpStatus event is fired with the s...
	See also: OnFtpError, OnFtpStatus


	Connected read-only, run-time property
	property Connected : Boolean

	Indicates whether a connection to an FTP server has been established.
	While a control connection to an FTP server is open, Connected will return True. This does not in...
	See also: UserLoggedIn


	ConnectTimeout property
	property ConnectTimeout : Integer

	Default: 0
	ConnectTimeout determines the connection timeout when establishing the control connection.
	When establishing the initial control connection to the FTP server, the ConnectTimeout property d...
	See also: Login


	CurrentDir method
	function CurrentDir : Boolean;

	Obtains the path name of the current working directory from the FTP server.
	If a directory operation is not allowed given the current protocol state, CurrentDir returns Fals...
	If the operation is rejected by the server, the OnFtpError event is fired and the operation is te...
	See also: OnFtpError, OnFtpStatus


	Delete method
	function Delete(const RemotePathName : string) : Boolean;

	Removes a file or directory at an FTP server.
	RemotePathName specifies the file or directory at the server. If RemotePathName is an empty strin...
	If the file or directory is successfully deleted at the server, the OnFtpStatus event is fired wi...
	See also: OnFtpError, OnFtpStatus


	FileLength read-only, run-time property
	property FileLength : Longint

	Returns the size of the file being transferred.
	If the file size is not known, FileLength returns zero. This property is most useful within an On...
	See also: BytesTransferred, OnFtpStatus


	FileType property
	property FileType : TFtpFileType
	TFtpFileType = (ftAscii, ftBinary);

	Default: ftAscii
	Specifies the file data type.
	Transferring a file in the wrong format can damage the file so that it becomes unusable. This is ...

	FtpLog property
	property FtpLog : TApdFtpLog

	An instance of a FTP logging component.
	If FtpLog is nil (the default), TApdFtpClient does not provide automatic logging. You can install...
	FtpLog is usually set automatically at design time to the first TApdFtpLog component that is foun...
	Setting the FtpLog property at run time is necessary only when using a dynamically created loggin...
	See also: OnFtpLog, TApdFtpLog


	Help method
	function Help(const Command : string) : Boolean;

	Obtains help information from an FTP server.
	If Command is not an empty string, the FTP command syntax for the specified command is obtained, ...
	If the help operation is successful, the OnFtpStatus event is fired with the csDataAvail command ...
	If the help operation is rejected by the server, the OnFtpError event is fired and the operation ...
	See also: OnFtpError, OnFtpStatus


	InProgress read-only, run-time property
	property InProgress : Boolean

	Returns True if an FTP operation is currently in progress.
	This property is important since a call to initiate a command to an FTP server returns immediatel...
	See also: OnFtpStatus


	ListDir method
	function ListDir(
	const RemotePathName : string; FullList : Boolean) : Boolean;

	Obtains a listing of contents of a remote directory.
	RemotePathName specifies the remote directory at the server. If RemotePathName is an empty string...
	If the list operation is successful, the OnFtpStatus event is fired with the csDataAvail command ...
	If the list operation is rejected by the server, the OnFtpError event is fired and the operation ...
	See also: OnFtpError, OnFtpStatus


	Login method
	function Login : Boolean;

	Establishes an FTP session with the FTP server specified by ServerAddress.
	The logon procedure consists of opening a port to establish a control connection to an FTP server...
	If a connection to the server is established, the OnFtpStatus event is fired with the scOpen stat...
	If the server authenticates the user identification, the OnFtpStatus event is fired with the scLo...
	If a connection to the server cannot be established, an EApdSocket exception is raised.
	See also: ConnectTimeout, Logout, OnFtpError, OnFtpStatus, Password, ServerAddress, UserLoggedIn,...


	Logout method
	function Logout : Boolean;

	Terminates the active FTP session and closes the control connection.
	If a file transfer is in progress then the control connection will remain open until the transfer...
	If logout is allowed given the current protocol state the function returns True immediately. When...
	When the control connection port has closed, the OnFtpStatus event is fired with the scClose stat...
	See also: Login, OnFtpStatus, UserLoggedIn


	MakeDir method
	function MakeDir(const RemotePathName : string) : Boolean;

	Creates the specified directory on the FTP server.
	RemotePathName specifies the new directory at the server. If RemotePathName contains an empty str...
	If the directory is successfully created at the server, the OnFtpStatus event is fired with the s...
	See also: OnFtpError, OnFtpStatus


	OnFtpError event
	property OnFtpError : TFtpErrorEvent
	TFtpErrorEvent = procedure(
	Sender : TObject; ErrorCode : Integer;
	ErrorText : PChar) of object;

	Defines an event handler that is called an FTP protocol error occurs.
	The server has rejected the FTP operation attempted and the operation is terminated. ErrorCode co...
	See also: FTP Error Codes


	OnFtpLog event
	property OnFtpLog : TFtpLogEvent
	TFtpLogEvent = procedure(
	Sender : TObject; LogCode : TFtpLogCode) of object;
	TFtpLogCode = (lcClose, lcOpen, lcLogin,
	lcLogout, lcDelete, lcRename, lcReceive, lcStore,
	lcComplete, lcRestart, lcTimeout, lcUserAbort);

	Defines an event handler that is called at designated points during an FTP file operation.
	The primary purpose of this event is to give the application a chance to log auditing information...
	See also: TApdFtpLog


	OnFtpReply event
	property OnFtpReply : TFtpReplyEvent
	TFtpReplyEvent = procedure(Sender : TObject;
	ReplyCode : Integer; ReplyText : PChar) of object;

	Defines an event handler that is called when an FTP server returns a reply.
	An FTP reply consists of a 3-digit alphanumeric code as defined in RFC 959, followed by some text...
	The primary purpose of this event is to monitor the server’s response to the operations initiated...

	OnFtpStatus event
	property OnFtpStatus : TFtpStatusEvent
	TFtpStatusEvent = procedure(Sender : TObject;
	StatusCode : TFtpStatusCode; InfoText : PChar) of object;
	TFtpStatusCode = (scClose, scOpen, scLogout, scLogin, scComplete,
	scCurrentDir, scDataAvail, scProgress, scTransferOK, scTimeout);

	Defines an event handler that is called when the state of the FTP protocol changes.
	StatusCode indicates the current state of the FTP client. When StatusCode equals csDataAvail, Inf...
	The following describes the possible status codes:

	OnWsError event
	property OnWsError : TWsErrorEvent
	TWsErrorEvent = procedure (
	Sender : TObject; ErrorCode : Integer) of object;

	Defines an event handler that is generated when a Winsock error occurs.
	This event handler is generated when an unhandled Winsock error occurs within the control or data...

	Password property
	property Password : string

	Specifies the user’s login password.
	FTP requires users to log in with a user name and password to gain access to that computer. Set P...
	Users who do not have a personal login account can gain access an FTP site with an anonymous acco...
	See also: Account, Login, UserName


	Rename method
	function Rename(
	const RemotePathName, NewPathName : string) : Boolean;

	Renames a remote file or directory at an FTP server.
	RemotePathName specifies the file or directory at the server. If RemotePathName or NewPathName is...
	If the file or directory is successfully renamed at the server, the OnFtpStatus event is fired wi...
	See also: OnFtpError, OnFtpStatus


	RestartAt run-time property
	property RestartAt : Longint

	Specifies where to resume an interrupted file transfer.
	If the FTP server supports resumable file transfer, it can be restarted at somewhere other than t...
	When restarting a Retrieve operation, if RestartAt is zero, then the transfer will resume at the ...
	When restarting a Store operation, the transfer will resume at the location specified by RestartA...
	See also: Retrieve, Store


	Retrieve method
	function Retrieve(const RemotePathName, LocalPathName : string;
	RetrieveMode : TFtpRetrieveMode) : Boolean;
	TFtpRetrieveMode = (rmAppend, rmReplace, rmRestart);

	Retrieve transfers a file from the FTP server to the local machine.
	RemotePathName specifies the file at the server, and LocalPathName specifies the pathname of the ...
	The file will be transferred according to the file type specified by the FileType property.
	If the local file already exists: rmAppend specifies that the incoming file data will be appended...
	If the local file does not exist, it will be created.
	If either RemotePathName or LocalPathName contain an empty string, or a retrieve operation is not...
	If the file is successfully transferred, the InProgress property is set to False and the OnFtpSta...
	If the transmission times out, then the OnFtpStatus event is fired with the scTimeout status code...
	See also: BytesTransferred, FileType, InProgress, OnFtpError, OnFtpStatus, RestartAt, TransferTim...


	SendFtpCommand method
	function SendFtpCommand(const FtpCmd : string) : Boolean;

	Sends a FTP protocol command to the server.
	FtpCmd is an FTP command string as specified in RFC 959. The FTP commands that can be issued via ...
	SendFtpCommand('CWD pub/apro');
	SendFtpCommand('STAT pub');
	SendFtpCommand('HELP RETR');
	The function returns True immediately if the command is initiated, otherwise False is returned. U...
	If the server rejects the command for some reason, then the OnFtpError event is fired and the ope...
	See also: OnFtpError, OnFtpStatus



	ServerAddress property
	property ServerAddress : string

	Specifies the FTP server’s IP address or host name.
	ServerAddress accepts the IP address in dot notation (e.g., 165.212.210.10) or as a host name (e....

	Status method
	function Status(const RemotePathName : string) : Boolean;

	Obtains status information from the FTP server.
	RemotePathName specifies a file or directory at the server. If RemotePathName is an empty string,...
	If a status operation is not allowed given the current protocol state, Status returns False. Othe...
	If the operation is rejected by the server, the OnFtpError event is fired and the operation is te...
	See also: OnFtpError, OnFtpStatus


	Store method
	function Store(const RemotePathName, LocalPathName : string;
	StoreMode : TFtpStoreMode) : Boolean;
	TFtpStoreMode = (smAppend, smReplace, smUnique, smRestart);

	Transfers a file from the local machine to the FTP server.
	RemotePathName specifies the file at the server. LocalPathName specifies the file on the local ma...
	The file will be transferred according to the file type specified by the FileType property. Be su...
	If the remote file specified by RemotePathName already exists in the server’s working directory, ...
	If the remote file does not exist, it will be created in the server’s current working directory. ...
	If either RemotePathName or LocalPathName contain an empty string, or a store operation is not al...
	If the transmission times out, then the OnFtpStatus event is fired with the scTimeout status code...
	See also: BytesTransferred, FileType, InProgress, OnFtpError, OnFtpStatus, RestartAt, TransferTim...


	TransferTimeout property
	property TransferTimeout : Integer

	Default: 1092
	Determines the maximum time (ticks) to wait during file transfer.
	During a file transfer operation, each time a block of data is written out to, or read in from th...
	See also: OnFtpStatus, Retrieve, Store


	UserLoggedIn read-only, run-time property
	property UserLoggedIn : Boolean

	Indicates whether or not an FTP session is active.
	This property can be checked periodically to determine if the user is logged in to an FTP server ...
	See also: Login, Logout


	UserName property
	property UserName : string

	Specifies the user’s login name.
	FTP requires users to log in with a user name and password to gain access to the server. Be sure ...
	Users who do not have a personal login account can gain access an FTP site with an anonymous acco...
	See also: Password, UserLogin




	TApdAbstractStatus Class
	TApdAbstractStatus is an abstract class that defines the methods and properties needed by a compo...
	However, TApdProtocolStatus shows a particular set of information about a transfer in a predefine...
	The TApdAbstractStatus class contains an instance of a TForm that holds various controls used to ...
	TApdAbstractStatus overrides the standard VCL properties Ctl3D, Position, and Visible and the sta...
	Once you have created an instance of your TApdAbstractStatus descendant, you must assign it to th...
	The source code for the TApdProtocolStatus component (in the AdPStat unit) serves as a comprehens...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdAbstractStatus (AdProtcl)


	Properties
	Methods
	Reference Section
	CreateDisplay virtual abstract method
	procedure CreateDisplay; virtual; abstract;

	An abstract method that creates a form to display protocol status.
	A descendant of TApdAbstractStatus must override this method with a routine that creates a TForm ...
	CreateDisplay must then assign the instance of this form to the Display property.
	See also: DestroyDisplay, Display


	DestroyDisplay virtual abstract method
	procedure DestroyDisplay; virtual; abstract;

	An abstract method that destroys the display form.
	A descendant of TApdAbstractStatus must override this method to destroy the TForm instance create...

	Display run-time property
	property Display : TForm

	A reference to the form created by CreateDisplay.
	CreateDisplay must assign a properly initialized instance of a TForm to this property. UpdateDisp...

	Protocol property
	property Protocol : TApdCustomProtocol

	The protocol component that is using the status component.
	When deriving your own components from TApdAbstractStatus you will probably want to reference TAp...

	UpdateDisplay method
	procedure UpdateDisplay(First, Last : Boolean); virtual; abstract;

	An abstract method that writes the contents of the status window.
	A descendant of TApdAbstractStatus must override this method to update the display form. The TApd...
	On the very first call to UpdateDisplay, First equals True and UpdateDisplay should typically cal...
	For all other calls to UpdateDisplay, First and Last both equal False. During these calls, Update...
	The CancelClick event handler, if one is provided, should call the CancelProtocol method of TApdP...



	TApdProtocolStatus Component
	TApdProtocolStatus is a descendant of TApdAbstractStatus that implements a standard protocol stat...
	TApdProtocolStatus overrides all the abstract methods of TApdAbstractStatus. TApdProtocolStatus h...
	Figure 14.6: The TApdProtocolStatus component’s TStandardDisplay form.

	For an example of using a TApdProtocolStatus component, see the introduction to TApdProtocol on p...
	Hierarchy
	TComponent (VCL)
	TApdBaseComponent (OOMisc) 8
	TApdAbstractStatus (AdProtcl) 578
	TApdProtocolStatus (AdPStat)



	TApdProtocolLog Component
	TApdProtocolLog is a small class that can be associated with a TApdProtocol component to provide ...
	TApdProtocolLog creates or appends to a text file whose name is given by the HistoryName property...
	TApdProtocolLog also deletes the partial file that exists whenever a receive fails and the protoc...
	Following is a sample of the text file created by TApdProtocolLog:
	Zmodem transmit started on 7/6/01 8:33:21 AM : C:\TEMP\PROJ1.EXE
	Zmodem transmit finished OK 7/6/01 8:33:28 AM : C:\TEMP\PROJ1.EXE
	Elapsed time: 0:07 CPS: 1792 Size: 12547
	Zmodem transmit started on 7/6/01 8:33:28 AM : C:\TEMP\PROJ2.EXE
	Zmodem transmit finished OK 7/6/01 8:33:37 AM : C:\TEMP\PROJ2.EXE
	Elapsed time: 0:08 CPS: 1971 Size: 15775
	Zmodem transmit started on 7/6/01 8:33:37 AM : C:\TEMP\PROJ2.EXE
	Zmodem transmit failed C:\TEMP\PROJ2.EXE Cancel requested
	Zmodem receive started on 7/6/01 8:34:03 AM : ZIPVO.PAS
	Zmodem receive failed ZIPVO.PAS Cancel requested

	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdProtocolLog (AdProtcl)


	Properties
	Methods
	Reference Section
	DeleteFailed property
	property DeleteFailed : TDeleteFailed
	TDeleteFailed = (dfNever, dfAlways, dfNonRecoverable);

	Default: dfNonRecoverable
	Determines whether received files are deleted after a protocol failure.
	When a protocol receive session fails, there might be a partially received file in the destinatio...
	Regardless of the value of DeleteFailed, received files are never deleted when the protocol error...

	HistoryName property
	property HistoryName : string

	Default: “APRO.HIS”
	Determines the name of the file used to store the protocol log.
	You should generally set the value of HistoryName before calling TApdProtocol’s StartReceive or S...

	Protocol property
	property Protocol : TApdCustomProtocol

	The protocol component that is using the log component.
	Protocol is automatically initialized when the ProtocolLog property of the owning protocol compon...

	UpdateLog virtual method
	procedure UpdateLog(const Log : Word); virtual;

	Call for each protocol logging event.
	The Log parameter has the same values passed to the OnProtocolLog event handler of TApdProtocol. ...
	Note that TApdProtocolLog contains a field named Protocol that UpdateLog uses to obtain additiona...
	See also: TApdProtocol.OnProtocolLog





	Chapter 15: Fax Components
	Document transfer using facsimile (fax) machines has become quite common—you might even say perva...
	Unfortunately, controlling a faxmodem is a relatively complex task. As is typical for the communi...
	Microsoft has provided various levels of fax services in successive versions of Windows and is tr...
	Async Professional overcomes this information shortage by providing a complete set of routines fo...
	Faxmodem Control from an Application
	Integrating faxmodem support into your application involves two central tasks:
	Document conversion
	Faxmodem send/receive

	Document conversion means converting a file into a format suitable for fax transmission or conver...
	Document conversion
	Document conversion is the process of creating a compressed bitmap image suitable for fax transmi...
	ASCII text files
	Windows bitmap image files (BMP)
	PC Paintbrush image files (PCX)
	Multi-page PCX files (DCX)
	Tagged Image File Format image files (TIFF)

	Files that have been converted to fax format in this way, as well as files that have been receive...
	Async Professional also includes a printer driver for Windows 95/98/ME, and Windows NT 4.0/2000 (...
	Received faxes are stored in the compressed bitmap image (APF format), so the data must be unpack...

	Faxmodem send/receive
	Faxmodem send/receive is the process of sending the appropriate commands to a faxmodem to prepare...
	Like a file transfer protocol, a successful fax transmission requires cooperation between the sen...
	Within Group 3, there are currently two EIA/TIA standards for computer control of faxmodems: Clas...
	Many modem manufacturers began producing Class 2 faxmodems before the specification was complete,...

	Faxmodem specifications
	Wherever possible the faxmodem components insulate you from the details of document conversion an...
	Table 15.1: Technical specification documents
	These documents are available from the EIA and TIA organizations directly. They can also be obtai...



	Document Conversion
	Faxmodems don’t transmit documents directly. Instead, they transmit a compressed bitmap image in ...
	Fax file format
	The Group 3 compressed bitmap format was designed specifically for transmission of data over poss...
	Although the format of each compressed raster line is defined by the Group 3 facsimile specificat...
	An APF file is formatted as shown in Table 15.2.
	Table 15.2: APF file format
	You usually don’t need to understand this format in any detail, but the information is documented...
	The file always begins with a header that contains, among other information, the number of pages ...
	The page data is a series of compressed raster line images. The line image optionally begins with...
	Fax images can be converted and stored using two different resolutions. Standard resolution is 20...
	The standard width of a fax page is 1728 pixels, or about 8.5 inches. Several optional widths are...
	You specify the fax resolution and horizontal width when a document is converted to an APF file. ...

	APF file header
	Table 15.3 shows the fields in the APF file header structure, TFaxHeaderRec.
	Table 15.3: APS file header fields (continued)

	APF page header
	Table 15.4 shows the fields in the APF page header structure, TPageHeaderRec.
	Table 15.4: APF page header fields


	TGraphic registration of the APF format
	The APF format has been registered as a TGraphic descendent. Components that make use of TGraphic...
	The TGraphic descendent of the APF format can be used to convert other graphics formats, like JPG...


	TApdFaxConverter Component
	Converting a document to APF format is the first step in the fax transmission process. You can co...
	The TApdFaxConverter component can be used to convert ASCII text, BMP, PCX, DCX, and TIFF files t...
	ASCII text documents
	The TApdFaxConverter component converts ASCII text files into APF files when the InputDocumentTyp...
	The text converter reads each line of the text file and converts the line into an appropriate num...
	Async Professional can use any of the fonts available to Windows (such as the TrueType fonts) whe...
	There are two built-in fonts available when InputDocumentType is set to idText – a standard font ...
	The built-in fonts are stored in APFAX.FNT, which is 16KB. This font file can be distributed with...

	BMP, PCX, DCX, and TIFF graphic images
	Async Professional provides document conversion routines for four popular graphics image formats:...
	Most Async Professional conversion routines work with monochrome images only. The exception to th...
	Because BMP, PCX, DCX, and TIFF images are already a sequence of compressed raster lines, the job...
	The images supported by Async Professional are stored assuming a pixel aspect ratio of 1 to 1, wh...
	Given the differences in aspect ratios, an image converted to a standard resolution APF image app...
	These behaviors are enabled by turning on the coDoubleWidth and coHalfHeight options, respectivel...
	The TApdFaxConverter also includes another option, coCenterImage, that is used during image file ...

	Processing image files
	There are times when you might find it useful to be able to process an image file (i.e., any file...
	The TApdFaxConverter allows you to manually process image files, doing whatever you wish with the...
	The next step is to call the component’s OpenFile method. This opens the image file, reads any he...
	After opening the image file, make one or more calls to the GetRasterLine method of the converter...
	Buffer is the buffer that receives the raster data you are reading. You should make this buffer a...
	Lastly, you must call CloseFile to close the image file when you are done processing it. Calling ...
	The following pseudo-code shows a typical use of the manual image processing methods of the conve...
	procedure ProcessImageFile(
	FName : string; DocType : TFaxInputDocumentType);
	var
	Cvt : TApdFaxConverter;
	Buffer : PByteArray; {type defined in SysUtils}
	BufLen : Integer;
	EndOfPage : Boolean;
	MorePages : Boolean;

	begin
	GetMem(Buffer, 512);

	try
	Cvt := TApdFaxConverter.Create(nil);
	except
	FreeMem(Buffer, 512);
	raise;
	end;

	Cvt.InputDocumentType := DocType;
	Cvt.DocumentFile := FName;

	try
	Cvt.OpenFile;
	except
	Cvt.Free;
	FreeMem(Buffer, 512);
	raise;
	end;

	MorePages := True;
	try
	while MorePages do begin
	...code for handling beginning of new page...

	EndOfPage := False;
	while not EndOfPage do begin
	Cvt.GetRasterLine(Buffer^, BufLen, EndOfPage, MorePages);
	...code to process data in Buffer...
	end;

	...code for handling end of page...
	end;
	finally
	Cvt.CloseFile;
	Cvt.Free;
	FreeMem(Buffer, 512);
	end;
	end;
	For a more complete demonstration of these features, see the EXIMAGE example program.


	Converting user-defined image files
	The TApdFaxConverter component allows you to convert image types that are not directly supported....
	OnOpenUserFile is called to open the user-defined image file. When this event is called, you shou...
	OnReadUserLine is called to read a single line of raster data from the user-defined image file. T...
	OnCloseUserFile is called to close the user-defined image file. When this event is called, you sh...
	The following example assumes a hypothetical image file type. This image file has a 4-byte header...
	type
	TImageHeader = packed record
	Width : Word;
	Height : Word;
	end;

	var
	Header : TImageHeader; InputFile : File; ReadLen : Integer;
	BytesInFile : LongInt; BytesProcessed : LongInt;
	procedure Form1.ApdFaxConverter1OpenUserFile(
	F : TObject; FName : string);
	begin
	{open the physical file}
	AssignFile(InputFile, FName);
	Reset(InputFile, 1);

	{read the header}
	BlockRead(InputFile, Header, SizeOf(TImageHeader));

	{calculate the length, in bytes, of each raster line}
	ReadLen := (Header.Width + 7) shl 3;

	{calculate the number of bytes in the file, for status info}
	BytesInFile := FileSize(InputFile) - SizeOf(TImageHeader);
	BytesProcessed := 0;
	end;

	procedure Form1.ApdFaxConverter1ReadUserLine(
	F : TObject; Data : PByteArray; var Len : Integer;
	var EndOfPage, MorePages : Boolean; var BytesRead,
	BytesToRead : LongInt);
	begin
	{if we're at the end of the file, we're done}
	EndOfPage := Eof(InputFile);
	MorePages := False;
	if EndOfPage then
	Exit;

	{read the next block of raster data}
	BlockRead(InputFile, Data, ReadLen);
	Len := ReadLen;

	{update status information}
	Inc(BytesProcessed, ReadLen);
	BytesRead := BytesProcessed;
	BytesToRead := BytesInFile;
	end;

	procedure Form1.ApdFaxConverter1CloseUserFile(F : TObject);
	begin
	{close image file}
	CloseFile(InputFile);
	end;


	Example
	This simple example demonstrates the steps involved in creating an APF file from an ASCII text fi...
	Table 15.5: Example components and property values
	Double click on the TButton component. A shell for an OnClick event is generated for you. Modify ...

	procedure TForm1.Button1Click(Sender : TObject);
	var
	SaveCursor : TCursor;

	begin
	SaveCursor := Cursor;
	Cursor := crHourglass;
	try
	ApdFaxConverter1.ConvertToFile;
	finally
	Cursor := SaveCursor;
	end;
	end;
	This event changes the form’s cursor to an hourglass, converts the file you specified in the Docu...
	Next, click on the TApdFaxConverter component, then click on the “Events” tab in the Object Inspe...

	procedure TForm1.ApdFaxConverter1Status(
	F : TObject; Starting, Ending : Boolean;
	PagesConverted, LinesConverted : Integer;
	BytesToConvert, BytesConverted : LongInt;
	var Abort : Boolean);
	begin
	if (BytesConverted <> 0) then begin
	Label1.Caption := Format('Conversion is %d%% complete',
	[(BytesToConvert * 100) div BytesConverted]);
	Label1.Refresh;
	end;
	Abort := False;
	end;
	This procedure displays the progress of the conversion operation. You could also take advantage o...
	Now, save the project and run it. Click on the button. After a few moments, the hourglass cursor ...
	The CVT2FAX demonstration program provides a more extensive example of converting files to APF fo...


	Using shell execute
	The TApdFaxConverter component can convert many file formats into APF files when the InputDocumen...
	If the application associated with the selected file format does not support the “printto” verb, ...
	The following example converts C:\MYDOC.DOC to an APF file:
	OpenDialog1.Filter := 'Any file(*.*)|*.*';
	if OpenDialog1.Execute then begin
	ApdFaxConverter1.DocumentFile := OpenDialog1.FileName;
	ApdFaxConverter1.InputDocumentType := idShell;
	ApdFaxConverter1.ConvertToFile;
	end; //End if
	The printer driver will not generate TApdFaxDriverInterface events when a document is printed usi...


	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomFaxConverter (AdFaxCvt)
	TApdFaxConverter (AdFaxCvt)


	Properties
	Methods
	Events
	Reference Section
	CloseFile method
	procedure CloseFile;

	Closes an image file.
	If you need to manually process input image files without converting them to APF files, use Close...
	See CompressRasterLine for an example of the use of CloseFile.
	See also: CompressRasterLine, GetRasterLine, OpenFile


	CompressRasterLine method
	procedure CompressRasterLine(
	var Buffer, OutputData; var OutLen : Integer);

	Performs Group 3 compression on the data line.
	If you need to write your own fax utilities and routines that output fax files, you must be able ...
	For more information about APF files, see “Fax file format” on page�591.
	The following example reads a line of raster data from an input file, compresses it, and writes i...
	var
	Buffer : array[1..512] of Byte;
	OutBuf : array[1..512] of Byte;
	BufLen : Integer;
	OutLen : Integer;
	EOP : Boolean;
	More : Boolean;
	OutFile : File;

	...
	AssignFile(OutFile, 'C:\COMPRESS.IMG');
	Rewrite(OutFile, 1);
	...
	ApdFaxConverter1.DocumentFile := 'C:\COMPRESS.IMG';
	ApdFaxConverter1.OpenFile;
	EOP := False;
	while not EOP do begin
	ApdFaxConverter1.GetRasterLine(Buffer, BufLen, EOP, More);
	{make sure buffer length is 1728 pixels}
	if (BufLen < 216) then
	FillChar(Buffer[BufLen + 1], 0, 216 - BufLen);
	ApdFaxConverter1.CompressRasterLine(Buffer, OutBuf, OutLen);
	BlockWrite(OutFile, OutBuf, OutLen);
	end;
	CloseFile(OutFile);
	ApdFaxConverter1.CloseFile;
	See also: MakeEndOfPage


	Convert method
	procedure Convert;

	Converts the input image file, outputting raster data to a user event.
	Convert reads each raster line from the input image file (specified by the DocumentFile property)...
	If InputDocumentType equals idUser, the OnOpenUserFile, OnReadUserLine, and OnCloseUserFile event...
	The following example converts an image file and writes the compressed Group 3 data to a file:
	const
	OutFileOpened : Boolean = False; OutFile : File;
	procedure TForm1.ApdFaxConverter1OutputLine(
	F : TObject; Data : PByteArray; Len : Integer;
	EndOfPage, MorePages : Boolean);
	var
	EOPBuf : array[1..64] of Byte;
	EOPLen : Integer;

	begin
	if not OutFileOpened then begin
	AssignFile(OutFile, 'C:\OUTPUT.IMG');
	Rewrite(OutFile, 1);
	OutFileOpened := True;
	end;

	if not EndOfPage then
	BlockWrite(OutFile, Data^, Len);

	if EndOfPage then begin
	ApdFaxConverter1.MakeEndOfPage(EOPBuf, EOPLen);
	BlockWrite(OutFile, EOPBuf, EOPLen);
	if not MorePages then begin
	CloseFile(OutFile);
	OutFileOpened := False;
	end;
	end;
	end;

	...
	ApdFaxConverter1.DocumentFile := OpenDialog.FileName;
	ApdFaxConverter1.Convert;
	See also: ConvertToFile, DocumentFile, InputDocumentType, OnCloseUserFile, OnOpenUserFile, OnOutp...


	ConvertBitmapToFile method
	procedure ConvertBitmapToFile(Bmp : TBitmap);

	Converts a memory bitmap to an APF file.
	ConvertToFile reads each raster line from the input bitmap (specified by the Bmp parameter), comp...
	If the input bitmap is a color image, it will automatically get dithered to a monochrome image as...
	See also: OutFileName


	ConvertToFile method
	procedure ConvertToFile;

	Converts the input image file to an APF file.
	ConvertToFile reads each raster line from the input image file (specified by DocumentFile), compr...
	If the OutFileName property does not specify a file extension, the default extension (DefFaxFileE...
	The following example converts a TIFF file to an APF file:
	ApdFaxConverter1.DocumentFile := 'C:\MYIMAGE.TIF';
	ApdFaxConverter1.InputDocumentType := idTiff;
	ApdFaxConverter1.OutFileName := 'C:\FAX.APF';
	ApdFaxConverter1.ConvertToFile;
	See also: DocumentFile, InputDocumentType, OutFileName


	DefUserExtension property
	property DefUserExtension : string

	The default extension for user-defined input image files.
	When a user-defined image file is converted and the DocumentFile property does not specify an ext...
	See “Converting user-defined image files” on page�598 for more information.
	See also: OnCloseUserFile, OnOpenUserFile, OnReadUserLine


	DocumentFile property
	property DocumentFile : string

	Specifies the name of the input image file.
	When Convert, ConvertToFile, or OpenFile is called, the TApdFaxConverter component attempts to op...
	If the filename specified in DocumentFile does not contain an extension, a default extension is a...
	Unless you are sure of the current directory, the value of DocumentFile should be a fully- qualif...
	The following example sets up a TApdFaxConverter to convert a TIFF file:
	ApdFaxConverter1.DocumentFile := 'C:\MYIMAGE.TIF';
	ApdFaxConverter1.InputDocumentType := idTiff;
	See also: Convert, ConvertToFile, OpenFile


	EnhFont property
	property EnhFont : TFont

	Determines the font used by the fax converter.
	If InputDocumentType is idTextEx, the FontFile and FontType properties are ignored and the font s...
	There is an upper limit on the size of the font, but this limit is not typically reached unless a...
	The fax converter makes no attempt to keep all text on the page when the size of the font is chan...
	See also: FontFile, InputDocumentType


	FontFile property
	property FontFile : string

	Specifies the filename of the font file used by the ASCII text converter.
	When an ASCII text file is opened or converted and InputDocumentType is idText, built-in fonts su...
	If BindFaxFont is not activated, the file specified in FontFile is loaded into memory. FontFile m...
	See also: Convert, ConvertToFile, EnhFont, FontType, InputDocumentType, OpenFile


	FontType property
	property FontType : TFaxFont
	TFaxFont = (ffStandard, ffSmall);
	Default: ffStandard


	Specifies the size of the font used to convert ASCII text files.
	FontType is used only if InputDocumentType is idText (meaning that the default Async Professional...
	ffStandard is a 20x16 font (20 pixels wide by 16 pixels high). This font allows about 8.5 charact...
	ffSmall is a 12x8 font that allows for about 14 characters per horizontal inch (about 144 charact...
	The following example converts a text file to an APF file using a small font:
	ApdFaxConverter1.DocumentFile := 'C:\MYFILE.TXT';
	ApdFaxConverter1.InputDocumentType := idText;
	ApdFaxConverter1.OutFileName := 'C:\FAX.APF';
	ApdFaxConverter1.FontType := ffSmall;
	ApdFaxConverter1.ConvertToFile;
	See also: EnhFont, FontFile, InputDocumentType


	GetRasterLine method
	procedure GetRasterLine(var Buffer; var BufLen : Integer;
	var EndOfPage, MorePages : Boolean);

	Reads a raster line from an input image file.
	GetRasterLine is used to manually read a line of raster data from an input image file. A call to ...
	GetRasterLine returns the raster data in Buffer. BufLen contains the length, in bytes, of the ras...
	See “Processing image files” on page�596 for more information about reading image files.
	The following example opens an image file, reads the data from it, and closes it:
	var
	Buffer : array[1..512] of Byte;
	BufLen : Integer;
	EOP : Boolean;
	More : Boolean;

	...
	ApdFaxConverter1.DocumentFile := OpenDialog.FileName;
	ApdFaxConverter1.OpenFile;
	EOP := False;
	while not EOP do begin
	ApdFaxConverter1.GetRasterLine(Buffer, BufLen, EOP, More);
	...process the image data...
	end;
	ApdFaxConverter1.CloseFile;
	See also: OpenFile


	InputDocumentType property
	property InputDocumentType : TFaxInputDocumentType
	TFaxInputDocumentType = (idNone, idText, idTextEx, idTiff,
	idPcx, idDcx, idBmp, idBitmap, idUser);
	Default: idNone


	Specifies the type of the input image file.
	The TApdFaxConverter component can read and convert a variety of input image files. With the exce...
	The value of InputDocumentType specifies the type of image. The following table shows the possibl...
	TApdFaxConverter, using the default font file, can convert CR/LF delimited ASCII text files that ...
	The idText and idTextEx values are both used for ASCII text files. If InputDocumentType is idText...
	TIFF files can be single or multi-strip images, but must contain either uncompressed raster data ...
	Input BMP files must be uncompressed.
	User-defined input images can be in any format. You must ensure, however, that raster data passed...
	The following example sets a TApdFaxConverter component up to convert a text file:
	ApdFaxConverter1.DocumentFile := 'C:\MYFILE.TXT';
	ApdFaxConverter1.InputDocumentType := idText;
	See also: Convert, ConvertToFile, EnhFont, FontFile, OpenFile


	LeftMargin property
	property LeftMargin : Cardinal
	Default: 50


	Specifies the width in pixels of the left margin in the APF file.
	To make output faxes look more attractive, the TApdFaxConverter can add a fixed left margin to al...
	See also: TopMargin


	LinesPerPage property
	property LinesPerPage : Cardinal
	Default: 60


	The number of ASCII text lines on each fax page.
	The TApdFaxConverter can convert a text file into a fax and leave all of the data on one page. Wi...
	It is probably more reasonable to break large text files up into multiple fax pages. To do this, ...

	MakeEndOfPage method
	procedure MakeEndOfPage(var Buffer; var BufLen : Integer);

	Generates an end-of-page code.
	Each fax page ends with a sequence of eight end-of-line fax codes. These codes indicate to the re...
	MakeEndOfPage puts eight end-of-line codes into Buffer. BufLen contains the length of the codes (...
	For more information about APF files, see the “Fax file format” on page�591.
	See the Convert method on page 605 for an example.
	See also: Convert, Width


	OnCloseUserFile event
	property OnCloseUserFile : TFaxCloseFileEvent
	TFaxCloseFileEvent = procedure(F : TObject) of object;

	Defines an event handler that is called to close a user-defined image file.
	When InputDocumentType is idUser, the TApdFaxConverter calls event handlers to open, read, and cl...
	See “Converting user-defined image files” on page�598 for more information.
	See also: OnOpenUserFile, OnReadUserLine


	OnOpenUserFile event
	property OnOpenUserFile : TFaxOpenFileEvent
	TFaxOpenFileEvent = procedure(
	F : TObject; FName : string) of object;

	Defines an event handler that is called to open a user-defined image file.
	When InputDocumentType is idUser, the TApdFaxConverter calls event handlers to open, read, and cl...
	Use the value passed in FName to open the file. Do not use the value in DocumentFile because it i...
	See “Converting user-defined image files” on page�598 for an example of converting an unsupported...
	The following example demonstrates the use of the OnOpenUserFile, OnReadUserLine, and OnCloseUser...
	var
	InputFile : File;
	LineLen : Integer;
	BytesProcessed : LongInt;
	TotalBytes : LongInt;

	procedure Form1.ApdFaxConverter1OpenUserFile(
	F : TObject; FName : string);
	begin
	AssignFile(InputFile, FName);
	Reset(InputFile, 1);
	...read file header...
	LineLen := WidthInBytesAsReadFromImageHeader;
	BytesProcessed := 0;
	TotalBytes := FileSize(InputFile) - SizeOf(Header);
	end;

	procedure Form1.ApdFaxConverter1ReadUserLine(
	F : TObject; Data : PByteArray; var Len : Integer;
	var EndOfPage, MorePages : Boolean; var BytesRead,
	BytesToRead : LongInt);
	begin
	BlockRead(InputFile, Data^, LineLen, Len);
	Inc(BytesProcessed, Len);
	EndOfPage := Eof(InputFile);
	MorePages := False;
	BytesRead := BytesProcessed;
	BytesToRead := TotalBytes;
	end;

	procedure Form1.ApdFaxConverter1CloseUserFile(F : TObject);
	begin
	CloseFile(InputFile);
	end;
	See also: OnCloseUserFile, OnReadUserLine


	OnOutputLine event
	property OnOutputLine : TFaxOutputLineEvent
	TFaxOutputLineEvent = procedure(
	F : TObject; Data : PByteArray; Len : Integer;
	EndOfPage, MorePages : Boolean) of object;

	Defines an event handler that is called to output a line of Group 3 compressed data.
	When the Convert method is called, each line of raster data is read from the input image, compres...
	F contains a pointer to the fax converter component that generated the event. Data is a pointer t...
	If EndOfPage is True, the end of a page of input data has been reached. You should call MakeEndOf...
	See also: Convert, MakeEndOfPage


	OnReadUserLine event
	property OnReadUserLine : TFaxReadLineEvent
	TFaxReadLineEvent = procedure(
	F : TObject; Data : PByteArray; var Len : Integer;
	var EndOfPage, MorePages : Boolean) of object;

	Defines an event handler that is called to read a line of data from a user-defined image file.
	When InputDocumentType is idUser, the TApdFaxConverter calls event handlers to open, read, and cl...
	EndOfPage should be set to True if the end of the user-defined page has been reached. If EndOfPag...
	See also: OnCloseUserFile, OnOpenUserFile, OnStatus


	OnStatus event
	property OnStatus : TFaxStatusEvent
	TFaxStatusEvent = procedure(
	F : TObject; Starting, Ending : Boolean;
	PagesConverted, LinesConverted : Integer;
	BytesConverted, BytesToConvert : LongInt;
	var Abort : Boolean) of object;

	Defines an event handler that is called to notify the user of the status of a conversion operation.
	During the conversion process, the TApdFaxConverter regularly calls the OnStatus event to notify ...
	If Starting is True, the conversion of the document is just beginning. This is the appropriate ti...
	If Ending is True, the conversion of the document is about to end. This is the appropriate time f...
	PagesConverted is the number of pages that have been processed in the input document. PagesConver...
	BytesConverted is the number of image bytes that have been read from the input file. BytesToConve...
	Abort determines whether the conversion process will terminate prematurely. Set Abort to True if ...
	The following example shows how to implement a percent complete indicator for a fax converter:
	procedure Form1.ApdFaxConverter1Status(
	F : TObject; Starting, Ending : Boolean;
	PagesConverted, LinesConverted : Integer;
	BytesConverted, BytesToConvert : LongInt; var Abort : Boolean);
	const
	Frm : TConvertStatusForm = nil;

	begin
	if Starting then begin
	Frm := TConvertStatusForm.Create(Application);
	Frm.Show;
	end else if Ending then begin
	Frm.Close;
	Frm.Free;
	end else begin
	if Frm.AbortBtnClicked then
	Abort := True
	else
	{show progress}
	Frm.Label1.Caption := Format(
	'Conversion is %d percent complete',
	[(BytesConverted * 100) div BytesToConvert]);
	end;
	end;


	OpenFile method
	procedure OpenFile;

	Opens an image file.
	If you need to process an image file without converting it to an APF file, use OpenFile to open t...
	See “Processing image files” on page�596 for more information.
	See also: CloseFile, CompressRasterLine, DocumentFile, GetRasterLine, InputDocumentType


	Options property
	property Options : TFaxCvtOptionsSet
	TFaxCvtOptionsSet = Set of TFaxCvtOptions;
	TFaxCvtOptions = (coDoubleWidth, coHalfHeight, coCenterImage,
	coYield, coYieldOften);
	Default: [coDoubleWidth, coCenterImage, coYield]


	Sets optional features for the fax converter.
	The TApdFaxConverter optional features are turned on and off by adding or subtracting elements fr...
	coDoubleWidth and coHalfHeight adjust for the difference between standard and high resolution fax...
	coDoubleWidth and coHalfHeight are mutually exclusive (they cannot both be on). Attempts to add o...
	If coCenterImage is on (the default), converted image files (not text files) are centered on the ...
	If coYield is on (the default), the TApdFaxConverter yields to Windows at the end of every conver...
	coYieldOften is the same as coYield, except that yielding is much more frequent. Control is relin...
	The following example turns on the yielding features of the converter:
	{make sure the converter yields regularly}
	ApdFaxConverter1.Options := ApdFaxConverter1.Options +
	[coYield, coYieldOften];
	See also: Width


	OutFileName property
	property OutFileName : string

	Specifies the name of the output fax file.
	When ConvertToFile is called, it creates a file with the name specified by OutFileName and puts t...
	OutFileName should be a fully qualified path name. If the file specified by this property already...
	The following example converts a text file to an APF file that is stored in C:\FAX.APF:
	ApdFaxConverter1.DocumentFile := 'C:\MYFILE.TXT';
	ApdFaxConverter1.InputDocumentType := idText;
	ApdFaxConverter1.OutFileName := 'C:\FAX.APF';
	ApdFaxConverter1.ConvertToFile;
	See also: ConvertToFile


	Resolution property
	property Resolution : TFaxResolution
	TFaxResolution = (frNormal, frHigh);
	Default: frNormal


	Specifies the resolution of output fax data.
	Fax images can be converted and stored using two different resolutions. Standard resolution is 20...
	Resolution specifies which of the two resolutions is used. If Resolution is frNormal, the output ...
	If the file being converted is an image (i.e., not an ASCII text file), then the resultant fax mi...
	See also: Options, Width


	StationID property
	property StationID : string

	The station ID of the faxmodem.
	A fax device can identify itself to another fax device with a 20 character name, called the stati...
	Async Professional does not filter the characters stored in the station ID. If your software must...
	StationID is stored in the header of the converted APF file. This string is not used when the fax...
	See also: TApdAbstractFax.StationID


	TabStop property
	property TabStop : Cardinal
	Default: 4


	Specifies the size of expanded tabs in ASCII text files.
	During a fax conversion, tab characters ($09) in the input text are expanded to one to TabStop sp...
	To demonstrate how space characters are inserted, these examples use the default TabStop of 4. If...
	<tab>This is a test

	The tab character is expanded to:
	<space><space><space><space>This is a test

	If the input data is:
	This is a<tab>test

	The tab character is expanded to:
	This is a<space><space><space>test

	Only three spaces are needed because the word “test” is only three spaces away from a tabstop.

	TopMargin property
	property TopMargin : Cardinal
	Default: 0


	Specifies the size in raster lines of the top margin in the APF file.
	To avoid problems with fax machines that print faxes too close to the top of the paper (thereby d...
	TopMargin is the number of blank raster lines added to the top of every converted page. The visib...
	See also: LeftMargin, Resolution


	Width property
	property Width : TFaxWidth
	TFaxWidth = (fwNormal, fwWide);
	Default: fwNormal


	Specifies the width of output faxes.
	The standard width of a fax page is 1728 pixels per row (about 8.5 inches). Async Professional su...
	In most cases, the standard width of 1728 pixels is adequate. The larger width of 2048 is provide...
	See also: Resolution




	TApdFaxUnpacker Component
	Fax images are transmitted and received in a compressed bitmap image format. The compressed data ...
	The unpacking methods of the TApdFaxUnpacker component handle all of the work of opening the APF ...
	Async Professional provides additional components to perform some of the most common operations f...
	OnOutputLine event
	When the UnpackPage or UnpackFile methods of the TApdFaxUnpacker component are called, the data i...
	In the following example an OnOutputLine event handler writes the raw raster data to a file:
	var
	OutFile : File;
	...

	procedure Form1.ApdFaxUnpackerOutputLine(
	Sender : TObject; Starting, Ending : Boolean;
	Data : PByteArray; Len, PageNum : Integer);
	begin
	if Starting then begin
	AssignFile(OutFile, 'C:\MYIMAGE.IMG');
	Rewrite(OutFile, 1);
	end else if Ending then begin
	CloseFile(OutFile);
	end else
	BlockWrite(OutFile, Data^, Len);
	end;
	Sender is the object instance of the TApdFaxUnpacker component that generated the event. If Start...
	If Ending is True, the fax unpack process is ending (due to successful completion of the unpack o...
	Data is a pointer to a 0-based array of bytes that contains the decompressed data. Len is the len...
	PageNum contains the number of the page that is currently being unpacked. This can be used to det...


	Memory bitmaps
	The TApdFaxUnpacker can unpack a fax file (or page) to a TBitmap class. This is useful if you wan...
	The UnpackFileToBitmap and UnpackPageToBitmap methods of the TApdFaxUnpacker component unpack a f...
	var
	Bmp : TBitmap;
	Image1 : TImage;

	begin
	ApdFaxUnpacker1.InFileName := 'D:\MYFAX.APF';
	try
	Bmp := ApdFaxUnpacker1.UnpackFileToBitmap;
	Image1.Picture.Bitmap := Bmp;
	except
	MessageDlg('Unpack failed!', mtError, [mbOK], 0);
	end;
	end;
	Additionally, you can use the Canvas property of the Bitmap class to place additional graphics on...

	Form1 = class(TForm)
	Image1 : TImage;
	...

	procedure TForm1.BitBtn1Click(Sender : TObject);
	var
	Bmp1 : TBitmap;
	Bmp2 : TBitmap;

	begin
	ApdFaxUnpacker1.InFileName := 'D:\MYFAX1.APF';
	Bmp1 := ApdFaxUnpacker1.UnpackPageToBitmap(1);

	ApdFaxUnpacker1.InFileName := 'D:\MYFAX2.APF';
	Bmp2 := ApdFaxUnpacker1.UnpackPageToBitmap(1);

	Bmp1.Canvas.Draw(0, 0, Bmp2);
	Bmp2.Free;

	Image1.Picture.Bitmap := Bmp1;
	end;
	This example unpacks MYFAX1.APF and MYFAX2.APF into memory bitmaps. The bitmap of MYFAX2.APF is t...


	Scaling
	The TApdFaxUnpacker component can scale (i.e., make the size larger or smaller) a fax as it is un...
	The image is scaled depending on the values of four properties. HorizMult and HorizDiv are combin...
	For example, assume a standard resolution fax (200x100) is being unpacked. When the fax is unpack...
	ApdFaxUnpacker1.Scaling := True;
	ApdFaxUnpacker1.HorizMult := 1;
	ApdFaxUnpacker1.HorizDiv := 1;
	ApdFaxUnpacker1.VertMult := 2;
	ApdFaxUnpacker1.VertDiv := 1;
	This specifies that the unpacked fax data is to be scaled to be twice as tall (VertMult / VertDiv...
	Similarly, the following code achieves the same effect, but the resultant image is smaller:

	ApdFaxUnpacker1.Scaling := True;
	ApdFaxUnpacker1.HorizMult := 1;
	ApdFaxUnpacker1.HorizDiv := 2;
	ApdFaxUnpacker1.VertMult := 1;
	ApdFaxUnpacker1.VertDiv := 1;
	This specifies that the width of the unpacked fax is to be halved (HorizMult / HorizDiv = 1/2). T...
	To make it easier to compensate for the aspect ratio of standard resolution faxes, the AutoScaleM...
	The Scaling property can be used in many ways to produce a nearly unlimited range of images. For ...

	ApdFaxUnpacker1.Scaling := True;
	ApdFaxUnpacker1.HorizMult := 1;
	ApdFaxUnpacker1.HorizDiv := 3;
	ApdFaxUnpacker1.VertMult := 1;
	ApdFaxUnpacker1.VertDiv := 3;
	You could create a thumbnail 32x42 image of the fax (assuming an 8.5" x 11" fax) with the followi...

	ApdFaxUnpacker1.Scaling := True;
	ApdFaxUnpacker1.HorizMult := 1;
	ApdFaxUnpacker1.HorizDiv := 54;
	ApdFaxUnpacker1.VertMult := 1;
	ApdFaxUnpacker1.VertDiv := 54;


	White space compression
	To make it easier to view large faxes that have a lot of white space, the TApdFaxUnpacker can com...
	To use the white space compression feature, set WhitespaceCompression to True. Every occurrence o...

	Example
	This example demonstrates the steps involved in unpacking a fax file to a memory bitmap. Create a...
	Table 15.6: Example components and property values
	After adding the components and setting their properties, click on the combo box at the top of th...

	procedure TForm1.FormCreate(Sender : TObject);
	var
	Bmp : TBitmap;

	begin
	Bmp := ApdFaxUnpacker1.UnpackPageToBitmap(1);
	Image1.Picture.Bitmap := Bmp;
	end;
	This event loads the fax specified by InFileName into the TBitmap Bmp. This TBitmap is assigned t...


	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomFaxUnpacker (AdFaxCvt)
	TApdFaxUnpacker (AdFaxCvt)


	Properties
	Methods
	Events
	Reference Section
	AutoScaleMode property
	property AutoScaleMode : TAutoScaleMode
	TAutoScaleMode = (asNone, asDoubleHeight, asHalfWidth);

	Determines whether standard resolution faxes are automatically scaled.
	When a standard resolution fax is unpacked, the resulting image looks shorter than it should. Tha...
	AutoScaleMode can be used to automatically adjust the width or height of a standard resolution fa...
	AutoScaleMode can contain any of the following values:
	See Also: Scaling


	ExtractPage method
	procedure ExtractPage(const Page : Cardinal);

	Extracts a single page in a fax file to an APF file.
	ExtractPage reads and extracts the page specified by Page in the fax file specified by InFileName...
	If InFileName and OutFileName are the same, an ecAccessDenied exception will be raised. If the fi...
	The following example extracts each page in a fax to a separate fax file:
	var
	I : Integer;
	....
	ApdFaxUnpacker1.InFileName := OpenDialog1.FileName;
	for I := 1 to ApdFaxUnpacker1.NumPages do begin
	ApdFaxUnpacker1.OutFileName := 'PAGE' + IntToStr(I) + '.APF';
	ApdFaxUnpacker1.ExtractPage(I);
	end;
	....
	See also: InFileName, OutFileName


	FaxResolution read-only, run-time property
	property FaxResolution : TFaxResolution
	TFaxResolution = (frNormal, frHigh);

	The resolution of the fax.
	If the file name specified in InFileName is valid, FaxResolution is the resolution of the first p...
	The following example examines the resolution of a fax and sets the scaling properties appropriat...
	ApdFaxUnpacker1.InFileName := OpenDialog.FileName;
	ApdFaxUnpacker1.Scaling := False;

	{double the height of the fax if it's in 200x100 resolution}
	if (ApdFaxUnpacker1.FaxResolution = frNormal) then begin
	ApdFaxUnpacker1.HorizMult := 1;
	ApdFaxUnpacker1.HorizDiv := 1;
	ApdFaxUnpacker1.VertMult := 2;
	ApdFaxUnpacker1.VertDiv := 1;
	ApdFaxUnpacker1.Scaling := True;
	end;
	See also: FaxWidth, InFileName


	FaxWidth read-only, run-time property
	property FaxWidth : TFaxWidth
	TFaxWidth = (fwNormal, fwWide);

	The width of the fax.
	If the file name specified in InFileName is valid, FaxWidth is the width of the first page of the...
	The following example examines the width of a fax and allocates a buffer large enough to hold a l...
	ApdFaxUnpacker1.InFileName := OpenDialog.FileName;
	if (ApdFaxUnpacker1.FaxWidth = fwNormal) then
	GetMem(Buffer, 1728 div 8)
	else
	GetMem(Buffer, 2048 div 8);
	See also: FaxResolution, InFileName


	HorizDiv property
	property HorizDiv : Cardinal
	Default: 1


	Determines the horizontal divisor component for scaling.
	Attempts to set the value of HorizDiv to 0 are ignored.
	For a detailed explanation of scaling, see “Scaling” on page�626.
	See also: HorizMult, Scaling, VertDiv, VertMult


	HorizMult property
	property HorizMult : Cardinal
	Default: 1


	Determines the horizontal multiplier component for scaling.
	Attempts to set the value of HorizMult to 0 are ignored.
	For a detailed explanation of scaling, see “Scaling” on page�626.
	See also: HorizDiv, Scaling, VertDiv, VertMult


	InFileName property
	property InFileName : string

	Specifies the name of the APF file to be unpacked.
	The TApdFaxUnpacker reads compressed Group 3 data from a file (in APF format) and decompresses it...
	When InFileName is set, OutFileName is automatically set to the value of InFileName with the exte...
	The following example specifies an input file and unpacks it to MYFAX.BMP:
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.UnpackFileToBmp;
	See also: InFileName, OutFileName


	NumPages read-only, run-time property
	property NumPages : Cardinal

	The number of pages in the fax.
	If the file specified in InFileName is valid, NumPages is the number of pages in the fax.
	The following example unpacks each page of a fax into individual memory bitmaps and processes them:
	var
	I : Integer;
	B : TBitmap;

	...
	ApdFaxUnpacker1.InFileName := OpenDialog.FileName;
	for I := 1 to ApdFaxUnpacker1.NumPages do begin
	B := UnpackPageToBitmap(I);
	...process bitmap image...
	B.Free;
	end;
	See also: InFileName


	OnOutputLine event
	property OnOutputLine : TUnpackOutputLineEvent
	TUnpackOutputLineEvent = procedure(Sender : TObject;
	Starting, Ending : Boolean; Data : PByteArray;
	Len, PageNum : Integer) of object;

	Defines an event handler that is called to output a line of decompressed raster data.
	As each line of data in an APF file is decompressed, the OnOutputLine event handler is called to ...
	If Starting is True, no data is passed to the event—it is simply a notification that the unpackin...
	If Ending is True, no data is passed to the event—it is simply a notification that the unpacking ...
	Data is a pointer to a zero-based array of bytes that contains the decompressed data. Each byte i...
	The following example writes each line of decompressed data to a file:
	var
	OutFile : File;
	...

	procedure Form1.ApdFaxUnpackerOutputLine(
	Sender : TObject; Starting, Ending : Boolean;
	Data : PByteArray; Len, PageNum : Integer);
	begin
	if Starting then begin
	AssignFile(OutFile, 'C:\MYIMAGE.IMG');
	Rewrite(OutFile, 1);
	end else if Ending then begin
	CloseFile(OutFile);
	end else
	BlockWrite(OutFile, Data^, Len);
	end;
	See also: OnStatus


	OnStatus event
	property OnStatus : TUnpackStatusEvent
	TUnpackStatusEvent = procedure(
	Sender : TObject; FName : string; PageNum : Integer;
	BytesUnpacked, BytesToUnpack : LongInt); of object;

	Defines an event handler that is called to display the progress of an unpack operation.
	The OnStatus event handler is called after each line of a fax is read and decompressed. You can u...
	FName is the name of the file that is being unpacked. PageNum is the number of the page that is c...
	BytesUnpacked is the number of bytes that have been unpacked so far. BytesToUnpack is the total n...
	The following example uses the OnStatus event to display a percent complete to the user:
	procedure Form1.ApdFaxUnpacker1Status(
	Sender : TObject; FName : string; PageNum : Integer;
	BytesUnpacked, BytesToUnpack : LongInt) : Boolean;
	begin
	Label1.Caption := Format(
	'Converting page %d of %s, %d%% complete',
	[PageNum, FName, (BytesUnpacked * 100) div BytesToUnpack];
	end;
	See also: OnOutputLine


	Options property
	property Options : TUnpackerOptionsSet
	TUnpackerOptionsSet = Set of TUnpackerOptions;
	TUnpackerOptions = (uoYield, uoAbort);
	Default: [uoYield]


	A set of optional behaviors for the fax unpacker.
	If uoYield is on (the default), the TApdFaxUnpacker yields to Windows regularly, giving other app...
	There is one case in which yielding isn’t necessary—if your application is 32-bit and your unpack...
	ApdFaxUnpacker1.Options := [];

	To turn the yield option on, turn it on in the Object Inspector or use the following code:
	ApdFaxUnpacker1.Options := [uoYield];

	To abort a fax unpacking operation at run time, set Options to uoAbort.

	OutFileName property
	property OutFileName : string

	Specifies the name of the output image file.
	When the TApdFaxUnpacker component creates an image file (BMP, PCX, DCX, or TIF), the image is wr...
	When InFileName is set, OutFileName is automatically set to the value of InFileName with the exte...
	The following example demonstrates the use of the OutFileName property:
	ApdFaxUnpacker1.OutFileName := 'C:\MYFILE.BMP';
	ApdFaxUnpacker1.UnpackFileToBmp;
	See also: InFileName, UnpackXxxToXxx


	Scaling property
	property Scaling : Boolean

	Specifies whether image scaling is performed.
	If Scaling is True, unpacked images are scaled to a new size determined by the values of four pro...
	For example, assume that a fax is 1728 pixels wide and 2200 pixels tall. If HorizMult equals 1, H...
	See “Scaling” on page�626 for more information.
	See also: HorizDiv, HorizMult, VertDiv, VertMult


	UnpackFile method
	procedure UnpackFile;

	Unpacks all pages in a fax file.
	UnpackFile reads and unpacks every line of the fax file specified by InFileName and passes the un...
	The following example unpacks a fax and writes the unpacked data to a file:
	var
	OutFile : File;
	...

	procedure Form1.ApdFaxUnpacker1OutputLine(
	Sender : TObject; Starting, Ending : Boolean;
	Data : PByteArray; Len, PageNum : Integer);
	begin
	if Starting then begin
	AssignFile(OutFile, 'C:\MYIMAGE.IMG');
	Rewrite(OutFile, 1);
	end else if Ending then begin
	CloseFile(OutFile);
	end else
	BlockWrite(OutFile, Data^, Len);
	end;

	...
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.UnpackFile;
	See also: InFileName, OnOutputLine, Scaling, UnpackPage


	UnpackFileToBitmap method
	function UnpackFileToBitmap : TBitmap;

	Unpacks all pages in a fax file to a memory bitmap.
	UnpackFileToBitmap reads and unpacks every line of the fax file specified by InFileName and puts ...
	Since the TBitmap class does not include the concept of pages, all pages in the input APF file ar...
	The following example unpacks a fax and puts the unpacked data in a memory bitmap:
	var
	Bmp : TBitmap;
	...

	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	Bmp := ApdFaxUnpacker1.UnpackFileToBitmap;
	Form1.Image1.Picture.Bitmap := Bmp;
	Bmp.Free;
	See also: InFileName, Scaling, UnpackPageToBitmap


	UnpackFileToBmp method
	procedure UnpackFileToBmp;

	Unpacks all pages in a fax file to a Windows bitmap file.
	UnpackFileToBmp reads and unpacks every line of the fax file specified by InFileName and writes t...
	Since the Windows bitmap file format does not include the concept of pages, all pages in the inpu...
	The following example creates a bitmap file called C:\MYIMAGE.BMP:
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.BMP';
	ApdFaxUnpacker1.UnpackFileToBmp;
	See also: InFileName, OutFileName, Scaling, UnpackPageToBmp


	UnpackFileToDcx method
	procedure UnpackFileToDcx;

	Unpacks all pages in a fax file to a DCX file.
	UnpackFileToDcx reads and unpacks every line of the fax file specified by InFileName and writes t...
	The DCX image file format is a multi-page file format. Each page in the input APF file is placed ...
	The following example creates a DCX file called C:\MYIMAGE.DCX:
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.DCX';
	ApdFaxUnpacker1.UnpackFileToDcx;
	See also: InFileName, OutFileName, Scaling, UnpackPageToDcx


	UnpackFileToPcx method
	procedure UnpackFileToPcx;

	Unpacks all pages in a fax file to a PCX file.
	UnpackFileToPcx reads and unpacks every line of the fax file specified by InFileName and writes t...
	Since the PCX file format does not include the concept of pages, all pages in the input APF file ...
	The following example creates a PCX file called C:\MYIMAGE.PCX:
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.PCX';
	ApdFaxUnpacker1.UnpackFileToPcx;
	See also: InFileName, OutFileName, Scaling, UnpackPageToPcx


	UnpackFileToTiff method
	procedure UnpackFileToTiff;

	Unpacks all pages in a fax file to a TIFF file.
	UnpackFileToTiff reads and unpacks every line of the fax file specified by InFileName and writes ...
	Since the TIFF file format does not include the concept of pages, all pages in the input APF file...
	The following example creates a TIFF file called C:\MYIMAGE.TIF:
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.TIF';
	ApdFaxUnpacker1.UnpackFileToTiff;
	See also: InFileName, OutFileName, Scaling, UnpackPageToTiff


	UnpackPage method
	procedure UnpackPage(const Page : Cardinal);

	Unpacks a single page in a fax file.
	UnpackPage reads and unpacks the page specified by Page in the fax file specified by InFileName. ...
	The following example unpacks the first page of a fax and writes the unpacked data to a file:
	var
	OutFile : File;
	...

	procedure Form1.ApdFaxUnpacker1OutputLine(
	Sender : TObject; Starting, Ending : Boolean;
	Data : PByteArray; Len, PageNum : Integer);
	begin
	if Starting then begin
	AssignFile(OutFile, 'C:\MYIMAGE.IMG');
	Rewrite(OutFile, 1);
	end else if Ending then begin
	CloseFile(OutFile);
	end else
	BlockWrite(OutFile, Data^, Len);
	end;

	...
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.UnpackPage(1);
	See also: InFileName, OnOutputLine, Scaling, UnpackFile


	UnpackPageToBitmap method
	function UnpackPageToBitmap(const Page : Cardinal) : TBitmap;

	Unpacks a single page in a fax file to a memory bitmap.
	UnpackPageToBitmap reads and unpacks the page specified by Page in the fax file specified by InFi...
	The following example unpacks the first page of a fax and puts the unpacked data in a memory bitmap:
	var
	Bmp : TBitmap;
	...

	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	Bmp := ApdFaxUnpacker1.UnpackPageToBitmap(1);
	Form1.Image1.Picture.Bitmap := Bmp;
	Bmp.Free;
	See also: InFileName, Scaling, UnpackFileToBitmap


	UnpackPageToBmp method
	procedure UnpackPageToBmp(const Page : Cardinal);

	Unpacks a single page in a fax file to a Windows bitmap file.
	UnpackPageToBmp reads and unpacks the page specified by Page in the fax file specified by InFileN...
	The following example writes the first page of a fax file to C:\MYIMAGE.BMP:
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.BMP';
	ApdFaxUnpacker1.UnpackPageToBmp(1);
	See also: InFileName, OutFileName, Scaling, UnpackFileToBmp


	UnpackPageToDcx method
	procedure UnpackPageToDcx(const Page : Cardinal);

	Unpacks a single page in a fax file to a DCX file.
	UnpackPageToDcx reads and unpacks the page specified by Page in the fax file specified by InFileN...
	The DCX file format is a multi-page file format. Since only one page is unpacked by the UnpackPag...
	The following example writes the first page of a fax file to C:\MYIMAGE.DCX:
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.DCX';
	ApdFaxUnpacker1.UnpackPageToDcx(1);
	See also: InFileName, OutFileName, Scaling, UnpackFileToDcx


	UnpackPageToPcx method
	procedure UnpackPageToPcx(const Page : Cardinal);

	Unpacks a single page in a fax file to a PCX file.
	UnpackPageToPcx reads and unpacks the page specified by Page in the fax file specified by InFileN...
	The following example writes the first page of a fax file to C:\MYIMAGE.PCX:
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.PCX';
	ApdFaxUnpacker1.UnpackPageToPcx(1);
	See also: InFileName, OutFileName, Scaling, UnpackFileToPcx


	UnpackPageToTiff method
	procedure UnpackPageToTiff(const Page : Cardinal);

	Unpacks a single page in a fax file to a TIFF file.
	UnpackPageToTiff reads and unpacks the page specified by Page in the fax file specified by InFile...
	The following example writes the first page of a fax file to C:\MYIMAGE.TIF:
	ApdFaxUnpacker1.InFileName := 'C:\MYFAX.APF';
	ApdFaxUnpacker1.OutFileName := 'C:\MYIMAGE.TIF';
	ApdFaxUnpacker1.UnpackPageToTiff(1);
	See also: InFileName, OutFileName, Scaling, UnpackFileToTiff


	VertDiv property
	property VertDiv : Cardinal
	Default: 1


	Determines the vertical divisor component for scaling.
	Attempts to set the value of VertDiv to 0 are ignored.
	For a detailed explanation of scaling, see “Scaling” on page�626.
	See also: HorizDiv, HorizMult, Scaling, VertMult


	VertMult property
	property VertMult : Cardinal
	Default: 1


	Determines the vertical multiplier component for scaling.
	Attempts to set the value of VertMult to 0 are ignored.
	For a detailed explanation of scaling, see “Scaling” on page�626.
	See also: HorizDiv, HorizMult, Scaling, VertDiv


	WhitespaceCompression property
	property WhitespaceCompression : Boolean
	Default: False


	Determines whether vertical white space is compressed.
	When WhitespaceCompression is True, large blocks of vertical white space are replaced with smalle...
	By default, compression of vertical white space is not enabled.
	See “White space compression” on page�628 for more information.
	See also: WhitespaceFrom, WhitespaceTo


	WhitespaceFrom property
	property WhitespaceFrom : Cardinal
	Default: 0


	Specifies the number of consecutive blank lines that are compressed if white space compression is...
	When WhitespaceCompression is True, WhitespaceFrom is used to determine the number of consecutive...
	The value of WhitespaceFrom must be greater than the value of WhitespaceTo. If it is not, an EBad...
	See “White space compression” on page�628 for more information.
	See also: WhitespaceCompression, WhitespaceTo


	WhitespaceTo property
	property WhitespaceTo : Cardinal
	Default: 0


	Specifies the number of blank lines that are substituted for every occurrence of WhitespaceFrom o...
	When WhitespaceCompression is True, WhitespaceTo is used to determine the number of blank lines t...
	The value of WhitespaceTo must be less than the value of WhitespaceFrom. If it is not, an EBadArg...
	See “White space compression” on page�628 for more information.
	See also: WhitespaceCompression, WhitespaceFrom




	TApdFaxViewer Component
	The TApdFaxViewer component makes it easy to view received faxes (or any APF file). When the File...
	The viewer has capabilities for scaling faxes, so you can implement features like “zoom in and ou...
	Scaling
	The TApdFaxViewer component can scale (i.e., make the size larger or smaller) a fax that is viewe...
	If Scaling is set to True (either when the fax is loaded or later), the image displayed on the sc...
	For example, assume a standard resolution fax (200x100) is being viewed. When the fax is converte...
	ApdFaxViewer1.Scaling := True;
	ApdFaxViewer1.HorizMult := 1;
	ApdFaxViewer1.HorizDiv := 1;
	ApdFaxViewer1.VertMult := 2;
	ApdFaxViewer1.VertDiv := 1;
	This specifies that the viewed fax is scaled to be twice as tall (VertMult / VertDiv = 2/1 = 2) a...
	Because changes to the scaling properties cause an immediate repaint of the image displayed on th...

	ApdFaxViewer1.BeginUpdate;
	ApdFaxViewer1.Scaling := True;
	ApdFaxViewer1.HorizMult := 1;
	ApdFaxViewer1.HorizDiv := 1;
	ApdFaxViewer1.VertMult := 2;
	ApdFaxViewer1.VertDiv := 1;
	ApdFaxViewer1.EndUpdate;
	Here is another way to deal with the problem of the standard resolution fax looking shorter than ...

	ApdFaxViewer1.BeginUpdate;
	ApdFaxViewer1.Scaling := True;
	ApdFaxViewer1.HorizMult := 1;
	ApdFaxViewer1.HorizDiv := 2;
	ApdFaxViewer1.VertMult := 1;
	ApdFaxViewer1.VertDiv := 1;
	ApdFaxViewer1.EndUpdate;
	This specifies that the width of the fax is to be halved (HorizMult / HorizDiv = 1/2). This, too,...
	To make it easier to compensate for the aspect ratio of standard resolution faxes, the AutoScaleM...
	The Scaling property can be used in many ways to produce a nearly unlimited range of images. For ...

	ApdFaxViewer1.BeginUpdate;
	ApdFaxViewer1.Scaling := True;
	ApdFaxViewer1.HorizMult := 1;
	ApdFaxViewer1.HorizDiv := 3;
	ApdFaxViewer1.VertMult := 1;
	ApdFaxViewer1.VertDiv := 3;
	ApdFaxViewer1.EndUpdate;


	Rotation
	Occasionally a fax is received upside down or sideways, making it difficult to view on the screen...
	By default, faxes are displayed as they were received (0 degree rotation). Faxes can be rotated o...
	The following example demonstrates the use of the Rotation property in viewing upside down faxes:
	procedure Form1.RotateBtnClick(Sender : TObject);
	begin
	ApdFaxViewer1.Rotation := vr180;
	end;


	White space compression
	To make it easier to view large faxes that have a lot of white space, the TApdFaxViewer can compr...
	To use the white space compression feature, set WhitespaceCompression to True. Every occurrence o...
	The white space compression feature is active only when a fax is loaded into the viewer. If you n...

	Drag and drop
	The Windows File Manager program and the folders in Windows 95/98 support file drag and drop. If ...
	If AcceptDragged is True, the TApdFaxViewer calls the DragAcceptFiles API and allows APF files to...
	Your application can be notified of a dropped file if you implement an OnDropFile event handler. ...

	Navigation in the viewer
	The TApdFaxViewer uses keyboard or mouse input to scroll viewed faxes on the screen, change pages...
	Using the mouse to navigate
	When the mouse is clicked on a horizontal scrollbar arrow, the display is scrolled right or left ...
	When the mouse is clicked to the left or the right of the scroll thumb on a horizontal scrollbar,...

	Using the keyboard to navigate
	The TApdFaxViewer recognizes the keystrokes in Table 15.7 for navigation in viewed faxes.
	Table 15.7: TApdFaxViewer recognized keystrokes (continued)

	Copying a fax to the clipboard
	The fax viewer allows you to copy all or part of a viewed fax to the Windows clipboard for later ...
	1. Call SelectImage to select the entire current page.
	2. Call SelectRegion to select a specified rectangle in the current page.
	3. Portions of the current page can be manually selected by clicking on a section of the image an...
	When you make a selection, it is displayed in reverse video. The selection can then be copied to ...



	Example
	The following example demonstrates the steps involved in viewing an APF file. Create a new projec...
	Table 15.8: Example components and property values
	Click on the combo box at the top of the Object Inspector and select “Form1.” Next, click Events ...

	procedure TForm1.FormCreate(Sender : TObject);
	begin
	if OpenDialog1.Execute then
	ApdFaxViewer1.FileName := OpenDialog1.FileName
	else
	Halt(1);
	end;
	This event prompts the user to enter the name of an APF file. If a file name is entered (i.e., Ex...


	Hierarchy
	TWinControl (VCL)
	TApdCustomFaxViewer (AdFView)
	TApdFaxViewer (AdFView)


	Properties
	Methods
	Events
	Reference Section
	AcceptDragged property
	property AcceptDragged : Boolean
	Default: True


	Determines whether files dropped onto the viewer are automatically loaded.
	If AcceptDragged is True, the viewer allows APF files to be dragged and dropped on it. The droppe...
	See “Drag and drop” on page�651 for more information.
	See also: OnDropFile


	ActivePage run-time property
	property ActivePage : Cardinal

	The fax page that is currently being viewed.
	The TApdFaxViewer displays one page of the fax at a time. ActivePage can be used for a status dis...
	ActivePage can also be used to change the page currently being viewed by setting it to the desire...
	The following example demonstrates how to retrieve the bitmap for the currently viewed page:
	var
	Bmp : TBitmap;

	...
	Bmp := ApdFaxViewer1.PageBitmaps[ApdFaxViewer1.ActivePage];
	See also: PageBitmaps, NumPages


	AutoScaleMode property
	property AutoScaleMode : TAutoScaleMode
	TAutoScaleMode = (asNone, asDoubleHeight, asHalfWidth);
	Default: asDoubleHeight


	Determines whether standard resolution faxes are automatically scaled.
	When a standard resolution fax is loaded into the viewer, it looks shorter than it should. That i...
	AutoScaleMode can be used to automatically adjust the width or height of a standard resolution fa...
	AutoScaleMode can contain any of the following values:
	See Also: Scaling


	BeginUpdate method
	procedure BeginUpdate;

	Indicates the beginning of an update of the viewer’s scaling properties.
	When one of the scaling properties (Scaling, HorizMult, HorizDiv, VertMult, or VertDiv) is modifi...
	The following example demonstrates the use of the BeginUpdate method by scaling a fax 2- to-1:
	procedure TForm1.ScaleImage2To1;
	begin
	ApdFaxViewer1.BeginUpdate;
	ApdFaxViewer1.Scaling := True;
	ApdFaxViewer1.HorizMult := 2;
	ApdFaxViewer1.HorizDiv := 1;
	ApdFaxViewer1.VertMult := 2;
	ApdFaxViewer1.VertDiv := 1;
	ApdFaxViewer1.EndUpdate;
	end;
	See also: EndUpdate, HorizDiv, HorizMult, Scaling, VertDiv, VertMult


	BGColor property
	property BGColor : TColor
	Default: clWhite


	The background color of a displayed fax.
	Faxes contain only two colors of pixels: black and white. Normally, when a fax is displayed by th...
	BGColor changes the display color of white pixels. If BGColor is set to clBlue, the fax is displa...
	See also: FGColor


	BusyCursor property
	property BusyCursor : TCursor

	The cursor that is displayed during lengthy operations.
	At times, the TApdFaxViewer component must load portions of the displayed fax into memory. This c...
	The following example tells the fax viewer to display the hourglass cursor during lengthy operati...
	ApdFaxViewer1.BusyCursor := crHourglass;


	CopyToClipboard method
	procedure CopyToClipboard;

	Copies the selected image in the viewer to the Windows clipboard.
	Fax images copied to the Windows clipboard are stored in cf_Bitmap format. A program using the cl...
	See “Copying a fax to the clipboard” on page�653 for more information.
	See also: SelectImage, SelectRegion


	EndUpdate method
	procedure EndUpdate;

	Indicates the end of an update of the viewer’s scaling properties and repaints the screen, reflec...
	When one of the scaling properties (Scaling, HorizMult, HorizDiv, VertMult, or VertDiv) is modifi...
	See also: BeginUpdate, HorizDiv, HorizMult, Scaling, VertDiv, VertMult


	FGColor property
	property FGColor : TColor
	Default: clBlack


	The foreground color of a displayed fax.
	Faxes contain only two colors of pixels: black and white. Normally, when a fax is displayed by th...
	FGColor changes the display color of black pixels. If FGColor is set to clGreen, the fax is displ...
	See also: BGColor


	FileName property
	property FileName : string

	The name of the file being viewed.
	FileName is the name of the APF file that the fax viewer is viewing. Setting FileName causes the ...
	FileName should be a fully qualified file name. Unqualified file names are assumed to be in the c...
	If LoadWholeFax is False, only the first page of the fax is loaded into memory and displayed. If ...
	If FileName is set to an empty string, the currently loaded fax (if any) is discarded.
	The following example demonstrates the use of the FileName property:
	procedure Form1.OpenItemClick(Sender : TObject);
	begin
	if OpenDialog.Execute then
	ApdFaxViewer1.FileName := OpenDialog.FileName;
	end;
	See also: LoadWholeFax, Rotation, Scaling


	FirstPage method
	procedure FirstPage;

	Displays the first page in the fax.
	The TApdFaxViewer displays one page of the fax at a time. Calling FirstPage changes the display t...
	If LoadWholeFax is False, calling this method causes the current page to be discarded and the new...
	The following example demonstrates the use of FirstPage:
	procedure Form1.FirstPageBtnClick(Sender : TObject);
	begin
	{move to first page}
	ApdFaxViewer1.FirstPage;
	end;
	See also: ActivePage, LastPage, LoadWholeFax, NextPage, PrevPage


	HorizDiv property
	property HorizDiv : Cardinal
	Default: 1


	Determines the horizontal divisor component for scaling.
	Attempts to set the value of HorizDiv to 0 are ignored. For a detailed explanation of scaling, se...
	See also: BeginUpdate, EndUpdate, HorizMult, Scaling, VertDiv, VertMult


	HorizMult property
	property HorizMult : Cardinal
	Default: 1


	Determines the horizontal multiplier component for scaling.
	Attempts to set the value of HorizMult to 0 are ignored. For a detailed explanation of scaling, s...
	See also: BeginUpdate, EndUpdate, HorizDiv, Scaling, VertDiv, VertMult


	HorizScroll property
	property HorizScroll : Cardinal
	Default: 8


	Determines the number of pixels that are scrolled during horizontal scrolling.
	When the right or left arrow keys are pressed or the right or left arrows on the horizontal scrol...
	See also: VertScroll


	LastPage method
	procedure LastPage;

	Displays the last page in the fax.
	The TApdFaxViewer displays one page of the fax at a time. Calling LastPage changes the display to...
	If LoadWholeFax is False, calling this method causes the current page to be discarded and the new...
	The following example demonstrates the use of LastPage:
	procedure Form1.LastPageBtnClick(Sender : TObject);
	begin
	{move to last page}
	ApdFaxViewer1.LastPage;
	end;
	See also: ActivePage, FirstPage, LoadWholeFax, NextPage, PrevPage


	LoadWholeFax property
	property LoadWholeFax : Boolean
	Default: False


	Determines whether the entire fax is loaded into memory.
	The TApdFaxViewer can load faxes one page at a time or all at once. If LoadWholeFax is False (the...
	Navigating through a fax is slower when LoadWholeFax is False, but it saves a considerable amount...
	See also: FileName


	NextPage method
	procedure NextPage;

	Displays the next page in the fax.
	The TApdFaxViewer displays one page of the fax at a time. Calling NextPage changes the display to...
	If LoadWholeFax is False, calling this method causes the current page to be discarded and the new...
	The following example demonstrates the use of NextPage:
	procedure Form1.NextPageBtnClick(Sender : TObject);
	begin
	{show next page}
	ApdFaxViewer1.NextPage;
	end;
	See also: ActivePage, FirstPage, LastPage, LoadWholeFax, PrevPage


	NumPages read-only, run-time property
	property NumPages : Integer

	The number of pages in the fax that is currently being viewed.
	NumPages can be used as an upper limit when accessing the PageBitmaps property, or in a status di...
	The following example performs an operation on the bitmap for each page in the fax:
	procedure Form1.ProcessPages;
	var
	I : Integer;
	Bmp : TBitmap;

	begin
	for I := 1 to ApdFaxViewer1.NumPages do begin
	Bmp := ApdFaxViewer1.PageBitmaps[I];
	...process the bitmap...
	Bmp.Free;
	end;
	end;
	See also: ActivePage, PageBitmaps


	OnDropFile event
	property OnDropFile : TViewerFileDropEvent
	TViewerFileDropEvent = procedure(
	Sender : TObject; FileName : string) of object;

	Defines an event handler that is called when a file is dropped on the viewer.
	When a file is dropped onto a TApdFaxViewer and AcceptDragged is True, the file is loaded into th...
	The following example demonstrates the use of the OnDropFile event:
	procedure Form1.ApdFaxViewer1DropFile(
	Sender : TObject; FileName : string);
	var
	I : Integer;
	Bmp : TBitmap;
	begin
	Label1.Caption := Format('Now viewing %s, page 1 of %d',
	[FileName, ApdFaxViewer1.NumPages]);
	{process bitmaps}
	for I := 1 to ApdFaxViewer1.NumPages do begin
	Bmp := ApdFaxViewer1.PageBitmaps[I];
	...process bitmap for new fax...
	Bmp.Free;
	end;
	end;
	See also: AcceptDragged


	OnPageChange event
	property OnPageChange : TNotifyEvent

	Defines an event handler that is called when the active page changes.
	The user of the TApdFaxViewer component can change pages by pressing the PgUp and PgDn keys. When...
	The following example updates a label on a form to display information about the current page:
	procedure TMainForm.ApdFaxViewer1PageChange(Sender : TObject);
	begin
	if (ApdFaxViewer1.FileName <> '') then
	StatusPanel.Caption :=
	Format(' Viewing page %d of %d in %s',
	[ApdFaxViewer1.ActivePage, ApdFaxViewer1.NumPages,
	ApdFaxViewer1.FileName])
	else
	StatusPanel.Caption := ' No file loaded';
	end;


	OnViewerError event
	property OnViewerError : TViewerErrorEvent
	TViewerErrorEvent = procedure(
	Sender : TObject; ErrorCode : Integer) of object;

	Defines an event handler that reports fax viewer errors.
	If LoadWholeFax is False, the TApdFaxViewer is sometimes forced to load faxes in the background. ...
	ErrorCode contains the number of the error that occurred. It can be any of the ecXxx error codes.
	See also: LoadWholeFax


	PageBitmaps read-only, run-time property
	property PageBitmaps [const Index : Integer] : TBitmap

	An indexed property containing TBitmap representations of the pages in a viewed fax.
	PageBitmaps is used to obtain a bitmap representation of the fax loaded by the viewer. Each eleme...
	When an element of the PageBitmaps property is accessed, a copy of the bitmap for the specified p...
	If LoadWholeFax is False, referencing any element of the PageBitmaps array (other than the curren...
	The following example obtains bitmaps for all pages in a fax and processes them:
	var
	I : Integer;
	Bmp : TBitmap;
	...
	for I := 1 to ApdFaxViewer1.NumPages do begin
	Bmp := ApdFaxViewer1.PageBitmaps[I];
	...process the bitmap
	Bmp.Free;
	end;
	See also: LoadWholeFax


	PageHeight read-only, run-time property
	property PageHeight : Cardinal

	The height (in pixels) of the currently viewed page.
	When selecting regions of faxes and processing page bitmaps, it is useful to know the dimensions ...
	The following example uses the PageHeight property to select the top half of a fax page:
	var
	R : TRect;
	...
	R.Top := 0;
	R.Left := 0;
	R.Bottom := (ApdFaxViewer1.PageHeight div 2) - 1;
	R.Right := ApdFaxViewer1.PageWidth - 1;
	ApdFaxViewer1.SelectRegion(R);
	See also: PageBitmaps, PageWidth


	PageWidth read-only, run-time property
	property PageWidth : Cardinal

	The width (in pixels) of the currently viewed page.
	When selecting regions of faxes and processing page bitmaps, it is useful to know the dimensions ...
	See also: PageHeight


	PrevPage method
	procedure PrevPage;

	Displays the previous page in the fax.
	The TApdFaxViewer displays one page of the fax at a time. Calling PrevPage changes the display to...
	If LoadWholeFax is False, calling this method causes the current page to be discarded and the new...
	The following example demonstrates the use of PrevPage:
	procedure Form1.ShowPreviousBtnClick(Sender : TObject);
	begin
	{show previous page}
	ApdFaxViewer1.PrevPage;
	end;
	See also: ActivePage, FirstPage, LastPage, LoadWholeFax, NextPage


	Rotation property
	property Rotation : TViewerRotation
	TViewerRotation = (vr0, vr90, vr180, vr270);
	Default: vr0


	The angle at which a fax is viewed.
	When you set Rotation, the bitmap image of the fax is rotated in memory and the rotated image is ...
	By default, faxes are displayed as they were received (0 degree rotation, or vr0).
	For more information see “Rotation” on page�651.
	See also: Scaling


	Scaling property
	property Scaling : Boolean
	Default: False


	Specifies whether image scaling is performed on viewed faxes.
	If Scaling is True, faxes viewed in a TApdFaxViewer are scaled to a new size determined by the va...
	For example, assume that a fax is 1728 pixels wide and 2200 pixels tall. If HorizMult equals 1, H...
	When Scaling is changed, the display is changed immediately to reflect the new settings. If you n...
	See “Scaling” on page�649 for more information.
	See also: BeginUpdate, EndUpdate, HorizDiv, HorizMult, VertDiv, VertMult


	SelectImage method
	procedure SelectImage;

	Selects the entire current page.
	SelectImage selects the entire page that is currently being viewed. When SelectImage is called, t...
	The following example demonstrates the use of SelectImage:
	procedure Form1.CopyBtnClick(Sender : TObject);
	begin
	ApdFaxViewer1.SelectImage;
	ApdFaxViewer1.CopyToClipBoard;
	end;
	See also: CopyToClipboard, SelectRegion


	SelectRegion method
	procedure SelectRegion(const R : TRect);

	Selects the image bounded by the specified rectangle.
	SelectRegion selects a portion of the page being viewed. R specifies the rectangle that is to be ...
	The following example selects a rectangle of 10 pixels by 10 pixels in the upper left corner of t...
	var
	R : TRect;
	...
	R.Top := 0;
	R.Left := 0;
	R.Bottom := 9;
	R.Right := 9;
	ApdFaxViewer1.SelectRegion(R);
	See also: CopyToClipboard, SelectImage


	VertDiv property
	property VertDiv : Cardinal
	Default: 1


	Determines the vertical divisor component for scaling.
	Attempts to set the value of VertDiv to 0 are ignored.
	For a detailed explanation of scaling, see “Scaling” on page�626.
	See also: BeginUpdate, EndUpdate, HorizDiv, HorizMult, Scaling, VertMult


	VertMult property
	property VertMult : Cardinal
	Default: 1


	Determines the vertical multiplier component for scaling.
	Attempts to set the value of VertMult to 0 are ignored.
	For a detailed explanation of scaling, see “Scaling” on page�626.
	See also: BeginUpdate, EndUpdate, HorizDiv, HorizMult, Scaling, VertDiv


	VertScroll property
	property VertScroll : Cardinal
	Default: 8


	Determines the number of pixels that are scrolled during vertical scrolling.
	When the up or down arrow keys are pressed or the up or down arrows on the vertical scrollbar are...
	See also: HorizScroll


	WhitespaceCompression property
	property WhitespaceCompression : Boolean
	Default: False


	Determines whether vertical white space is compressed.
	When WhitespaceCompression is True, large blocks of vertical white space are replaced with smalle...
	If the viewer encounters WhitespaceFrom or more blank raster lines, they are replaced with Whites...
	By default, compression of vertical white space is not enabled.
	Compression of white space takes place only when a fax is loaded. If you need to change the white...
	You can force the reload of a fax using the following code:
	procedure Form1.ReloadFax;
	var
	SavePage : Cardinal;
	SaveFile : string;
	begin
	SavePage := ApdFaxViewer1.ActivePage;
	SaveFile := ApdFaxViewer1.FileName;

	{discard the current fax}
	ApdFaxViewer1.FileName := '';

	{reload the fax}
	ApdFaxViewer1.FileName := SaveFile;
	ApdFaxViewer1.ActivePage := SavePage;
	end;
	See also: WhitespaceFrom, WhitespaceTo


	WhitespaceFrom property
	property WhitespaceFrom : Cardinal
	Default: 0


	Specifies the number of consecutive blank lines that are compressed if white space compression is...
	When WhitespaceCompression is True, WhitespaceFrom is used to determine the number of consecutive...
	The value of WhitespaceFrom must be greater than the value of WhitespaceTo. If it is not, an EBad...
	See also: WhitespaceCompression, WhitespaceTo


	WhitespaceTo property
	property WhitespaceTo : Cardinal
	Default: 0


	Specifies the number of blank lines that are substituted for every occurrence of WhitespaceFrom o...
	When WhitespaceCompression is True, WhitespaceTo is used to determine the number of blank lines t...
	The value of WhitespaceTo must be less than the value of WhitespaceFrom. If it is not, an EBadArg...
	See also: WhitespaceCompression, WhitespaceFrom




	TApdFaxPrinter Component
	The TApdFaxPrinter provides services for printing fax files to any Windows printer. Header and Fo...
	The TApdFaxPrinterStatus component provides a standard display for monitoring the print progress,...
	Headers and footers
	The TApdFaxPrinter can add headers and footers to each printed fax. This can be useful when the i...
	The headers and footers are configured separately, so you can use one, both, or neither. You can ...
	ApdFaxPrinter1.FaxHeader.Caption := 'This is my fax header';

	The Caption property supports replacement tags. A replacement tag is one of several characters pr...
	Table 15.9: Replacement tags
	Note that some of the tags vary in length. For example, $P would be replaced by ‘1’ for the first...
	The default footer caption is:
	DefFaxFooterCaption = 'PAGE: $P of $N';

	This prints a footer on the first page of a six page fax as:
	PAGE: 1 of 6

	The Enabled property of headers and footers simply turns printing on or off. Enabled is checked f...
	The Font property is a TFont class and allows you to change the selected font. The default font i...
	No size adjustments are made in the header or footer for captions that are larger than the page w...


	Scaling
	When a fax is received or created, it is usually stored in the same size as the original document...

	Fax printer events
	The fax printer component generates these events.
	OnFaxPrintLog
	procedure(Sender: TObject; FaxPLCode: TFaxPLCode) of object;
	Generated at the start and end of each printed fax. This provides an opportunity to log the statu...

	OnFaxPrintStatus
	procedure(
	Sender: TObject; StatusCode: TFaxPrintProgress) of object;
	Generated at semi-regular intervals so that a program can display the progress of the printing fax.


	OnNextPage
	procedure(Sender: TObject; CP, LP: Word) of object;
	Generated at the start of each page. Programs can intercept this event to change the settings of ...


	Fax printer status
	Printing a fax file can take from several seconds to several minutes, depending on numerous facto...
	The following example handles the OnFaxPrintStatus event:
	TForm1 = class(TForm)
	....
	File : TLabel;
	Page : TLabel;
	Status: TLabel;
	FP : TApdFaxPrinter;
	...
	end;

	procedure TForm1.ApdFaxPrintStatus(
	Sender : TObject; StatusCode : TFaxPrintProgress);
	const
	ProgressSt: array[TFaxPrintProgress] of string[10] =
	('Idle', 'Converting', 'Composing',
	'Rendering', 'Submitting');
	begin
	File.Caption := FP.FileName;
	Status.Caption := ProgressSt[StatusCode];
	Page.Caption := IntToStr(FP.CurrentPrintingPage);
	end;
	The method named TApdFaxPrinterStatus handles the OnFaxPrintStatus event by updating a form at ea...


	Fax printer logging
	It is often desirable to automate the printing of faxes. For example, a fax server might send and...
	To support logging, the fax printer generates an OnFaxPrintLog event at the start and end of each...
	procedure TForm1.ApdFaxPrintLog(
	Sender : TObject; FaxPLCode : TFaxPLCode);
	begin
	case FaxPLCode of
	lcStart :
	CurrentFile.Caption := ApdFaxPrinter1.FileName;
	lcFinish:
	PrintOK.Items.Add(ApdFaxPrinter1.FileName);
	lcAborted:
	PrintAborted.Items.Add(ApdFaxPrinter1.FileName);
	lcFailed:
	PrintFailed.Items.Add(ApdFaxPrinter1.FileName);
	end;
	end;
	This example shows every possible log value. It uses a TLabel component named CurrentFile to disp...
	The printer logging routine is not limited to just writing status information. It can also be use...
	A supplied component can do automatic print logging for you. If you create an instance of a TApdF...


	Example
	This example shows how to construct and use a fax printer component. Create a new project, add th...
	Table 15.10: Fax printer component example �
	Double click on the FileNameEdit’s OnChange event handler within the Object Inspector and modify ...

	procedure TForm1.FileNameEditChange(Sender : TObject);
	begin
	ApdFaxPrinter1.FileName := FileNameEdit.Text;
	end;
	This event handler updates the name of the file to be printed whenever the text in the edit contr...
	Double click on the FileNameButton’s OnClick event handler and modify the generated method to mat...

	procedure TForm1.FileNameButtonClick(Sender : TObject);
	begin
	OpenDialog1.Filter := 'APF Files (*.APF)|*.APF';
	if OpenDialog1.Execute then
	FileNameEdit.Text := OpenDialog1.FileName;
	end;
	This event handler updates the file name edit box with the selected file from the OpenDialog call.
	Double click on the PrintButton’s OnClick event handler and change the generated method to match ...

	procedure TForm1.PrintButtonClick(Sender : TObject);
	begin
	ApdFaxPrinter1.PrintFax;
	end;
	This tells the TApdFaxPrinter to begin printing the fax file specified by the FileName.
	Compile and run the example. Click Select File to select the fax file to print.
	This example is in the EXFPRN1 project in the \ASYNCPRO\EXAMPLES directory.


	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomFaxPrinter (AdFaxPrn)
	TApdFaxPrinter (AdFaxPrn)


	Properties
	Methods
	Events
	Reference Section
	Caption property
	property Caption : string
	Default: “APro Fax Printer”


	Used by Windows in the Print Manager and for network title pages.
	Each document submitted to the Windows Print Manager has an associated name to identify it in the...

	CurrentPrintingPage read-only, run-time property
	property CurrentPrintingPage : Word

	The number of the pages currently being printed.
	As each page is printed, CurrentPrintingPage is updated to reflect the current page number in the...

	FaxFooter property
	property FaxFooter : TApdFaxPrinterMargin
	TApdFaxPrinterMargin = class(TApdCustomFaxPrinterMargin)
	published
	property Caption;
	property Enabled;
	property Font;
	end;
	Default: Caption: “PAGE: $P of $N”, Enabled: True


	Specifies the options for the fax page footer.
	Caption specifies the text of the footer. It can consist of normal text and replacement tags. A r...
	Enabled indicates whether footers should be printed. Font is the font for the footer.
	See “Headers and footers” on page�674 for more information.
	See also: FaxHeader


	FaxHeader property
	property FaxHeader : TApdFaxPrinterMargin
	TApdFaxPrinterMargin = class(TApdCustomFaxPrinterMargin)
	published
	property Caption;
	property Enabled;
	property Font;
	end;
	Default: Caption: “FILE: $F”, Enabled: True


	Specifies the options for the fax page header.
	Caption specifies the text of the header. It can consist of normal text and replacement tags. A r...
	Enabled indicates whether headers should be printed. Font is the font for the header.
	See “Headers and footers” on page�674 for more information.
	See also: FaxFooter


	FaxPrinterLog property
	property FaxPrinterLog : TApdFaxPrinterLog

	An instance of a printer logging component.
	If FaxPrinterLog is nil (the default), the fax printer does not perform automatic logging. You ca...
	If you create an instance of (or a descendant of) a TApdFaxPrinterLog (see page 695) and assign i...
	See “Fax printer logging” on page�677 for more information.
	See also: OnFaxPrintLog


	FaxResolution read-only, run-time property
	property FaxResolution : TFaxResolution
	TFaxResolution = (frNormal, frHigh);
	Default: frNormal


	Specifies the resolution of the fax.
	FaxResolution is the resolution of the fax specified by FileName. The resolution of the fax is us...

	FaxWidth read-only, run-time property
	property FaxWidth : TFaxWidth
	TFaxWidth = (fwNormal, fwWide);
	Default: fwNormal


	Specifies the width of the fax.
	FaxWidth is the width (in pixels) of the fax specified by FileName. It is used internally to scal...

	FileName property
	property FileName : string

	The name of the fax file to print.
	The FileName property must be set to a valid APF file name before PrintSetup or PrintFax are call...
	See also: PrintFax, PrintSetup


	FirstPageToPrint run-time property
	property FirstPageToPrint : Word

	Specifies the first page to be printed in the fax.
	FirstPageToPrint specifies the first page to print in the fax specified by FileName. This is usua...
	See also: PrintSetup


	LastPageToPrint run-time property
	property LastPageToPrint : Word

	Specifies the last page to be printed in the fax.
	LastPageToPrint specifies the last page to print in the fax specified by FileName. This is usuall...

	MultiPage property
	property MultiPage : Boolean
	Default: False


	Determines the number of fax pages that are printed on each printed page.
	If MultiPage is False (the default), each fax page is printed on one printed page.
	If MultiPage is True, multiple fax pages are printed on each printed page. If printing is in Port...
	Any value of PrintScale can be used with MultiPage.
	See also: PrintScale


	OnFaxPrintLog event
	property OnFaxPrintLog : TFaxPLEvent
	TFaxPLEvent = procedure(
	Sender : TObject; FaxPLCode : TFaxPLCode) of object;
	TFaxPLCode = (lcStart, lcFinish, lcAborted, lcFailed);

	Defines an event handler that is called at designated points during a fax printing session.
	The primary purpose of OnFaxPrintLog is to give applications a chance to log statistical informat...
	Sender is the fax printer component to be logged. FaxPLCode indicates the state of the print job....
	No other information is passed with the event. You can use fax printer status properties such as ...
	See “Fax printer logging” on page�677 for more information.
	See also: FaxPrinterLog


	OnFaxPrintStatus event
	property OnFaxPrintStatus : TFaxPrintStatusEvent
	TFaxPrintStatusEvent = procedure(
	Sender : TObject; StatusCode : TFaxPrintProgress) of object;
	TFaxPrintProgress = (
	ppIdle, ppConverting, ppComposing, ppRendering, ppSubmitting);

	Defines an event handler that is called regularly during a printing session.
	This event is generated for each action that the print component performs. You can use it to upda...
	Sender is the fax printer component that is in progress. StatusCode indicates the status of the p...
	No other information is passed with the event. You can use fax printer status properties such as ...
	See also: StatusDisplay


	OnNextPage event
	property OnNextPage : TFaxPrnNextPageEvent
	TFaxPrnNextPageEvent = procedure(
	Sender : TObject; CP, TP : Word) of object;

	Defines an event handler that is called before each page is printed.
	This event is generated for each page in the fax before it is printed. You can use OnNextPage, fo...
	CP is the current page number of the fax that is printing. TP is the total number of pages to be ...
	See also: PrintAbort


	PrintAbort method
	procedure PrintAbort;

	Cancels printing of a fax.
	PrintAbort can be called whenever a fax is in the process of being rendered or submitted to the p...
	Calls to PrintAbort during other states are ignored.
	See also: PrintFax


	PrintFax method
	procedure PrintFax;

	Prints the fax.
	PrintFax prints the fax specified by FileName. It is usually called after PrintSetup is called to...
	See also: PrintAbort, PrintSetup


	PrintProgress read-only, run-time property
	property PrintProgress : TFaxPrintProgress
	TFaxPrintProgress = (
	ppIdle, ppConverting, ppComposing, ppRendering, ppSubmitting);

	Indicates the progress of the print job.
	PrintProgress contains the current state of the TApdFaxPrinter during a print job. You can use th...

	PrintScale property
	property PrintScale : TFaxPrintScale
	TFaxPrintScale = (psNone, psFitToPage);
	Default: psFitToPage


	Specifies how each page of the fax is scaled for printing.
	If PrintScale equals psFitToPage (the default), the fax is scaled so that each fax page fits on a...
	To print multiple fax pages on each printed page, use MultiPage.
	See also: MultiPage


	PrintSetup method
	procedure PrintSetup;

	Sets the options for the printer.
	When PrintSetup is called, the Windows common printer setup dialog is displayed. You can then spe...
	See also: PrintFax


	StatusDisplay property
	property StatusDisplay : TApdAbstractFaxPrinterStatus

	An instance of a fax printer status window.
	If StatusDisplay is nil (the default), the fax printer does not provide an automatic status windo...
	If you create an instance of a class derived from TApdAbstractFaxPrinterStatus or use the supplie...
	See also: OnFaxPrintStatus


	TotalFaxPages read-only, run-time property
	property TotalFaxPages : Word

	The total number of pages in the fax file.
	TotalFaxPages is the total number of pages in the fax file specified by FileName. It is not the n...
	PagesToPrint := (LastPageToPrint - FirstPageToPrint) + 1




	TApdAbstractFaxPrinterStatus Class
	TApdAbstractFaxPrinterStatus is an abstract class that defines the methods and properties needed ...
	However, TApdFaxPrinterStatus shows a particular set of information about a print job in a predef...
	The TApdAbstractFaxPrinterStatus class contains an instance of a TForm that holds controls used t...
	TApdAbstractFaxPrinterStatus replaces the standard VCL properties Caption, Ctl3D, Position, and V...
	Once you create an instance of your TApdAbstractFaxPrinterStatus descendant, you must assign it t...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdAbstractFaxPrinterStatus (AdFaxPrn)


	Properties
	Methods
	Reference Section
	CreateDisplay virtual abstract method
	procedure CreateDisplay; virtual; abstract;

	An abstract method that creates a form to display fax printing status.
	A descendant of TApdAbstractFaxPrinterStatus must override this method with a routine that create...
	CreateDisplay must then assign the instance of this form to the Display property.
	See also: DestroyDisplay, Display


	DestroyDisplay virtual abstract method
	procedure DestroyDisplay; virtual; abstract;

	An abstract method that destroys the display form.
	A descendant of TApdAbstractFaxPrinterStatus must override this method to destroy the TForm insta...
	See also: CreateDisplay, Display


	Display run-time property
	property Display : TForm

	A reference to the form created by CreateDisplay.
	CreateDisplay must assign a properly initialized instance of a TForm to this property. UpdateDisp...
	See also: CreateDisplay, UpdateDisplay


	FaxPrinter read-only, run-time property
	property FaxPrinter : TApdCustomFaxPrinter

	The fax printer component that is using the status component.
	When you derive components from TApdAbstractFaxPrinterStatus, you will probably reference TApdFax...

	UpdateDisplay method
	procedure UpdateDisplay(First, Last : Boolean); virtual; abstract;

	An abstract method that writes the contents of the status window.
	A descendant of TApdAbstractFaxPrinterStatus must override this method to update the display form...
	On the first call to UpdateDisplay, First equals True and UpdateDisplay should call the Show meth...
	For all other calls to UpdateDisplay, First and Last both equal False. During these calls, Update...
	The AbortClick event handler, if provided, should call the PrintAbort method of TApdFaxPrinter to...



	TApdFaxPrinterStatus Component
	TApdFaxPrinterStatus is a descendant of TApdAbstractFaxPrinterStatus that implements a standard p...
	TApdFaxPrinterStatus overrides all the abstract methods of TApdAbstractFaxPrinterStatus. TApdFaxP...
	Figure 15.1 shows the TStandardFaxPrintStatusDisplay form that is associated with a TApdFaxPrinte...
	Figure 15.1: TStandardFaxPrintStatusDisplay form.

	For an example of using a TApdFaxPrinterStatus component, see the TApdFaxPrinter example on page ...
	Hierarchy
	TComponent (VCL)
	TApdBaseComponent (OOMisc) 8
	TApdCustomFaxPrinterStatus (AdFaxPrn)
	TApdFaxPrinterStatus (AdFaxPrn)



	TApdFaxPrinterLog Component
	TApdFaxPrinterLog is a small component that can be associated with a TApdFaxPrinter component to ...
	TApdFaxPrinterLog creates or appends to a text file whose name is given by the LogFileName proper...
	Following is a sample of the text file created by TApdFaxPrinterLog:
	Printing d:\changes.apf started at 4/17/96 3:38:58 PM
	Printing d:\changes.apf finished at 4/17/96 3:39:24 PM

	Printing d:\changes.apf started at 4/17/96 3:53:35 PM
	Printing d:\changes.apf aborted at 4/17/96 3:53:41 PM

	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomFaxPrinterLog (AdFaxPrn)
	TApdFaxPrinterLog (AdFaxPrn)


	Properties
	Methods
	Reference Section
	FaxPrinter property
	property FaxPrinter : TApdCustomFaxPrinter

	The fax component that is using the logging component.
	When you derive components from TApdFaxPrinterLog, you will probably reference TApdFaxPrinter pro...

	LogFileName property
	property LogFileName : string
	Default: “FAXPRINT.LOG”


	Determines the name of the file used to store the fax printer log.
	You should set the value of LogFileName before calling the PrintFax method of TApdFaxPrinter. How...
	See also: TApdFaxPrinter.PrintFax


	UpdateLog method
	procedure UpdateLog(const LogCode : TFaxPLCode); virtual;
	TFaxPLCode = (lcStart, lcFinish, lcAborted, lcFailed);

	Called for each fax printer logging event.
	UpdateLog creates or appends to the log file, builds and writes a text string for each event, and...
	TApdFaxPrinterLog contains a field named FaxPrinter that UpdateLog uses to obtain additional info...
	See also: TApdFaxPrinter.OnFaxPrintLog




	Sending and Receiving Faxes
	Async Professional provides components that support send and receive services for Class�1, Class ...
	When using a Class 2 or Class 2.0 faxmodem, the communication between the PC and the modem is bas...
	Because all faxmodems are used in such a similar fashion, they are supported with a single set of...
	The fax transfer process
	This section describes the anatomy of a fax transfer in some detail. You don’t need to know all o...
	Table 15.11: Fax transfer phases�
	The “phase name” is the term used by the TIA/EIA specification for each activity. Phase A is asso...
	All phases from A through E are processed in order unless an error occurs. An OnFaxError event ca...
	Class 1/1.0 and Class 2/2.0 modems differ only in their processing of Phase B and Phase D. With C...

	Phase A: Dial
	The first step in Phase A is to initialize the modem for sending or receiving faxes. TApdSendFax ...

	Phase B: Pre-message
	Phase B starts as soon as the call is answered. The major task of Phase B is for the modems to ag...
	During training, the sender starts at the fastest modulation rate that the receiver supports. It ...
	After a modulation rate is successfully negotiated, various events are generated. TApdReceiveFax ...

	Phase C: Message
	During Phase C, TApdSendFax sends page image data to the faxmodem, which transmits it to the rece...
	Software or hardware flow control must also be enabled at the modem. When you use TAPI or the AWM...
	While in Phase C, the TApdSendFax component must continuously send data to the faxmodem, except w...
	To avoid data underflow, the TApdComPort component must use a port baud rate that is higher than ...
	Another possible cause of data underflow is an ill-behaved Windows 3.X program that doesn’t yield...
	OnFaxStatus events are generated regularly during Phase C. By default they are generated once eve...

	Phase D: Post-message
	At the end of Phase C the transmitter sends an end-of-page sequence, which marks the start of Pha...
	If there are more pages, the process can loop back to either the middle of Phase B (to retrain th...

	Phase E: Hang-up
	Phase E disconnects or hangs up the modem, terminating the fax call. When transmitting faxes, the...
	When receiving faxes, the output file is closed and an OnFaxLog event is generated. TApdReceiveFa...


	Fax send/receive events
	The fax send/receive session takes place in the background and communicates with your application...
	OnFaxStatus
	procedure(CP : TObject; First, Last : Boolean) of object;
	Generated approximately once per second during the entire fax session so that programs can displa...

	OnFaxLog
	procedure(CP : TObject; LogCode : TFaxLogCode) of object;
	Generated at the start and end of each fax call. This provides the opportunity to log the status ...

	OnFaxError
	procedure(CP : TObject; ErrorCode : Integer) of object;
	Generated when an unrecoverable error occurs. Recoverable errors do not generate this message bec...

	OnFaxFinish
	procedure(CP : TObject; ErrorCode : Integer) of object;
	Generated after all faxes have been transmitted or received or after the fax session terminates d...


	Fax sessions and the TApdComPort
	Fax sessions require the following values for critical TApdComPort properties:
	ApdComPort1.DataBits := 8;
	ApdComPort1.StopBits := 1;
	ApdComPort1.Parity := pNone;
	ApdComPort1.Baud := 19200;
	ApdComPort1.InSize := 8192;
	ApdComPort1.OutSize := 8192;
	ApdComPort1.HWFlowOptions := [hwfUseRTS, hwfRequireCTS];
	When TApdSendFax and TApdReceiveFax first link to a TApdComPort component (i.e., when their ComPo...
	Databits, Stopbits, and Parity must be set to 8,1,none since that is the proper setting for binar...
	Baud must be set to 19200 for a couple of reasons. First, the fax software must continuously tran...
	Because the highest fax bps rate is 14400 bits per second, a comport baud rate slightly higher th...
	A baud rate higher than 19200 isn’t necessary since the fax bps rate will never be greater than 1...
	The second reason for forcing the baud rate to 19200 is that a few older faxmodems require that b...
	InSize is the size, in bytes, of the comport component’s communication input buffer. It’s forced ...
	OutSize is the size, in bytes, of the comport component’s communication output buffer. It’s force...
	HWFlowOptions is one of the TApdComPort properties (the other is SWFlowOptions) that determines w...
	Flow control is a critical issue for fax sessions and it must be properly enabled, both in fax ap...
	Fortunately, this is easy to do, although it isn’t as automatic as the enabling of flow control w...
	1. Use TAPI to initialize the modem.
	2. Use the TAdModem and modemcap database components to initialize the modem.
	3. Manually send the appropriate modem commands to enable hardware flow control.
	Number 1 is the preferred choice if it is available. The TAPI modem database is far more extensiv...
	Number 2 is the preferred choice when TAPI isn’t available. Although it’s possible that the exact...
	Number 3 is the most difficult approach since you must figure out the appropriate modem commands ...




	TAPI/Fax Integration
	TAPI provides several features that supplement faxing. The most obvious is that TAPI permits sele...
	TAPI integration with the faxing components is determined by the TapiDevice property of the TApdA...
	The level of TAPI integration depends on whether a fax is being sent or received. When the StartT...
	When the StartReceive method of the TApdReceiveFax component is called, and the TapiDevice proper...
	When the TapiDevice property is assigned, the event handlers of the TApdTapiDevice will be genera...
	To maintain backwards compatibility with previous versions of APRO that did not provide TAPI and ...
	One benefit of TAPI integration is that you can now send a fax with the TApdSendFax component whi...
	Aborting a fax session
	There will be times when you need to cancel a fax transfer while it is still in progress. This ma...
	Typically, a program checks for the user entering characters such as <Esc> or <CtrlX> to signal c...
	Unfortunately, a low DCD signal is not always a reliable indication of a broken connection. Faxmo...

	Error handling
	All fax transfers are subject to errors like line errors, file not found errors, and other file I...
	procedure Form1.ApdSendFax1FaxError(
	CP : TObject; ErrorCode : Integer);
	begin
	ShowMessage('Fatal fax error: ' + ErrorMsg(ErrorCode));
	end;
	This event handler’s sole task is to display a message about the error. ErrorMsg is a function fr...
	Table 15.12: Fax call error codes (continued)


	Fax status
	A fax session can last a few seconds or several hours, depending on the size and speed of the tra...
	During a fax session, an OnFaxStatus event is generated regularly (the default is once per second...
	TForm = class(TForm)
	...
	FN : TLabel;
	PG : TLabel;
	BT : TLabel;
	...
	end;
	procedure TForm1.ApdSendFax1FaxStatus(
	CP : TObject; First, Last : Boolean);
	begin
	if First then
	...do setup stuff
	else if Last then
	...do cleanup stuff
	else begin
	{Show status}
	FN.Caption := ApdSendFax1.FaxFile;
	PG.Caption := ApdSendFax1.CurrentPage;
	BT.Caption := ApdSendFax1.BytesTransferred;
	end;
	end;
	The ApdSendFax1FaxStatus method handles the OnFaxStatus event by updating a form at each call. Th...
	It is less clear when OnFaxStatus events should be generated when receiving faxes. They could be ...
	TApdFaxReceive provides for both situations by providing the ConstantStatus property. Set Constan...
	Information about the progress of the fax session is obtained by reading the values of various TA...
	BytesTransferred: The number of bytes transmitted or received so far for the current page.
	CurrentPage: The number of the current page. CurrentPage is zero when transmitting a cover page, ...
	ElapsedTime: The elapsed time (in milliseconds) since the remote station ID was received. An indi...
	FaxProgress: A code indicating the current state of the fax call. The Table 15.3 shows all of the...
	Table 15.13: Possible FaxProgress values (continued)
	FaxError: The code of the fatal error encountered in the fax session. See the error codes in “Err...
	HangupCode: The hangup code returned by a class 2 or class 2.0 faxmodem. The hangup code can some...
	ModemModel: The modem model identification string returned by the faxmodem.
	ModemRevision: The modem revision identification string returned by the faxmodem.
	ModemChip: The modem chip identification string returned by the faxmodem.
	ModemBPS: The highest bps rate supported by the modem.
	ModemECM: Indicates whether the modem supports error control mode.
	PageLength: The length in bytes of the page currently being transmitted. When a fax is being rece...
	RemoteID: The 20 character identification string returned by the remote fax device.
	SessionBPS: The negotiated bps rate (bytes per second) for the current fax session.
	SessionResolution: The negotiated resolution (standard or high) for the current fax session.
	SessionWidth: The negotiated width (1728 or 2048 pixels) for the current fax session.
	SessionECM: Indicates whether the current fax session is using error control.
	TotalPages: The total number of pages to be transmitted. When a fax is being received, TotalPages...


	Automatic fax status display
	Async Professional includes a mechanism for providing an automatic fax status display without pro...
	property StatusDisplay : TApdAbstractFaxStatus

	The TApdAbstractFaxStatus class is described in more detail beginning on page 822. If StatusDispl...
	When a fax component is created, either dynamically or when dropped on a form, it searches the fo...
	Async Professional also provides an non-abstract implementation of TApdAbstractFaxStatus called t...


	Fax logging
	It’s often important to have a log of all incoming and outgoing activity on a particular fax mach...
	The fax logging event provides a mechanism for your program to keep an activity log. Although the...
	The LogCode parameter is of an enumerated type that indicates the condition at the time the loggi...
	Table 15.14: TLogFaxCode values
	When LogCode is lfaxReceiveSkip, RemoteID contains the identification string of the remote statio...
	Following is an example OnFaxLog event handler:

	procedure TForm1.ApdReceiveFax1FaxLog(
	CP : TObject; LogCode : TFaxLogCode);
	begin
	case LogCode of
	lfaxReceiveStart :
	CurrentFile.Caption := ApdReceiveFax1.FaxFile;
	lfaxReceiveOK :
	GoodList.Items.Add(ApdReceiveFax1.FaxFile);
	lfaxReceiveFail :
	BadList.Items.Add(ApdReceiveFax1.FaxFile);
	lfaxReceiveSkip :
	SkipList.Items.Add(ApdReceiveFax1.RemoteID);
	end;
	end;
	This example shows the logging values that could be received during a fax receive session. The ex...
	The logging routine isn’t limited to just writing logging information. It can also take care of f...

	Automatic fax logging
	Async Professional includes a mechanism for providing automatic fax logging without programming, ...
	property FaxLog : TApdFaxLog

	The TApdFaxLog class is described in more detail on page 828. For each OnFaxLog event, the fax co...
	When a fax component is created, either dynamically or when dropped on a form, it searches the fo...



	TApdAbstractFax Component
	The fax send and receive components (TApdSendFax and TApdReceiveFax) are derived from TApdAbstrac...
	If you already know how to use file transfer protocols within the Async Professional architecture...
	There are a few differences, though, and these differences are inherent to the nature of faxes. U...
	Note that certain properties that are described in the following reference section are specific t...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomAbstractFax (AdFax)
	TApdAbstractFax (AdFax)


	Properties
	Methods
	Events
	Reference Section
	AbortNoConnect property
	property AbortNoConnect : Boolean
	Default: False


	Defines what happens when the connection to a fax number cannot be made after the default number ...
	If AbortNoConnect is True, the background fax process ends and generates an OnFaxFinish event, ev...

	BytesTransferred read-only, run-time property
	property BytesTransferred : Boolean

	The number of bytes received or transmitted so far for the current page.
	BytesTransferred can be used by an OnFaxStatus event handler to get the number of bytes received ...
	See also: CurrentPage, PageLength, TotalPages


	CancelFax method
	procedure CancelFax;

	Cancels the current fax session.
	CancelFax cancels the fax session, regardless of its current state. When appropriate, a cancel co...
	The following example shows how to cancel a fax from a fax status dialog:
	procedure TStandardDisplay.CancelClick(Sender : TObject);
	begin
	ApdSendFax1.CancelFax;
	end;
	See also: OnFaxError, OnFaxFinish


	ComPort property
	property ComPort : TApdCustomComPort

	Determines the serial port used by the fax component.
	A properly initialized comport component must be assigned to this property before sending or rece...
	When a TApdComPort is assigned to the ComPort property, the fax component forces the ComPort to t...
	ApdComPort1.DataBits := 8;
	ApdComPort1.StopBits := 1;
	ApdComPort1.Parity := pNone;
	ApdComPort1.Baud := 19200;
	ApdComPort1.InSize := 8192;
	ApdComPort1.OutSize := 8192;
	ApdComPort1.HWFlowOptions := [hwfUseRTS, hwfRequireCTS];
	These values are essential for proper and reliable fax operation and should be changed only if yo...


	ConvertToHighRes method
	procedure ConvertToHighRes(const FileName : string);
	Converts a fax file to high resolution.
	ConvertToHighRes converts an existing APF fax file into high resolution. If the APF contains mult...
	See also: ConvertToLowRes



	ConvertToLowRes method
	procedure ConvertToLowRes(const FileName : string);
	Converts a fax file to low resolution.
	ConvertToLowRes converts an existing APF fax file into low resolution. If the APF contains multip...
	See also: ConvertToHighRes



	CurrentPage read-only, run-time property
	property CurrentPage : Word

	The page number of the page currently being received or transmitted.
	CurrentPage can be used by an OnFaxStatus event handler to get the number of the page currently b...
	See also: BytesTransferred, PageLength, TotalPages


	DesiredBPS property
	property DesiredBPS : Word
	Default: 9600


	Determines the highest fax bps rate to negotiate for the next fax session.
	DesiredBPS limits the fax bps rate for subsequent fax sessions. Although many faxmodems support h...
	Changing DesiredBPS during a fax session has no effect on the current session.
	See also: ModemBPS, SessionBPS


	DesiredECM property
	property DesiredECM : Boolean
	Default: False


	Determines whether fax sessions attempt to use error control.
	The fax protocol contains an optional error control facility that allows modems to detect and cor...
	See also: ModemECM, SessionECM


	ElapsedTime read-only, run-time property
	property ElapsedTime : DWORD
	Indicates the elapsed time for the fax call.
	ElapsedTime is the number of milliseconds that have elapsed since fax call has started. The fax c...


	ExitOnError property
	property ExitOnError : Boolean
	Default: False


	Determines what happens when an error occurs during a fax transmit or receive.
	If ExitOnError is True, no more faxes are transmitted or received. If ExitOnError is False (the d...
	See also: AbortNoConnect


	FaxClass property
	property FaxClass : TFaxClass
	TFaxClass = (
	fcUnknown, fcDetect, fcClass1, fcClass1_0, fcClass2, fcClass2_0);
	Default: fcDetect


	Indicates whether the faxmodem is used as Class 1, Class 1_0, Class 2, or Class 2.0.
	If FaxClass is fcDetect (the default), TApdAbstractFax determines what classes the modem supports...
	See also: SupportedFaxClasses


	FaxFile property
	property FaxFile : string

	The name of the fax file currently being transmitted or received.
	If you are sending a single fax, set FaxFile to the name of the file. If you are sending multiple...
	FaxFile can be used with status and logging routines to return the name of the fax file currently...
	See also: TApdSendFax.CoverFile, TApdSendFax.OnFaxNext, TApdSendFax.PhoneNumber


	FaxFileExt property
	property FaxFileExt : string
	Default: “APF”


	The default extension assigned to incoming fax files.
	By default, all incoming fax files created by the two built-in methods of naming faxes use a file...
	See “Naming incoming fax files” on page�754 for more information.
	See also : TApdReceiveFax.FaxNameMode

	FaxLog property
	property FaxLog : TApdFaxLog

	An instance of a fax logging component.
	If FaxLog is nil (the default), the fax component does not perform automatic logging. You can ins...
	If you create an instance of (or a descendant of) a TApdFaxLog class (see page 828), and assign i...

	FaxProgress read-only, run-time property
	property FaxProgress : Word

	Returns a code that indicates the current state of the fax session.
	This property is most useful within an OnFaxStatus event handler. See “Fax status” on page�707 fo...
	See also: OnFaxError, OnFaxStatus


	HangupCode read-only, run-time property
	property HangupCode : Word

	The hangup code for a Class 2 or 2.0 fax transfer.
	When a Class 2 or 2.0 faxmodem session terminates abnormally, it returns a “hangup code” to help ...
	The following table shows the codes that can be returned (in hexadecimal), with a brief descripti...

	InitBaud property
	property InitBaud : Integer
	Default: 0


	Determines the initialization baud rate for modems that require different baud rates for initiali...
	Some older 24/96 faxmodems (2400 data, 9600 fax), require that the initialization commands be sen...
	Since most faxmodems do not require a special initialization baud rate, InitBaud defaults to zero...
	NormalBaud is a companion property to InitBaud. When InitBaud is non-zero, the fax components swi...
	See also: NormalBaud


	InProgress read-only, run-time property
	property InProgress : Boolean
	Indicates whether a fax is actively being transmitted or received.
	InProgress will be True immediately after StartTransmit is called, and when a fax is being receiv...


	ModemBPS read-only, run-time property
	property ModemBPS : LongInt

	Returns the highest bps rate supported by the faxmodem.
	When you reference ModemBPS, commands are sent to the modem to determine its highest bps rate. Th...
	ModemBPS works by attempting to enable the most capable modem features and stepping down if the m...
	The technique used by ModemBPS works on most Class 2 and 2.0 faxmodems. One low�cost, no-name-clo...
	See also: ModemECM


	ModemChip read-only, run-time property
	property ModemChip : string

	Returns the type of chip for a Class 2 or 2.0 faxmodem.
	When you reference ModemChip, commands are sent to the modem to determine the type of chip. This ...
	See also: ModemModel, ModemRevision


	ModemECM read-only, run-time property
	property ModemECM : Boolean

	Indicates whether the faxmodem supports error correction.
	When you reference ModemECM, commands are sent to the modem to determine whether it supports erro...
	The technique used by ModemECM works on most Class 2 and 2.0 faxmodems. One low�cost, no-name-clo...
	See also: ModemBPS


	ModemInit property
	property ModemInit : TModemString
	TModemString = string[40];

	A custom modem initialization string.
	If a custom modem initialization string is assigned to ModemInit, Async Professional always sends...
	Note that the DefInit string may override certain actions of the ModemInit string. This is necess...
	The string should not contain an “AT” prefix or a trailing carriage return.

	ModemModel read-only, run-time property
	property ModemModel : string

	Returns the model for a Class 2 or 2.0 faxmodem.
	When ModemModel is referenced, commands are sent to the modem to determine the model. This works ...
	See also: ModemChip, ModemRevision


	ModemRevision read-only, run-time property
	property ModemRevision : string

	Returns the revision for a Class 2 or 2.0 faxmodem.
	When ModemRevision is referenced, commands are sent to the modem to determine the revision. This ...
	See also: ModemChip, ModemModel


	NormalBaud property
	property NormalBaud : Integer
	Default: 0


	Determines the normal baud to use for modems that require different baud rates for initialization...
	NormalBaud isn’t needed unless the faxmodem requires separate baud rates for initialization comma...
	See also: InitBaud


	OnFaxError event
	property OnFaxError : TFaxErrorEvent
	TFaxErrorEvent = procedure(
	CP : TObject; ErrorCode : Integer) of object;

	Defines an event handler that is called when an unrecoverable fax error occurs.
	This event is generated only for unrecoverable errors. Most fax errors caused by line noise are h...
	CP is the fax component that generated the error. ErrorCode is a number indicating the type of er...
	The OnFaxFinish event is generated soon after the OnFaxError event and passes the same error code...
	See also: OnFaxFinish


	OnFaxFinish event
	property OnFaxFinish : TFaxFinishEvent
	TFaxFinishEvent = procedure(
	CP : TObject; ErrorCode : Integer) of object;

	Defines an event handler that is called when a fax session ends.
	This event is generated at the end of each fax session, successful or not. If the session ends su...
	It’s important to note that a fax session may consist of more than one fax call. For example, if ...
	This handler could be used to display a completion dialog box (needed only if a fax status event ...
	The following example displays a message when a fax session finishes:
	procedure TForm1.ApdSendFax1FaxFinish(
	CP : TObject; ErrorCode : Integer);
	begin
	ShowMessage('Fax finished: ' + ErrorMsg(ErrorCode));
	end;


	OnFaxLog event
	property OnFaxLog : TFaxLogEvent
	TFaxLogEvent = procedure(
	CP : TObject; LogCode : TFaxLogCode) of object;
	TFaxLogCode = (lfaxNone, lfaxTransmitStart, lfaxTransmitOk,
	lfaxTransmitFail, lfaxReceiveStart, lfaxReceiveOk,
	lfaxReceiveSkip, lfaxReceiveFail);

	Defines an event handler that is called at designated points during a fax transfer.
	The primary purpose of this event is to allow the logging of statistical information about fax tr...
	CP is the fax component to be logged. LogCode is a code that indicates the state of the fax trans...
	See also: FaxLog


	OnFaxStatus event
	property OnFaxStatus : TFaxStatusEvent
	TFaxStatusEvent = procedure(
	CP : TObject; First, Last : Boolean) of object;

	Defines an event handler that is called regularly during a file transfer.
	This event is generated once per second during the entire fax session and after the completion of...
	CP is the fax component that is in progress. A number of the properties of this component can be ...
	A predefined status component called TApdFaxStatus is supplied with Async Professional. If you do...
	See also: StatusDisplay


	PageLength read-only, run-time property
	property PageLength : LongInt

	The total number of bytes in the current page.
	PageLength is valid only when you are sending a fax. When receiving a fax, the total size of the ...
	PageLength can be used by an OnFaxStatus event handler to get the total number of bytes in the cu...
	See also: BytesTransferred, CurrentPage, TotalPages


	RemoteID read-only, run-time property
	property RemoteID : TStationID
	TStationID = string[20];

	The station ID of the remote fax machine.
	RemoteID can be used by an OnFaxStatus event handler to get the station ID of the remote fax mach...
	See also: StationID


	SessionBPS read-only, run-time property
	property SessionBPS : Word

	The negotiated transfer rate in bits per second.
	SessionBPS can take on the values 14400, 12000, 9600, 7200, 4800, and 2400. Most faxmodems now su...
	SessionBPS can be used by an OnFaxStatus event handler to get the negotiated transfer rate. The a...
	Session parameters can change more than once during a single session. Be sure that your OnFaxStat...
	See also: DesiredBPS, SessionECM, SessionResolution, SessionWidth


	SessionECM read-only, run-time property
	property SessionECM : Boolean

	Indicates whether automatic error correction is enabled.
	SessionECM is True if automatic error correction is enabled for this transfer, or False if it isn...
	SessionECM can be used by an OnFaxStatus event handler to check for automatic error correction. T...
	Session parameters can change more than once during a single session. Be sure that your OnFaxStat...
	See also: DesiredECM, SessionBPS, SessionResolution, SessionWidth


	SessionResolution read-only, run-time property
	property SessionResolution : Boolean

	Indicates whether the fax is high resolution or standard resolution.
	SessionResolution is True for a high resolution fax transfer, or False for a standard resolution ...
	SessionResolution can be used by an OnFaxStatus event handler to check for the fax resolution. Th...
	Session parameters can change more than once during a single session. Be sure that your OnFaxStat...
	See also: SessionBPS, SessionECM, SessionWidth


	SessionWidth read-only, run-time property
	property SessionWidth : Boolean

	Default: True
	Indicates whether the fax is normal or wide width.
	If SessionWidth is True (the default), the fax is a standard width of 1728 pixels (about 8.5 inch...
	SessionWidth can be used by an OnFaxStatus event handler to check the fax width. The appropriate ...
	Session parameters can change more than once during a single session. Be sure that your OnFaxStat...
	See also: SessionBPS, SessionECM, SessionResolution


	SoftwareFlow property
	property SoftwareFlow : Boolean
	Default: False


	Determines whether the fax components enable or disable software flow control during the fax sess...
	When using software flow control during a fax session, the flow control must be enabled and disab...
	For more information regarding flow control see ““Fax sessions and the TApdComPort” on page�702”.

	StationID property
	property StationID : TStationID
	TStationID = string[20];

	The station ID of the faxmodem.
	A fax device can identify itself to another fax device with a 20 character name, called the stati...
	Async Professional does not filter the characters stored in the station ID. If your software must...
	This station ID is used on both incoming and outgoing calls.
	A fax file stored in APF format also contains a station ID in the file header. This station ID is...
	See also: TApdFaxConverter.StationID


	StatusDisplay property
	property StatusDisplay : TApdAbstractFaxStatus

	An instance of a fax status window.
	If StatusDisplay is nil (the default), the fax does not provide an automatic status window. An On...
	If you create an instance of a class derived from TApdAbstractFaxStatus or use the supplied TApdF...
	See also: OnFaxStatus


	StatusInterval property
	property StatusInterval : Word
	Default: 1


	The maximum number of seconds between OnFaxStatus events.
	The OnFaxStatus event is generated for each major fax session event (connected, got station ID, a...
	This property also determines how frequently the StatusDisplay window is updated.
	See also: OnFaxStatus, StatusDisplay


	StatusMsg method
	function StatusMsg(const Status : Word) : string;

	Returns an English string for a fax status code.
	This routine is intended primarily for use in fax status routines. It returns a status string fro...
	The returned string is never longer than MaxMessageLen (80) characters.

	SupportedFaxClasses read-only, run-time property
	property SupportedFaxClasses : TFaxClassSet
	TFaxClassSet = set of TFaxClass;
	TFaxClass = (
	fcUnknown, fcDetect, fcClass1, fcClass1_0, fcClass2, fcClass2_0);

	The set of fax classes supported by the faxmodem.
	SupportedFaxClasses is available only at run time because it sends commands to the faxmodem to de...
	Initially FaxClass is fcDetect, so that the first reference to it causes the faxmodem interrogati...
	Generally, applications should use the highest supported class: fcClass2_0, then fcClass2, and fi...
	See also: FaxClass


	TapiDevice property
	property TapiDevice : TApdCustomTapiDevice

	Determines an instance of a TAPI device.
	This refers to a TAPI device that we may create internally when sending or receiving faxes. We ch...
	See also: ComPort


	TotalPages read-only, run-time property
	property TotalPages : Word

	The total number of pages in the current fax.
	TotalPages is valid only when you are sending a fax. When receiving a fax, the total number of pa...
	TotalPages can be used by an OnFaxStatus event handler to get the total number of bytes in the cu...
	See also: BytesTransferred, CurrentPage, PageLength




	TApdSendFax Component
	The TApdSendFax component is used to send faxes. It builds on the services of TApdAbstractFax and...
	Specifying a fax to send
	A fax to send consists of three items: an APF file (or list of APF files), a phone number, and an...
	When you need to send multiple fax files to the same location, you can fill the FaxFileList prope...
	If you need to send a single fax file to multiple locations, you can use the OnFaxNext event to s...
	TForm1 = class(TForm)
	...
	private
	FaxList : TStringList;
	FaxIndex : Word;
	end;
	...

	procedure TForm1.AddFilesClick(Sender : TObject);
	begin
	FaxList.Add('260-7151^FILE1.APF');
	FaxList.Add('555-1212^FILE2.APF');
	FaxIndex := 0;
	end;

	procedure TForm1.ApdSendFax1FaxNext(
	CP : TObject; var APhoneNumber, AFaxFile,
	AcoverFile : OpenString);
	var
	S : string;
	CaretPos : Byte;
	begin
	try
	S := FaxList[FaxIndex];
	CaretPos := Pos('^', S);
	APhoneNumber := Copy(S, 1, CaretPos-1);
	AFaxFile := Copy(S, CaretPos+1, 255);
	ACoverFile := '';
	Inc(FaxIndex);
	except
	APhoneNumber := '';
	AFaxFile := '';
	ACoverFile := '';
	end;
	end;
	This example sends two fax files to two different locations: it sends FILE1.APF to the fax device...
	When AddFilesClick is called (presumably from clicking the Add Files button), the two fax files a...
	When TApdSendFax generates the OnFaxNext event, ApdSendFax1NextFax uses the next string from FaxL...


	Cover pages
	Fax transmissions often include a cover page, which provides basic information about the fax, usu...
	If you want to send a cover page, you have three options. First, you can build the cover page rig...
	Second, you can create a separate APF file that contains the cover page. Take this approach if th...
	The third and most flexible approach is to put the cover page in a separate text file. If the cov...
	What makes this approach more flexible is the fact that the text file can use replacement tags. A...
	Table 15.15: Available Replacement Tags (continued)
	Note that some of the tags vary in length. For example, $P would be replaced by ‘1’ for the first...
	By taking advantage of replacement tags, you can create a single cover page file that is used for...
	COVER.TXT:

	Olympic Training Center
	Colorado Springs, Colorado
	DATE : $D
	TIME : $T
	FROM : $F
	TO : $R
	(form feed)
	Program:

	ApdSendFax.HeaderSender := 'Picabo';
	ApdSendFax.HeaderRecipient := 'Elizabeth';
	ApdSendFax.FaxFile := 'FILE1.APF';
	ApdSendFax.CoverFile := 'COVER.TXT');
	ApdSendFax.PhoneNumber := '260-7151';
	ApdSendFax.StartTransmit;
	The file FILE1.APF is sent to 260-7151 using the cover page file COVER.TXT. The date and time tag...


	Send fax events
	OnFaxNext
	procedure(
	CP : TObject; var APhoneNumber : string; var AFaxFile : string;
	var ACoverFile : string) of object;
	Generated when it is time to transmit a fax (just after StartTransmit is called and after each fa...
	Caution: An OnFaxFinish event will not be fired until after empty strings are returned in your On...



	Example
	This example shows how to construct and use a fax send component. This example includes a TApdFax...
	Create a new project, add the following components, and set the property values as indicated in T...
	Table 15.16: Example components and property values
	The output buffer size of the comport component (the OutSize property of TApdComPort) is raised f...
	Double-click on the Send button’s OnClick event handler within the Object Inspector and modify th...

	procedure TForm1.SendClick(Sender : TObject);
	begin
	ApdSendFax1.StartTransmit;
	end;
	This method starts a background fax transmit session, which dials the specified fax phone number ...
	The form includes a TApdFaxStatus component, which is automatically displayed by the fax and peri...
	This example is in the EXFAXS project in the \ASYNCPRO\EXAMPLES directory.


	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomAbstractFax (AdFax)
	v TApdAbstractFax (AdFax) 715
	TApdCustomSendFax (AdFax)
	TApdSendFax (AdFax)


	Properties
	Methods
	Events
	Reference Section
	BlindDial property
	property BlindDial : Boolean
	Default: False


	Allows a fax to be sent regardless of whether the modem detects a dial tone.
	If BlindDial is True, a different initialization sequence is sent to the modem before a fax is se...

	BufferMinimum property
	property BufferMinimum : Word
	Default: 1000


	Defines the minimum number of bytes that must be in the output buffer before TApdSendFax yields c...
	Once started, a fax transmit session must have a constant supply of data to transmit. Lack of dat...
	If your program is operating among ill-behaved programs or other conditions that might result in ...
	An attempt to set BufferMinimum to more than the OutSize property of TApdComPort is ignored.
	See also: MaxSendCount, SafeMode


	ConcatFaxes method
	procedure ConcatFaxes(FileName : ShortString);

	Combines multiple APF files into a single APF file.
	This method can be used in conjunction with the FaxFileList property to combine multiple APF file...
	Note that this method is not required to send a list of files to a single destination, since APF ...
	This method can be useful if you need to send a concatenated fax to multiple phone numbers (using...
	See also: FaxFileList, OnFaxNext


	ConvertCover method
	procedure ConvertCover(const InCover, OutCover : string);
	Converts a cover file to APF using replaceable tags.
	The ConvertCover method converts an ASCII text file into an APF file suitable for faxing. This me...
	InCover is the pathname of the cover file to convert, OutCover is the pathname of the APF to create.


	CoverFile property
	property CoverFile : string

	The name of the cover file to send.
	If you are sending a single fax with a cover sheet, set CoverFile to the name of the text or APF ...
	If the extension of the cover file is “APF”, the file is assumed to be an APF file and is transmi...
	CoverFile can be used by status and logging routines to return the name of the current cover file.
	See “Cover pages” on page�738 for more information.
	See also: OnFaxNext, PhoneNumber, TApdAbstractFax.FaxFile


	DetectBusy property
	property DetectBusy : Boolean
	Default: DefDetectBusy (True)


	Enables or disables busy signal detection.
	If DetectOnBusy is True, the busy signal is detected if the receiving fax is already off hook. An...
	See also: OnFaxError


	DialAttempt read-only, run-time property
	property DialAttempt : Word

	Indicates the number of times the current fax number has been dialed.
	If the dialed fax number is busy, TApdSendFax waits briefly and calls the number again. It tries ...
	See also: DialAttempts, DialRetryWait


	DialAttempts property
	property DialAttempts : Word
	Default: 3


	Determines the number of times TApdSendFax automatically dials a fax number.
	This is the number of times a fax session is attempted, it is not the number of retries. When Dia...
	See also: DialAttempt, DialRetryWait


	DialPrefix property
	property DialPrefix : TModemString
	TModemString = string[40];

	The optional dial prefix.
	DialPrefix specifies an optional dial prefix that is inserted in the dial command between “ATDT” ...
	Do not include “ATD” or a ‘T’ or ‘P’ tone/pulse modifier in the dial prefix. “ATD” is automatical...
	See also: ToneDial


	DialRetryWait property
	property DialRetryWait : Word
	Default: 60


	The number of seconds to wait after a busy signal before trying the number again.
	After encountering a busy signal, TApdSendFax checks to see if it should try this number again by...
	If no more dialing attempts are required, TApdSendFax does not wait, but immediately progresses t...
	See also: DialAttempt, DialAttempts


	DialWait property
	property DialWait : Word
	Default: 60


	The number of seconds to wait for a connection after dialing the number.
	This property determines how many seconds to wait after dialing the receiver’s phone number. If t...
	See also: OnFaxServerFinish


	EnhFont property
	property EnhFont : TFont

	Determines the font used to convert cover pages.
	If EnhTextEnabled is True, the font specified by EnhFont is used by TApdSendFax to convert the co...
	There is an upper limit on the size of the font, but this limit is not typically reached unless a...
	See also: EnhTextEnabled


	EnhHeaderFont property
	property EnhHeaderFont : TFont

	Determines the font used to convert the fax header.
	If EnhTextEnabled is True, the font specified by EnhHeaderFont is used by TApdSendFax to convert ...
	There is an upper limit on the size of the font, but this limit is not typically reached unless a...
	See also: EnhTextEnabled


	EnhTextEnabled property
	property EnhTextEnabled : Boolean
	Default: False


	Determines whether TApdSendFax uses the default font.
	If EnhTextEnabled is True, the enhanced text-to-fax converter is used by ApdSendFax when converti...
	The converter makes no attempt to keep all text on the page when the size of the font is changed....
	See also: EnhFont, EnhHeaderFont


	FaxFileList property
	property FaxFileList : TStringList

	Defines a list of APF files to concatenate into a single APF file.
	If there is more than one APF file in FaxFileList when StartTransmit is called, the files in the ...
	As with the FaxFile property, this property is ignored if an OnFaxNext event is implemented.
	See also: ConcatFaxes, OnFaxFinish, StartTransmit


	HeaderLine property
	property HeaderLine : string

	The optional line of text that is sent at the top of each fax page.
	A header line consists of normal text and replacement tags. A replacement tag is one of several c...
	No check is made to make sure your header line fits on a page. If your header line does not fit, ...
	Caution: Recently passed United States legislation makes it unlawful to send faxes within the Uni...
	See also: EnhHeaderFont, EnhTextEnabled, HeaderRecipient, HeaderSender, HeaderTitle


	HeaderRecipient property
	property HeaderRecipient : string

	The fax recipient’s name.
	This string replaces the $R replacement tag in a cover page text file or a header line.
	See “Cover pages” on page�738 for more information and examples.
	See also: HeaderLine, HeaderSender, HeaderTitle


	HeaderSender property
	property HeaderSender : string

	The fax sender’s name.
	This string replaces the $F replacement tag in a cover page text file or a header line.
	See “Cover pages” on page�738 for more information and examples.
	See also: HeaderLine, HeaderRecipient, HeaderTitle


	HeaderTitle property
	property HeaderTitle : string

	The fax title.
	This string replaces the $S replacement tag in a cover page text file or a header line.
	See “Cover pages” on page�738 for more information and examples.
	See also: HeaderLine, HeaderRecipient, HeaderSender


	MaxSendCount property
	property MaxSendCount : Word
	Default: 50


	Determines the maximum number of raster lines TApdSendFax sends before yielding control.
	MaxSendCount prevents TApdSendFax from completely taking over the CPU. It provides a balance to B...
	The default values for BufferMinimum and MaxSendCount provide the best combination of cooperative...
	See also: BufferMinimum, SafeMode


	OnFaxNext event
	property OnFaxNext : TFaxNextEvent
	TFaxNextEvent = procedure(CP : TObject;
	var APhoneNumber : TPassString; var AFaxFile : TPassString;
	var ACoverFile : TPassString) of object;
	TPassString = string[255];

	Defines an event handler that returns the phone number, fax file, and cover file for the next fax.
	If no handler is installed for this event, TApdSendFax dials the number specified by the PhoneNum...
	CP is the fax component that is transmitting. The event handler should return the next number to ...
	The event handler should return empty strings for APhoneNumber, AFaxFile, and ACoverFile when the...
	An OnFaxFinish event will be fired at the end of the fax session (all faxes have been sent— and y...
	See “Specifying a fax to send” on page�736 for more information.

	PhoneNumber property
	property PhoneNumber : string

	Specifies the number to dial.
	If you are sending a single fax, set PhoneNumber to the number to dial. If you are sending multip...
	If the phone system requires prefix codes (like ‘9’), the codes must be specified in PhoneNumber ...
	PhoneNumber can be used with status and logging routines to return the phone number dialed for th...
	See also: CoverFile, DialPrefix, OnFaxNext, TApdAbstractFax.FaxFile


	SafeMode property
	property SafeMode : Boolean
	Default: True


	Determines whether TApdSendFax should yield during time-critical handshaking periods.
	At the beginning and end of every fax page, TApdSendFax performs time-critical handshaking with t...
	When SafeMode is True (the default), TApdSendFax does not yield during these periods. While this ...

	StartManualTransmit method
	procedure TApdSendFax.StartManualTransmit;

	Begins transmitting a fax over an existing call.
	StartManualTransmit is called during an existing call to send a fax.
	See ExFaxOD and ExFoDs for examples.
	See also: StartTransmit


	StartTransmit method
	procedure StartTransmit;

	Starts transmitting faxes in the background.
	The steps leading up to calling StartTransmit are:
	1. Create a port component.
	2. Create a fax component.
	3. Set PhoneNumber and FaxFile or provide an OnFaxNext event handler to return this information.
	4. Write other event handlers for fax events.
	5. Call StartTransmit.
	StartTransmit returns immediately and transmits fax files in the background, occasionally generat...
	The TAPI/Fax integration with receiving faxes will wait for incoming faxes using a passive answer...
	See also: OnFaxNext, TApdAbstractFax.TapiDevice, TApdAbstractFax.OnFaxFinish



	ToneDial property
	property ToneDial : Boolean
	Default: True


	Determines whether tone or pulse dialing is used for fax transmissions.
	If ToneDial is True (the default), tone dialing is used. Otherwise, pulse dialing is used. Settin...



	TApdReceiveFax Component
	The TApdReceiveFax component is used to receive faxes. It builds on the services of TApdAbstractF...
	Accepting fax files
	The OnFaxAccept event gives your program the opportunity to accept or reject an incoming fax. The...
	There aren’t many reasons to refuse an incoming fax, but there might be some that are important t...
	Another possibility is to reject junk faxes automatically. You could maintain a list of known�goo...
	If you don’t implement an OnFaxAccept event then all faxes are accepted.
	The following event handler accepts faxes only from station ID “719-260-7151”:
	procedure TForm1.ApdReceiveFax1FaxAccept(
	CP : TObject; var Accept : Boolean);
	begin
	Accept := ApdReceiveFax1.RemoteID = '719-260-7151';
	end;


	Naming incoming fax files
	When a fax is received, a file name must be chosen for storing the incoming image. Unlike a file ...
	TApdReceiveFax provides two methods for generating fax file names. The FaxNameMode property speci...
	FaxNameMode provides the following choices shown in Table 15.17.
	Table 15.17: FaxNameMode options
	For both fnMonthDay and fnCount, the time required to find a usable file name depends on the numb...
	To avoid the delay of finding the next available file name or if to use a different algorithm for...
	The following event handler generates sequence numbers internally rather than scanning the output...

	const
	LastNumber : Word = 0;

	procedure TForm1.ApdReceiveFax1FaxName(
	CP : TObject; var Name : OpenString);
	begin
	if LastNumber < 10000 then begin
	Inc(LastNumber);
	Str(LastNumber, Name);
	while Length(Name) < 4 do
	Name := '0'+Name;
	Name := 'FAX'+Name+'.'+ApdReceiveFax1.FaxFileExt;
	end else
	Name := 'NONAME.APF';
	end;
	This example keeps track of sequence numbers internally, using the typed constant LastNumber. Of ...


	Example
	This example shows how to construct and use a fax receive component. This example includes a TApd...
	Create a new project, add the following components, and set the property values as indicated in T...
	Table 15.18: Fax receive component example
	The input buffer size of the comport component (the InSize property of TApdComPort) is raised fro...
	Double-click on the Receive button’s OnClick event handler within the Object Inspector and modify...

	procedure TForm1.ReceiveClick(Sender : TObject);
	begin
	ApdReceiveFax1.InitModemForFaxReceive;
	ApdReceiveFax1.StartReceive;
	end;
	This method starts a background fax receive session, which initializes the modem and prepares it ...
	When a fax call arrives, TApdReceiveFax answers the phone, validates the call as a fax call, and ...
	This example is in the EXFAXR project in the \ASYNCPRO\EXAMPLES directory.


	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomAbstractFax (AdFax)
	v TApdAbstractFax (AdFax) 715
	TApdCustomReceiveFax (AdFax)
	TApdReceiveFax (AdFax)


	Properties
	Methods
	Events
	Reference Section
	AnswerOnRing property
	property AnswerOnRing : Word
	Default: 1


	Determines the number of rings before a call is answered.
	AnswerOnRing is the number of “RING” responses allowed before the incoming call is answered. The ...

	ConstantStatus property
	property ConstantStatus : Boolean
	Default: False


	Determines whether status events are generated as soon as StartReceive is called.
	When transmitting faxes, the time to display status events is clear. While there are faxes to tra...
	If ConstantStatus is False (the default), the first status event is generated when an incoming ri...
	If ConstantStatus is True, the first status event is generated as soon as StartReceive is called....
	See also: StartReceive, TApdAbstractFax.OnFaxStatus


	DestinationDir property
	property DestinationDir : string
	Default: Empty string


	Determines the directory for incoming fax files.
	There are two ways to indicate the directory for storing incoming fax files. If an OnFaxName even...
	If DestinationDir is empty and the OnFaxName event handler doesn’t return a fully qualified file ...
	See also: OnFaxName


	FaxAndData property
	property FaxAndData : Boolean
	Default: False


	Specify whether a compatible faxmodem will answer data calls.
	If FaxAndData is True, the faxmodem is configured to answer both fax and data calls. If it is Fal...
	Not all faxmodems support this feature and there is no broad standard for enabling it. It is avai...
	To use this feature, you should first set FaxAndData to True. Then call InitModemForFaxReceive to...
	If the call is data, the modem responds with “CONNECT.” If you detect this string, your program s...
	If the call is fax, the modem responds with “CED”, “FAX”, or “+FCON”. If you detect any of these ...
	This area of faxmodem behavior is not standardized. You will need to experiment with your brand o...
	See the EXADAPT example program for an example.
	See also: PrepareConnectInProgress


	FaxNameMode property
	property FaxNameMode : TFaxNameMode
	TFaxNameMode = (fnNone, fnCount, fnMonthDay);
	Default: fnCount


	Determines how an incoming fax is named if you don’t assign an OnFaxName event handler.
	TApdReceiveFax must assign a file name to an incoming fax. If you do not assign an OnFaxName even...

	InitModemForFaxReceive method
	procedure InitModemForFaxReceive;

	Initializes a faxmodem for receiving faxes.
	This method sends appropriate “AT” commands to the faxmodem to prepare it for receiving faxes. It...
	For Class 2 and 2.0 modems InitModemForFaxReceive also sends strings for setting the station ID (...
	The critical portions of InitModemForFaxReceive are performed automatically whenever you call Sta...
	InitModemForFaxReceive is also necessary when you are answering both data and fax calls on the sa...
	See also: FaxAndData, TApdAbstractFax.DesiredBPS, TApdAbstractFax.DesiredECM, TApdAbstractFax.Fax...


	OneFax property
	property OneFax : Boolean
	Default: False


	Enables or disables “one fax” receive behavior.
	If OneFax is True, the background fax process stops after receiving one fax. If OneFax is False (...
	The most likely use of “one fax” behavior is in conjunction with FaxAndData and PrepareConnectInP...
	See also: FaxAndData, PrepareConnectInProgress, TApdAbstractFax.CancelFax


	OnFaxAccept property
	property OnFaxAccept : TFaxAcceptEvent
	TFaxAcceptEvent = procedure(
	CP : TObject; var Accept : Boolean) of object;

	Defines an event handler that is called at the beginning of the receive fax session after the sta...
	This event provides an opportunity to accept or reject an incoming fax. If an OnFaxAccept event h...
	When this event is generated, the only information known about the incoming fax is the station ID...
	See “Accepting fax files” on page�754 for more information.

	OnFaxName property
	property OnFaxName : TFaxNameEvent
	TFaxNameEvent = procedure(
	CP : TObject; var Name : TPassString) of object;
	TPassString = string[255];

	Defines an event handler that is called to return a file name for a fax.
	The fax protocol doesn’t include file name information, so the receiving software must generate f...
	See “Naming incoming fax files” on page�754 for more information.

	PrepareConnectInProgress method
	procedure PrepareConnectInProgress;

	Forces TApdReceiveFax to pick up a connection in progress.
	PrepareConnectInProgress is intended to be used when your program answers calls that can be eithe...
	See also: FaxAndData


	StartManualReceive method
	procedure TApdCustomReceiveFax.StartManualReceive(
	SendATAToModem : Boolean);

	Begins receiving a fax immediately.
	StartManualReceive is called to begin receiving a fax over an existing call or over a new call th...
	SendATAToModem determines if the “ATA” answer command is sent to the modem to begin receiving the...
	Refer to ExFasOD for an example.
	See also: StartReceive


	StartReceive method
	procedure StartReceive;

	Starts waiting for and receiving faxes in the background.
	The steps leading up to calling StartReceive look something like this:
	1. Create a port component.
	2. Create a fax component.
	3. Write appropriate event handles for fax events.
	4. Call InitModemForFaxReceive.
	5. Call StartReceive.
	StartReceive returns immediately. TApdReceiveFax waits for and receives faxes in the background, ...
	The TAPI/Fax integration with receiving faxes will wait for incoming faxes using a passive answer...
	See also: TapiDevice, TApdAbstractFax.OnFaxXxx





	Fax Server Components
	The purpose of the Fax Server Components is to provide flexible, integrated fax reception, transm...
	The TApdFaxServer component provides the faxing engine and interfaces with the fax modem. This co...
	The TApdFaxServerManager component provides the TApdFaxServer component with fax jobs when reques...
	The TApdFaxClient component provides the TApdFaxServerManager component with fax jobs. This compo...
	The fax server process
	A fax server is a process that can receive and send faxes, often with the ability to schedule out...
	The TApdFaxJobHandler component handles fax job files.
	The TApdFaxServer component physically send and receives faxes.
	The TApdFaxServerManager component schedules fax jobs and manages the fax queue.
	The TApdFaxClient component creates fax jobs.

	A TApdFaxServer component is required for each faxmodem that is to be used. A TApdFaxServerManage...
	Figure 15.2: TApdFaxServerManger configuration.

	In this scenario, there is one TApdFaxServer component for each modem to be used, one TApdFaxServ...
	This scenario can be expanded upon in several ways to provide more flexible processing. The only ...

	Async Professional Job File format
	The Fax Server Components cannot use the normal Async Professional Fax (APF) file format because ...
	An APJ file is formatted as shown in Table 15.19.
	Table 15.19: APJ file format
	...
	The details of this format are most likely not needed for most applications, but the format is do...
	The APJ file begins with a fax job header, which contains information that applies to the fax job...
	Table 15.20: TFaxJobHeaderRec fields (continued)
	The TFaxRecipientRec record follows the TFaxJobHeaderRec in the APJ file. Since there can be one,...

	Table 15.21: TFaxRecipientRec fields
	Following the TFaxRecipientRec structures in the APJ file is the cover page text data. Replaceabl...
	The APF file to be sent follows the cover page text.



	Integration with other components
	The ApdFaxViewer, ApdSendFax, ApdReceiveFax, ApdFaxPrinter, and other Async Professional fax comp...
	var
	FaxJobHandler : TApdFaxJobHandler;
	begin
	FaxJobHandler := TApdFaxJobHandler.Create(nil);
	FaxJobHandler..ExtractAPF('C:\TEST.APJ', 'C:\TESTFAX.APF');
	ApdFaxViewer1.FileName := 'C:\TESTFAX.APF';
	if FaxJobHandler.ExtractCoverFile('C:\TEST.APJ',
	'C:\TESTCOVR.TXT') then
	Memo1.Lines.LoadFromFile('C:\TESTCOVR.TXT');
	FaxJobHandler.Free;
	end;



	TApdFaxJobHandler Component
	The TApdFaxJobHandler component is the ancestor of the TApdFaxServerManager and TApdFaxClient com...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdFaxJobHandler (AdFaxSrv)


	Properties
	Methods
	Reference Section
	AddRecipient method
	procedure AddRecipient(
	JobFileName : ShortString; RecipientInfo : TFaxRecipientRec);
	TFaxRecipientRec = packed record
	Status : Byte;
	JobID : Byte;
	SchedDT : TDateTime;
	AttemptNum : Byte;
	LastResult : Word;
	PhoneNumber : String[50];
	HeaderLine : String[100];
	HeaderRecipient : String[30];
	HeaderTitle : String[30];
	Padding : Array[228..256] of Byte;
	end;

	Adds new recipient information to an existing job file.
	AddRecipient is used to add another recipient to an existing fax job file. JobFileName is the pat...
	var
	Recipient : TFaxRecipientRec;
	FaxJobHandler : TApdFaxJobHandler;
	begin
	Recipient.SchedDT := Now;
	Recipient.PhoneNumber := '1 719 260 7151';
	Recipient.HeaderLine := 'Fax to $R $D $T';
	Recipient.HeaderRecipient := 'TurboPower';
	Recipient.HeaderTitle := 'Info to TurboPower';
	FaxJobHandler := TApdFaxJobHandler.Create(Self);
	FaxJobHandler.AddRecipient('C:\FAXES\MyFax.APJ', Recipient);
	FaxJobHandler.Free;
	end;


	CancelRecipient method
	procedure CancelRecipient(JobFileName: ShortString; JobNum : Byte);

	CancelRecipient cancels a single recipient in a fax job file.
	Use CancelRecipient to cancel a specific recipient in the fax job file. JobFileName is the name o...

	ConcatFaxes method
	procedure ConcatFaxes(
	DestFaxFile: ShortString; FaxFiles: array of ShortString);

	Combines two APF files into a single APF file.
	This method is used to concatenate multiple APF files into a single APF file. DestFaxFile is the ...
	The following example demonstrates how to use ConcatFaxes to concatenate several faxes (a cover p...
	var
	ApdFaxJobHandler : TApdFaxJobHandler;
	begin
	ApdFaxJobHandler := TApdFaxJobHandler.Create(Self);
	try
	ApdFaxJobHandler.ConcatFaxes(
	'C:\FAXFILE.APF', ['C:\COVER.APF', 'C:\DOC1.APF',
	'C:\DOC2.APF', 'C:\DOC3.APF', 'C:\DOC4.APF',
	'C:\DOC5.APF']);
	finally
	ApdFaxJobHandler.Free;
	end;
	end;
	In C++Builder, the syntax used is usually not apparent, the following example shows how to do it:

	{
	ShortString FaxFiles[6] = {
	"C:\\COVER.APF", "C:\\DOC1.APF", "C:\\DOC2.APF",
	"C:\\DOC3.APF", "C:\\DOC4.APF", "C:\\DOC5.APF"};
	ShortString DestFile = "C:\\FAXFILE.APF";
	TApdFaxJobHandler* ApdFaxJobHandler =
	new TApdFaxJobHandler(this);
	// the array index is 0-based, the array declaration is 1-based ApdFaxJobHandlerConcatFaxes(DestF...
	delete ApdFaxJobHandler;
	}


	ExtractAPF method
	procedure ExtractAPF(JobFileName, FaxName : ShortString);

	Extracts the APF data from an APJ file.
	Call the ExtractAPF method to extract the embedded APF data from within an APJ file. JobFileName ...
	var
	ApdFaxJobHandler : TApdFaxJobHandler;
	begin
	ApdFaxJobHandler:= TApdFaxJobHandler.Create(nil);
	ApdFaxJobHandler.ExtractAPF(MyJob, APFFile);
	ApdFaxViewer.FileName := APFFile;
	ApdFaxJobHandler.Free;
	end;


	ExtractCoverFile method
	function ExtractCoverFile(
	JobFileName, CoverName : ShortString) : Boolean;

	Extracts the cover file text from an APJ file.
	Call the ExtractCoverFile method to extract the embedded cover page text from within an APJ file....
	var
	ApdFaxJobHandler : TApdFaxJobHandler;
	begin
	ApdFaxJobHandler:= TApdFaxJobHandler.Create(nil);
	if ApdFaxJobHandler.ExtractCoverFile(MyJob, CoverFile) then
	Memo.Lines.LoadFromFile(CoverFile);
	ApdFaxJobHandler.Free;
	end;


	GetJobHeader method
	procedure GetJobHeader(
	JobFileName : ShortString; var JobHeader : TFaxJobHeaderRec);

	Returns the TFaxJobHeaderRec for the specified APJ file.
	GetJobHeader returns the fax job header record for the APJ file. JobFileName is the file name of ...
	var
	ApdFaxJobHandler : TApdFaxJobHandler;
	JobHeader : TFaxJobHeaderRec;
	begin
	ApdFaxJobHandler := TApdFaxJobHandler.Create(nil);
	ApdFaxJobHandler.GetJobHeader(MyJob, JobHeader);
	Label1.Caption := 'There are ' + IntToStr(JobHeader.NumJobs) +
	' recipients in this file';
	ApdFaxJobHandler.Free;
	end;


	GetRecipient method
	function GetRecipient(JobFileName : ShortString;
	Index : Integer; var Recipient : TFaxRecipientRec) : Integer;

	Provides a TFaxRecipientRec for the specified APJ file.
	Use GetRecipient to retrieve a TFaxRecipientRec record from an APJ file.
	Since an APJ file can contain several TFaxRecipientRec records, you must specify the index of the...
	The following example will return the next scheduled job in an APJ and write some information abo...
	var
	ApdFaxJobHandler : TApdFaxJobHandler;
	Recipient : TFaxRecipientRec;
	JobHeader : TFaxJobHeaderRec;
	Count : Integer;
	begin
	ApdFaxJobHandler := TApdFaxJobHandler.Create(nil);
	ApdFaxJobHandler.GetJobHeader(MyJob, JobHeader);
	Count := JobHeader.NextJob;
	ApdFaxJobHandler.GetRecipient('C:\TEST.APJ', Count, Recipient);
	ListBox.Items.Add('Job#' + IntToStr(Count));
	ListBox.Items.Add(' Scheduled for ' +
	DateTimeToStr(Recipient.SchedDT));
	ListBox.Items.Add(' To : ' + Recipient.HeaderRecipient);
	ListBox.Items.Add(' Fax# : ' + Recipient.PhoneNumber);
	ApdFaxJobHandler.Free;
	end;


	GetRecipientStatus method
	function GetRecipientStatus(
	JobFileName: ShortString; JobNum : Integer) : Integer;

	Returns the status flag for a specific recipient.
	Use GetRecipientStatus to retrieve the status flag for a specific recipient. JobFileName is the n...

	MakeJob method
	procedure MakeJob(FaxFileName, CoverFile, JobName, Sender,
	JobFileName : ShortString; RecipientInfo : TFaxRecipientRec);
	TFaxRecipientRec = packed record
	Status : Byte
	JobID : Byte;
	SchedDT : TDateTime;
	AttemptNum : Byte;
	LastResult : Word;
	PhoneNumber : String[50];
	HeaderLine : String[100];
	HeaderRecipient : String[30];
	HeaderTitle : String[30];
	Padding : Array[228..256] of Byte;
	end;

	Creates a fax job file containing a single recipient.
	Call MakeJob to create a file in the Async Professional Job format. FaxFileName is the name of th...
	var
	ApdFaxJobHandler : TApdFaxJobHandler;
	Recipient : TFaxRecipientRec;
	begin
	FillChar(Recipient, SizeOf(TFaxRecipientRec),#0);
	Recipient.SchedDT := Now;
	Recipient.PhoneNumber := '1 719 471 9091';
	Recipient.HeaderLine := 'Fax to $R $D $T';
	Recipient.HeaderRecipient := 'TurboPower';
	Recipient.HeaderTitle := 'Info to TurboPower';
	ApdFaxJobHandler := TApdFaxJobHandler.Create(nil);
	ApdFaxJobHandler.MakeJob(
	'C:\DEFAULT.APF','C:\COVER.TXT', 'Info to TurboPower',
	'John Doe', 'C:\FAXES\INFO1.APJ', Recipient);
	ApdFaxJobHandler.Free;
	end;


	ResetAPJPartials method
	procedure ResetAPJPartials(JobFileName: ShortString);

	Resets all stPartial status flags to stNone.
	This method is used to reset all recipients that have a status flag of stPartial. All recipient f...

	ResetAPJStatus method
	procedure ResetAPJStatus(JobFileName: ShortString);

	Resets all status flags in an APJ to stNone
	This method is used to reset all recipient status flags to stNone, regardless of their current va...

	ResetRecipientStatus method
	procedure ResetRecipientStatus(
	JobFileName: ShortString; JobNum, NewStatus: Byte);

	Resets individual recipient with new status, updates job header
	This method is used to reset a specific recipient status flag to a new value. JobFileName is the ...

	RescheduleJob method
	procedure RescheduleJob(JobFileName : ShortString;
	JobNum : Integer; NewSchedDT : TDateTime; ResetStatus: Boolean);

	Reschedules a recipient and updates the job header
	The RescheduleJob method reschedules a specific recipient in an APJ to a new scheduled time. JobF...

	ShowFaxJobInfoDialog method
	function ShowFaxJobInfoDialog(
	JobFileName : ShortString) : TModalResult;

	Provides a dialog displaying fax job information.
	Call the ShowFaxJobInfoDialog method to display a dialog containing information about the specifi...
	The TFaxJobHeaderRec information is displayed at the top of the dialog, and the TFaxRecipientRec ...



	TApdFaxServer Component
	The TApdFaxServer component is the faxing engine for the Fax Server Components. It handles the ph...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdCustomAbstractFax (AdFax)
	TApdCustomFaxServer (AdFaxSrv)
	TApdFaxServer (AdFaxSrv)


	Properties
	Methods
	Events
	Reference Section
	AnswerOnRing property
	property AnswerOnRing : Word
	Default: 1


	Determines the number of rings before a call is answered.
	AnswerOnRing is the number of “RING” responses allowed before the incoming call is answered. The ...

	BlindDial property
	property BlindDial : Boolean
	Default: False


	Allows a fax to be sent regardless of whether the modem detects a dial tone.
	If BlindDial is True, a different initialization sequence is sent to the modem before a fax is se...

	BufferMinimum property
	property BufferMinimum : Word
	Default: 1000


	Defines the minimum number of bytes that must be in the output buffer before TApdFaxServer yields...
	Once started, a fax transmit session must have a constant supply of data to transmit. Lack of dat...
	If your program is operating among programs that aren’t functioning properly or other conditions ...
	An attempt to set BufferMinimum to more than the OutSize property of TApdComPort is ignored.
	See also: MaxSendCount, SafeMode


	BytesTransferred read-only, run-time property
	property BytesTransferred : Boolean

	The number of bytes received or transmitted so far for the current page.
	BytesTransferred can be used by an OnFaxStatus event handler to get the number of bytes received ...
	See also: CurrentPage, PageLength, TotalPages


	CancelFax method
	procedure CancelFax;

	Cancels the current fax session.
	CancelFax cancels the fax session, regardless of its current state. When appropriate, a cancel co...
	The following example shows how to cancel a fax from a fax status dialog:
	procedure TStandardDisplay.CancelClick(Sender : TObject);
	begin
	ApdSendFax1.CancelFax;
	end;
	See also: OnFaxError, OnFaxFinish


	ComPort property
	property ComPort : TApdCustomComPort

	Determines the port to be used by the fax engine.
	ComPort is the ApdComPort to be used by the fax engine. If the TapiMode property of the ApdComPor...

	ConstantStatus property
	property ConstantStatus : Boolean
	Default: False


	Determines whether status events are generated as soon as Monitoring is enabled.
	When transmitting faxes, the time to display status events is clear. While there are faxes to tra...
	If ConstantStatus is False (the default), the first status event is generated when an incoming ri...
	If ConstantStatus is True, the first status event is generated as soon as StartReceive is called....
	See also: Monitoring, OnFaxServerStatus


	CurrentJobFileName read-only, run-time property
	property CurrentJobFileName : ShortString

	Contains the file name of the fax job file being sent.
	CurrentJobFileName contains the file name of the fax job file currently being sent. You can use t...

	CurrentJobNumber read-only, run-time property
	property CurrentJobNumber : Integer

	Contains the index into the fax job file of the recipient being processed.
	CurrentJobNumber contains the 0-based index into the fax job file (from the CurrentJobName proper...

	CurrentPage read-only, run-time property
	property CurrentPage : Word

	The page number of the page currently being received or transmitted.
	CurrentPage can be used by an OnFaxStatus event handler to get the number of the page currently b...
	See also: BytesTransferred, PageLength, TotalPages


	CurrentRecipient read-only, run-time property
	property CurrentRecipient : TFaxRecipientRec
	TFaxRecipientRec = packed record
	Status : Byte;
	JobID : Byte;
	SchedDT : TDateTime;
	AttemptNum : Byte;
	LastResult : Word;
	PhoneNumber : String[50];
	HeaderLine : String[100];
	HeaderRecipient : String[30];
	HeaderTitle : String[30];
	Padding : Array[228..256] of Byte;
	end;

	The TFaxRecipientRec containing recipient information about the current outbound fax.
	CurrentRecipient contains information about the fax currently being sent. You can use the fields ...

	DelayBetweenSends property
	property DelayBetweenSends : Word

	Allows a minimum delay between fax transmissions.
	DelayBetweenSends is the number of clock ticks to delay before beginning another fax transmission...

	DesiredBPS property
	property DesiredBPS : Word
	Default: 9600


	Determines the highest fax bps rate to negotiate for the next fax session.
	DesiredBPS limits the fax bps rate for subsequent fax sessions. Although many faxmodems support h...
	Changing DesiredBPS during a fax session has no effect on the current session.
	See also: ModemBPS, SessionBPS


	DesiredECM property
	property DesiredECM : Boolean
	Default: False


	Determines whether fax sessions attempt to use error control.
	The fax protocol contains an optional error control facility that allows modems to detect and cor...
	See also: ModemECM, SessionECM


	DestinationDir property
	property DestinationDir : string
	Default: Empty string


	Determines the directory for incoming fax files.
	There are two ways to indicate the directory for storing incoming fax files. If an OnFaxServerNam...
	If DestinationDir is empty and the OnFaxServerName event handler doesn’t return a fully qualified...
	See also: OnFaxServerName


	DialAttempt read-only, run-time property
	property DialAttempt : Word

	Indicates the number of times the current fax number has been dialed.
	If the dialed fax number is busy, TApdSendFax waits briefly and calls the number again. It tries ...
	See also: DialAttempts, DialRetryWait


	DialAttempts property
	property DialAttempts : Word

	Determines the number of times the fax number is dialed.
	This is the number of times a fax call is attempted; it is not the number of retries. When DialAt...

	DialPrefix property
	property DialPrefix : TModemString
	TModemString = string[40];

	The optional dial prefix.
	DialPrefix specifies an optional dial prefix that is inserted in the dial command between “ATDT” ...
	Do not include “ATD” or a ‘T’ or ‘P’ tone/pulse modifier in the dial prefix. “ATD” is automatical...
	See also: ToneDial


	DialWait property
	property DialWait : Word
	Default: 60


	The number of seconds to wait for a connection after dialing the number.
	This property determines how many seconds to wait after dialing the receiver’s phone number. If t...
	See also: OnFaxServerFinish


	EnhFont property
	property EnhFont : TFont

	Determines the font used to convert cover pages.
	If EnhTextEnabled is True, the font specified by EnhFont is used by TApdFaxServer to convert the ...
	There is an upper limit on the size of the font, but this limit is not typically reached unless a...
	See also: EnhTextEnabled


	EnhHeaderFont property
	property EnhHeaderFont : TFont

	Determines the font used to convert the fax header.
	If EnhTextEnabled is True, the font specified by EnhHeaderFont is used by TApdFaxServer to conver...
	There is an upper limit on the size of the font, but this limit is not typically reached unless a...
	See also: EnhTextEnabled


	EnhTextEnabled property
	property EnhTextEnabled : Boolean
	Default: False


	Determines whether TApdFaxServer uses the default font.
	If EnhTextEnabled is True, the enhanced text-to-fax converter is used by ApdFaxSever when convert...
	The converter makes no attempt to keep all text on the page when the size of the font is changed....
	See also: EnhFont, EnhHeaderFont


	ExitOnError property
	property ExitOnError : Boolean

	Determines what happens when an error occurs during a fax transmit or receive.
	If ExitOnError is True, all fax operations are stopped if any error occurs while sending or recei...

	FaxClass property
	property FaxClass : TFaxClass
	TFaxClass = (
	fcUnknown, fcDetect, fcClass1, fcClass1_0, fcClass2, fcClass2_0);
	Default: fcDetect


	Indicates whether the faxmodem is used as Class 1, Class 1.0, Class 2, or Class 2.0.
	If FaxClass is fcDetect (the default), TApdFaxServer determines what classes the modem supports a...
	See also: SupportedFaxClasses


	FaxFile read-only, run-time property
	property FaxFile : string

	The name of the fax file currently being transmitted or received.
	If you are sending a single fax, set FaxFile to the name of the file. If you are sending multiple...
	FaxFile can be used with status and logging routines to return the name of the fax file currently...
	See also: TApdSendFax.CoverFile, TApdSendFax.OnFaxNext, TApdSendFax.PhoneNumber


	FaxFileExt property
	property FaxFileExt : string
	Default: “APF”


	The default extension assigned to incoming fax files.
	By default, all incoming fax files created by the two built-in methods of naming faxes use a file...
	See “Naming incoming fax files” on page�754 for more information.
	See also: FaxNameMode


	FaxLog property
	property FaxLog : TApdFaxLog

	An instance of a fax logging component.
	If FaxLog is nil (the default), the fax component does not perform automatic logging. You can ins...
	If you create an instance of (or a descendant of) a TApdFaxLog class (see page 828), and assign i...

	FaxNameMode property
	property FaxNameMode : TFaxNameMode
	TFaxNameMode = (fnNone, fnCount, fnMonthDay);
	Default: fnCount


	Determines how an incoming fax is named.
	TApdFaxServer must assign a file name to incoming fax files. This property differs from the TApdR...
	See also: TApdReceiveFax.FaxNameMode


	FaxPrinter property
	property FaxPrinter : TApdCustomFaxPrinter

	The TApdCustomFaxPrinter to use for automatic fax printing.
	If PrintOnReceive is True, this instance of a TApdCustomFaxPrinter will be used to automatically ...
	See also: PrintOnReceive


	FaxProgress read-only, run-time property
	property FaxProgress : Word

	Returns a code that indicates the current state of the fax session.
	This property is most useful within an OnFaxServerStatus event handler. See “Fax status” on page�...
	See also: OnFaxServerStatus


	ForceSendQuery method
	procedure ForceSendQuery;

	Provides a mechanism for manually querying for scheduled fax jobs.
	The ForceSendQuery method allows you to manually request fax jobs from the TApdFaxServerManager c...
	See also: SendQueryInterval


	HangupCode read-only, run-time property
	property HangupCode : Word

	The hangup code for a Class 2 or 2.0 fax transfer.
	When a Class 2 or 2.0 faxmodem session terminates abnormally, it returns a hangup code to help ex...
	The following table shows the codes that can be returned (in hexadecimal), with a brief descripti...

	InitBaud property
	property InitBaud : Integer
	Default: 0


	Determines the initialization baud rate for modems that require different baud rates for initiali...
	Some older 24/96 faxmodems (2400 data, 9600 fax) require that the initialization commands be sent...
	Since most faxmodems do not require a special initialization baud rate, InitBaud defaults to zero...
	NormalBaud is a companion property to InitBaud. When InitBaud is non-zero, the fax components swi...
	See also: NormalBaud


	MaxSendCount property
	property MaxSendCount : Word
	Default: 50


	Determines the maximum number of raster lines TApdFaxServer sends before yielding control.
	MaxSendCount prevents TApdFaxServer from completely taking over the CPU. It provides a balance to...
	The default values for BufferMinimum and MaxSendCount provide the best combination of cooperative...
	See also: BufferMinimum, SafeMode


	ModemBPS read-only, run-time property
	property ModemBPS : LongInt

	Returns the highest bps rate supported by the faxmodem.
	When you reference ModemBPS, commands are sent to the modem to determine its highest bps rate. Th...
	ModemBPS works by attempting to enable the most capable modem features and stepping down if the m...
	The technique used by ModemBPS works on most Class 2 and 2.0 faxmodems. One low�cost, no-name-clo...
	See also: ModemECM


	ModemChip read-only, run-time property
	property ModemChip : string

	Returns the type of chip for a Class 2 or 2.0 faxmodem.
	When you reference ModemChip, commands are sent to the modem to determine the type of chip. This ...
	See also: ModemModel, ModemRevision


	ModemECM read-only, run-time property
	property ModemECM : Boolean

	Indicates whether the faxmodem supports error correction.
	When you reference ModemECM, commands are sent to the modem to determine whether it supports erro...
	The technique used by ModemECM works on most Class 2 and 2.0 faxmodems. But be advised, one low�c...
	See also: ModemBPS


	ModemInit property
	property ModemInit : TModemString
	TModemString = string[40];

	A custom modem initialization string.
	If you assign a custom modem initialization string to ModemInit, Async Professional always sends ...
	Note that the DefInit string may override certain actions of the ModemInit string. This is necess...

	ModemModel read-only, run-time property
	property ModemModel : string

	Returns the model for a Class 2 or 2.0 faxmodem.
	When you reference ModemModel, commands are sent to the modem to determine the model. This works ...
	See also: ModemChip, ModemRevision


	ModemRevision read-only, run-time property
	property ModemRevision : string

	Returns the revision for a Class 2 or 2.0 faxmodem.
	When you reference ModemRevision, commands are sent to the modem to determine the revision. This ...
	See also: ModemChip, ModemModel


	Monitoring property
	property Monitoring : Boolean
	Default: False


	Determines whether incoming calls are answered.
	Set Monitoring to True to begin listening for incoming fax calls. Set Monitoring to False to stop...

	NormalBaud property
	property NormalBaud : Integer
	Default: 0


	Determines the normal baud to use for modems that require different baud rates for initialization...
	NormalBaud isn’t needed unless the faxmodem requires separate baud rates for initialization comma...
	See also: InitBaud


	OnFaxServerAccept event
	property OnFaxServerAccept : TFaxAcceptEvent
	TFaxAcceptEvent = procedure(
	CP : TObject; var Accept : Boolean) of object;

	Defines an event handler that is called at the beginning of the receive fax session after the sta...
	This event provides an opportunity to accept or reject an incoming fax. If an OnFaxServerAccept e...
	See “Accepting fax files” on page�754 for more information.

	OnFaxServerFatalError event
	property OnFaxServerFatalError : TFaxServerFatalErrorEvent
	TFaxServerFatalErrorEvent = procedure(
	CP : TObject; FaxMode : TFaxServerMode; ErrorCode,
	HangupCode : Integer) of object;
	TFaxServerMode = (fsmIdle, fsmSend, fsmReceive);

	Defines an event handler that is called when a fatal error occurs during fax transmission or rece...
	This event is generated only for unrecoverable errors. Most fax errors caused by line noise are h...
	CP is the TApdFaxServer that generated the event. FaxMode is the direction of the fax. ErrorCode ...
	Non-fatal errors, such as ecOK, ecFaxBusy, or ecCancelRequested will not cause this event to be g...
	If ExitOnError is True, Monitoring is set to False suspending further reception, and SendQueryInt...

	OnFaxServerFinish event
	property OnFaxServerFinish : TFaxServerFinishEvent
	TFaxServerFinishEvent = procedure(
	CP : TObject; FaxMode : TFaxServerMode;
	ErrorCode : Integer) of object;
	TFaxServerMode = (fsmIdle, fsmSend, fsmReceive);

	Defines an event handler that is called when a fax call ends.
	This event is generated at the end of each successful fax transmission or reception. CP is the TA...

	OnFaxServerLog event
	property OnFaxServerLog : TFaxLogEvent
	TFaxLogEvent = procedure(
	CP : TObject; LogCode : TFaxLogCode) of object;
	TFaxLogCode = (lfaxNone, lfaxTransmitStart, lfaxTransmitOK,
	lfaxTransmitFail, lfaxReceiveStart, lfaxReceiveOK,
	lfaxReceiveSkip, lfaxReceiveFail);

	Defines an event handler that is called at designated points during a fax transfer.
	The primary purpose of this event is to allow you to log statistical information about fax transf...
	CP is the fax component to be logged. LogCode is a code that indicates the state of the fax trans...

	OnFaxServerName event
	property OnFaxServerName : TFaxNameEvent
	TFaxNameEvent = procedure(
	CP : TObject; var Name : TpassString) of object;

	Defines an event handler that is called to return a file name for an incoming fax.
	The fax receive protocol does not include file name information, so the receiving software must g...

	OnFaxServerPortOpenClose event
	property OnFaxServerPortOpenClose : TFaxServerPortOpenCloseEvent
	TFaxServerPortOpenCloseEvent = procedure(
	CP : Tobject; Opening : Boolean) of object;

	Defines an event handler that is called when the physical communications port is opened and closed.
	This event is generated when the physical communications port is opened or closed. The primary pu...

	OnFaxServerStatus event
	property OnFaxServerStatus : TFaxServerStatusEvent
	TFaxServerStatusEvent = procedure(CP : TObject;
	FaxMode : TFaxServerMode; First, Last : Boolean;
	Status : Word) of object;

	Defines an event handler that is called regularly during a file transfer.
	This event is generated at StatusInterval intervals during the entire fax session and after the c...
	You can use this event to update a status display that informs the user about the fax progress.
	CP is the TApdFaxServer component that generated the event. FaxMode is the direction of the fax. ...
	A predefined status component called TApdFaxStatus is supplied with Async Professional. If you do...
	See also: StatusDisplay, StatusInterval


	PageLength read-only, run-time property
	property PageLength : LongInt

	The total number of bytes in the current page.
	PageLength is valid only when you are sending a fax. When receiving a fax, the total size of the ...
	PageLength can be used by an OnFaxStatus event handler to get the total number of bytes in the cu...
	See also: BytesTransferred, CurrentPage, TotalPages


	PrintOnReceive property
	property PrintOnReceive : Boolean
	Default: False


	Determines whether incoming faxes are automatically printed upon completion.
	If PrintOnReceive is True, received faxes are automatically printed. This property can only be Tr...

	RemoteID read-only, run-time property
	property RemoteID : TStationID
	TStationID = string[20];

	The station ID of the remote fax machine.
	RemoteID can be used by an OnFaxServerStatus event handler to get the station ID of the remote fa...
	See also: StationID


	SafeMode property
	property SafeMode : Boolean
	Default: True


	Determines whether TApdFaxServer should yield during time-critical handshaking periods.
	At the beginning and end of every fax page, TApdFaxServer performs time-critical handshaking with...
	When SafeMode is True (the default), TApdFaxServer does not yield during these periods. While thi...

	SendQueryInterval property
	property SendQueryInterval : Word
	Default: 30


	Determines the number of seconds between querying the TApdFaxServerManager for new fax jobs.
	When a fax is not being received or transmitted, the TApdFaxServerManager component will be queri...

	ServerManager property
	property ServerManager : TApdFaxServerManager

	The TApdFaxServerManager that supplies fax jobs.
	Assign a TApdFaxServerManager component to this property to allow the TApdFaxServer to automatica...

	SessionBPS read-only, run-time property
	property SessionBPS : Word

	The negotiated transfer rate in bits per second.
	SessionBPS can take on the values 14400, 12000, 9600, 7200, 4800, and 2400. Most faxmodems now su...
	SessionBPS can be used by an OnFaxServerStatus event handler to get the negotiated transfer rate....
	Session parameters can change more than once during a single session. Be sure that your OnFaxServ...
	See also: DesiredBPS, SessionECM, SessionResolution, SessionWidth


	SessionECM read-only, run-time property
	property SessionECM : Boolean

	Indicates whether automatic error correction is enabled.
	SessionECM is True if automatic error correction is enabled for this transfer, or False if it isn...
	SessionECM can be used by an OnFaxServerStatus event handler to check for automatic error correct...
	Session parameters can change more than once during a single session. Be sure that your OnFaxServ...
	See also: DesiredECM, SessionBPS, SessionResolution, SessionWidth


	SessionResolution read-only, run-time property
	property SessionResolution : Boolean

	Indicates whether the fax is high resolution or standard resolution.
	SessionResolution is True for a high resolution fax transfer, or False for a standard resolution ...
	SessionResolution can be used by an OnFaxStatus event handler to check for the fax resolution. Th...
	Session parameters can change more than once during a single session. Be sure that your OnFaxServ...
	See also: SessionBPS, SessionECM, SessionWidth


	SessionWidth read-only, run-time property
	property SessionWidth : Boolean

	Indicates whether the fax is normal or wide width.
	If SessionWidth is True (the default), the fax is a standard width of 1728 pixels (about 8.5 inch...
	SessionWidth can be used by an OnFaxServerStatus event handler to check the fax width. The approp...
	Session parameters can change more than once during a single session. Be sure that your OnFaxServ...
	See also: SessionBPS, SessionECM, SessionResolution


	SoftwareFlow property
	property SoftwareFlow : Boolean
	Default: False


	Determines whether the fax components enable/disable software flow control during the fax session.
	When using software flow control during a fax session, the flow control must be enabled and disab...
	For more information regarding flow control see “Fax sessions and the TApdComPort” on page�702.

	StationID property
	property StationID : TStationID
	TStationID = string[20];

	The station ID of the faxmodem.
	A fax device can identify itself to another fax device with a 20 character name, called the stati...
	Async Professional does not filter the characters stored in the station ID. If your software must...
	This station ID is used on both incoming and outgoing calls.
	A fax file stored in APF format also contains a station ID in the file header. This station ID is...
	See also: TApdFaxConverter.StationID


	StatusDisplay property
	property StatusDisplay : TApdAbstractFaxStatus

	An instance of a fax status window.
	If StatusDisplay is nil (the default), the fax does not provide an automatic status window. You c...
	If you create an instance of a class derived from TApdAbstractFaxStatus or use the supplied TApdF...
	See also: OnFaxServerStatus


	StatusInterval property
	property StatusInterval : Word
	Default: 1


	The maximum number of seconds between OnFaxServerStatus events.
	The OnFaxServerStatus event is generated for each major fax session event (connected, got station...
	This property also determines how frequently the StatusDisplay window is updated.
	See also: OnFaxServerStatus, StatusDisplay


	StatusMsg method
	function StatusMsg(const Status : Word) : string;

	Returns an English string for a fax status code.
	This routine is intended primarily for use in fax status routines. It returns a status string fro...
	The returned string is never longer than MaxMessageLen (80) characters.

	SupportedFaxClasses read-only, run-time property
	property SupportedFaxClasses : TFaxClassSet
	TFaxClassSet = set of TFaxClass;
	TFaxClass = (
	fcUnknown, fcDetect, fcClass1, fcClass1_0, fcClass2, fcClass2_0);

	The set of fax classes supported by the faxmodem.
	SupportedFaxClasses is available only at run time because it sends commands to the faxmodem to de...
	Initially FaxClass is fcDetect, so that the first reference to it causes the faxmodem interrogati...
	Generally, applications should use the highest supported class: fcClass2_0, then fcClass2, then f...
	See also: FaxClass


	TapiDevice property
	property TapiDevice: TApdCustomTapiDevice

	Determines the TAPI device used by the TApdFaxServer.
	If TapiDevice is nil (the default), TAPI will not be used to select the device or open the physic...
	If the TApdComPort specified in the ComPort property has its TapiMode set to tmAuto or tmOn, and ...

	ToneDial property
	property ToneDial : Boolean
	Default: True


	Determines whether tone or pulse dialing is used for fax transmissions.
	If ToneDial is True (the default), tone dialing is used. Otherwise, pulse dialing is used. Settin...

	TotalPages read-only, run-time property
	property TotalPages : Word

	The total number of pages in the current fax.
	TotalPages is valid only when you are sending a fax. When you are receiving a fax, the total numb...
	TotalPages can be used by an OnFaxStatus event handler to get the total number of bytes in the cu...
	See also: BytesTransferred, CurrentPage, PageLength




	TApdFaxServerManager Component
	The TApdFaxServerManager component provides fax scheduling and queuing capability. The ApdFaxServ...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	v TApdFaxJobHandler (AdFxSrv) 769
	TApdFaxServerManager (AdFxSrv)


	Properties
	Methods
	Events
	Reference Section
	GetJob method
	function GetJob(var Recipient : TFaxRecipientRec;
	QueryFrom : TApdCustomFaxServer; var JobFileName, FaxFile,
	CoverFile : ShortString) : Boolean;

	Returns the next scheduled fax job.
	The GetJob method is the workhorse of the TApdFaxServerManager component. This method is used int...
	Call GetJob to get the next scheduled fax job in the MonitorDir. Recipient will contain the TFaxR...

	GetNextFax method
	function GetNextFax : ShortString;

	Returns the file name of the next fax job to send.
	The GetNextFax method returns the file name of the next scheduled fax job in the directory being ...
	This method scans the directory specified by MonitorDir and consolidates scheduling information f...
	See also: MonitorDir


	GetSchedTime method
	function GetSchedTime(JobName : ShortString) : TDateTime;

	Returns the TDateTime for which the first fax in the job file is scheduled.
	The GetSchedTime method returns the TDateTime for which the earliest fax contained in the APJ fil...
	This method opens the job file, parses the embedded TFaxRecipientRec structures and returns the s...

	JobFileExt property
	property JobFileExt : ShortString
	Default: “APJ”


	The extension of Async Professional fax Job files.
	The TApdFaxServerManager uses this property to filter out files that are not APJ files when looki...
	See also: MonitorDir


	MonitorDir property
	property MonitorDir : ShortString
	Default: Empty string


	Determines the directory to scan for fax job files.
	When the TApdFaxServerManager is queried for fax jobs, it scans the files in this directory. Only...

	OnCustomGetJob event
	property OnCustomGetJob : TManagerUserGetJobEvent;
	TManagerUserGetJobEvent = procedure(Mgr : TApdFaxServerManager;
	QueryFrom : TApdCustomFaxServer; var JobFile, FaxFile,
	CoverFile : string; var RecipientNum : Integer) of object;

	Event generated to override the default fax file scheduling.
	This event is generated to allow custom scheduling of fax job files. If this event handler is ins...
	This event is generated when a TApdCustomFaxServer requests a fax to send, either due to the Send...
	Mgr is the TApdFaxServerManager that generated the event. QueryFrom is the TApdCustomFaxServer th...
	This event can be used to provide an alternate scheduling mechanism, or fax job storage mechanism...
	See also: GetJob, OnQueried


	OnQueried event
	property OnQueried : TFaxServerManagerQueriedEvent;
	TFaxServerManagerQueriedEvent = procedure(
	Mgr : TApdFaxServerManager; QueryFrom : TApdCustomFaxServer;
	const JobToSend : string) of object;

	Event generated when a TApdFaxServer requests a fax.
	This event is generated when a TApdFaxServer component requests a fax to send, either through the...
	Mgr is the TApdFaxServerManager that generated the event. QueryFrom is the TApdCustomFaxServer th...
	Note that this event is for notification purposes only, the JobToSend is not editable. Use the On...
	See also: OnCustomGetJob


	OnRecipientComplete event
	property OnRecipientComplete : TManagerUpdateRecipientEvent;
	TManagerUpdateRecipientEvent = procedure (
	Mgr : TApdFaxServerManager; JobFile : string;
	JobHeader : TFaxJobHeaderRec;
	var RecipHeader : TFaxRecipientRec) of object;

	This event is generated when a recipient in a fax job is complete.
	The TApdFaxServerManager component will generate this event when a TApdFaxServer notifies it of a...
	Mgr is the TApdFaxServerManger that generated the event. JobFile is the name of the fax job file ...
	This event is generated immediately before the JobFile is updated. The RecipHeader parameter of t...

	Paused property
	property Paused : Boolean
	Default: False


	Temporarily pauses the TApdFaxServerManager’s queueing functionality.
	If Paused is False (the default) the GetJob method scans the directory specified by MonitorDir fo...
	See also: GetJob, MonitorDir


	Reset method
	procedure Reset;

	Reset resets the internal fax list.
	Use Reset to reset the TApdFaxServerManger’s internal fax file list. This list is maintained to i...

	UpdateStatus method
	procedure UpdateStatus(JobFileName : ShortString;
	JobNumber, Result : Word; Failed : Boolean);

	Updates the status flag of the specified job.
	UpdateStatus updates the TFaxJobHeaderRec.Status and TFaxRecipientRec.Status fields of the specif...



	TApdFaxClient Component
	The TApdFaxClient component provides the ability to create APJ fax job files with a design�time i...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	v TApdFaxJobHandler (AdFaxSrv) 769
	TApdFaxClient (AdFaxSrv)


	Properties
	Methods
	Reference Section
	AddFaxRecipient method
	procedure AddFaxRecipient;

	Adds the Recipient record to an existing job file.
	The AddFaxRecipient method will add the recipient information provided through the Recipient prop...
	See also: MakeFaxJob, Recipient


	CoverFileName property
	property CoverFileName : ShortString
	Default: Empty string


	Determines the text file to include as a cover page.
	CoverFileName determines the text file to include in the job file as a cover page. If a cover pag...

	FaxFileName property
	property FaxFileName : ShortString
	Default: empty string


	Determines the APF file to include in the job file.
	Set FaxFileName to the file name of the fax file to be sent by this job. The file specified by th...

	HeaderLine property
	property HeaderLine : ShortString

	The line of text that is sent at the top of each fax page.
	A header line consists of normal text and replacement tags. A replacement tag is one of several c...
	No check is made to make sure your header line fits on a page. If your header line does not fit, ...
	Caution: Recently passed United States legislation makes it unlawful to send faxes within the Uni...
	See also: TApdSendFax.EnhHeaderFont, TApdSendFax.EnhTextEnabled, TApdSendFax.HeaderSender, Header...


	HeaderRecipient property
	property HeaderRecipient : ShortString

	The fax recipient’s name.
	This string replaces the $R replacement tag in a cover page text file or a header line.
	See “Cover pages” on page�738 for more information and examples.
	See also: HeaderLine, TApdSendFax.HeaderSender, HeaderTitle


	HeaderTitle property
	property HeaderTitle : ShortString

	The fax title.
	This string replaces the $S replacement tag in a cover page text file or a header line.
	See “Cover pages” on page�738 for more information and examples.
	See also: HeaderLine, HeaderRecipient, TApdSendFax.HeaderSender


	JobFileName property
	property JobFileName : ShortString
	Default: Empty string


	The name of the APJ file that is being handled.
	Set the JobFileName property to the path and name of an existing APJ file to add recipients, or t...
	See also: AddFaxRecipient, MakeFaxJob


	JobName property
	property JobName : ShortString
	Default: Empty string;


	Determines the friendly name for this fax job.
	Set JobName to a string summarizing the fax job. This property will be placed in the TFaxHeaderRe...
	See also: MakeJob


	MakeFaxJob method
	procedure MakeFaxJob;

	Creates a new APJ file containing information determined by other TApdFaxClient properties.
	The MakeFaxJob method is used to create a new APJ file containing a single recipient. MakeFaxJob,...
	The following example demonstrates how to create a fax job using MakeFaxJob method and how to add...
	begin
	{ set properties that apply to this job }
	ApdFaxClient.CoverFileName := 'C:\COVER.TXT';
	ApdFaxClient.FaxFileName := 'C:\TPFAX.APF';
	ApdFaxClient.JobFileName := 'C:\FAXSRVR\TPFAX.APJ';
	ApdFaxClient.JobName := 'Fax to TurboPower';
	ApdFaxClient.Sender := 'Mike';
	{ set properties that apply to first recipient }
	ApdFaxClient.Recipient.PhoneNumber := '260 7151';
	ApdFaxClient.Recipient.HeaderLine :=
	'Fax from $F to $R, $D $T';
	ApdFaxClient.Recipient.HeaderRecipient := 'TurboPower';
	{ send this job immediately }
	ApdFaxClient.Recipient.SchedDT := Now;
	{ make the job }
	ApdFaxClient.MakeFaxJob;
	{ set properties that apply to second recipient }
	ApdFaxClient.PhoneNumber := '555 1212';
	ApdFaxClient.HeaderRecipient := 'Purchasing department';
	{ send this to the second recipient at 6pm tonight }
	ApdFaxClient.SchedDT := Date + 0.75;
	ApdFaxClient.AddRecipient;
	end;


	PhoneNumber property
	property PhoneNumber : ShortString
	Default: Empty string


	Determines destination fax number for a single recipient.
	Set the PhoneNumber property to the fax number of the recipient for this fax. This property is us...

	Recipient run-time property
	property Recipient : TFaxRecipientRec
	TFaxRecipientRec = packed record
	Status : Byte;
	JobID : Byte;
	SchedDT : TDateTime;
	AttemptNum : Byte;
	LastResult : Word;
	PhoneNumber : String[50];
	HeaderLine : String[100];
	HeaderRecipient : String[30];
	HeaderTitle : String[30];
	Padding : Array[228..256] of Byte;
	end;

	The TFaxRecipientRec containing information about a single recipient.
	The Recipient property is a run-time only property that contains information about a fax recipien...

	ScheduledDateTime read-only property
	property ScheduledDateTime : TDateTime
	Default: Now


	Determines when the current job will be scheduled.
	The ScheduledDateTime property is used to schedule a fax job to a recipient at a specific time, o...
	Since the TApdFaxServerManager component uses the SchedDT field to determine which fax to return ...

	Sender property
	property Sender : ShortString
	Default: Empty string


	Designates the creator of this fax job.
	The Sender property is used to fill the TFaxHeaderRec.Sender field, which is used for status disp...



	TApdAbstractFaxStatus Class
	TApdAbstractFaxStatus is an abstract class that defines the methods and properties needed by a co...
	However, TApdFaxStatus shows a particular set of information about a fax transfer in a predefined...
	The TApdAbstractFaxStatus class contains an instance of a TForm that holds controls used to displ...
	TApdAbstractFaxStatus replaces the standard VCL properties Caption, Ctl3D, Position, and Visible ...
	Once you create an instance of your TApdAbstractFaxStatus descendant, you must assign it to the S...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdAbstractFaxStatus (AdFax)


	Properties
	Methods
	Reference Section
	CreateDisplay dynamic abstract method
	procedure CreateDisplay; dynamic; abstract;

	An abstract method that creates a form to display the fax status.
	A descendant of TApdAbstractFaxStatus must override this method with a routine that creates a TFo...
	CreateDisplay must then assign the instance of this form to the Display property.
	See also: DestroyDisplay, Display


	DestroyDisplay dynamic abstract method
	procedure DestroyDisplay; dynamic; abstract;

	An abstract method that destroys the display form.
	A descendant of TApdAbstractFaxStatus must override this method to destroy the TForm instance cre...
	See also: CreateDisplay, Display


	Display run-time property
	property Display : TForm

	A reference to the form created by CreateDisplay.
	CreateDisplay must assign a properly initialized instance of a TForm to this property. UpdateDisp...
	See also: CreateDisplay, UpdateDisplay


	Fax property
	property Fax : TApdAbstractFax

	The fax component that is using the status component.
	When you derive components from TApdAbstractFaxStatus, you will probably reference TApdSendFax or...

	UpdateDisplay method
	procedure UpdateDisplay(
	const First, Last : Boolean); virtual; abstract;

	An abstract method that writes the contents of the status window.
	A descendant of TApdAbstractFaxStatus must override this method to update the display form. The T...
	On the first call to UpdateDisplay, First equals True and UpdateDisplay should call the Show meth...
	For all other calls to UpdateDisplay, First and Last are both False. During these calls UpdateDis...
	The CancelClick event handler, if one is provided, should call the CancelFax method of TApdSendFa...



	TApdFaxStatus Component
	TApdFaxStatus is a descendant of TApdAbstractFaxStatus that implements a standard fax status disp...
	TApdFaxStatus overrides all the abstract methods of TApdAbstractFaxStatus. TApdFaxStatus has no m...
	Figure 15.3 shows the TStandardFaxDisplay form that is associated with a TApdFaxStatus component.
	Figure 15.3: TStandardFaxDisplay form.

	For an example of using a TApdFaxStatus component, see the TApdSendFax example on page 740 or the...
	Hierarchy
	TComponent (VCL)
	TApdBaseComponent (OOMisc) 8
	TApdAbstractFaxStatus (AdFax) 822
	TApdFaxStatus (AdFStat)



	TApdFaxLog Class
	TApdFaxLog is a small class that can be associated with a TApdSendFax or TApdReceiveFax to provid...
	TApdFaxLog creates or appends to a text file whose name is given by the FaxHistoryName property. ...
	Following is a sample of the text file created by TApdFaxLog:
	-----Receive skipped at 2/20/96 3:32:48 PM
	Receive FAX0014.APF from 719 260 7151 started at 2/22/96 10:47:34 AM
	Receive finished OK at 2/22/96 10:47:48 AM
	Transmit BIG.APF to 260-7151 started at 2/26/96 2:23:41 PM
	Transmit to 719 260 7151 finished OK at 2/26/96 2:24:14 PM
	Transmit BIG.APF to 260-1643 started at 2/26/96 2:26:16 PM
	Transmit failed at 2/26/96 2:26:41 PM
	(Cancel requested)
	Transmit BIG.APF to 260-1643 started at 2/26/96 5:39:35 PM
	Transmit failed at 2/26/96 5:40:17 PM
	(Called fax number was busy)

	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdFaxLog (AdFax)


	Properties
	Methods
	Reference Section
	Fax property
	property Fax : TApdCustomAbstractFax

	The fax component that is using the log component.
	Fax is automatically initialized when the FaxLog property of the owning fax component is set. Pro...

	FaxHistoryName property
	property FaxHistoryName : string
	Default: “APROFAX.HIS”


	Determines the name of the fax log file.
	Set the value of FaxHistoryName before calling StartTransmit or StartReceive. However, because th...
	See also: TApdSendFax.StartReceive, TApdReceiveFax.StartTransmit


	UpdateLog virtual method
	procedure UpdateLog(const Log : TFaxLogCode); virtual;
	TFaxLogCode = (lfaxNone, lfaxTransmitStart, lfaxTransmitOk,
	lfaxTransmitFail, lfaxReceiveStart, lfaxReceiveOk,
	lfaxReceiveSkip, lfaxReceiveFail);

	Called for each fax logging event.
	The Log parameter has the same values passed to the OnFaxLog event handler of TApdAbstractFax. Up...
	TApdFaxLog contains a field named Fax that UpdateLog uses to obtain additional information (FaxFi...
	See also: TApdAbstractFax.OnFaxLog




	Fax Printer Drivers
	An Async Professional fax printer driver is a Windows printer driver that generates APF format fa...
	For example, you could implement a fax server program that sends faxes when the user prints to th...
	By default, when the Async Professional fax printer driver prints, it creates a “C:\DEFAULT.APF” ...
	The TApdFaxDriverInterface component provides control for the fax printer drivers. Async Professi...
	Installation
	A fax printer driver can be installed to your user’s system either through code or through printe...
	var
	QuietOperation : Boolean;
	{ Suppresses success/failure prompts when True }
	begin
	QuietOperation := (ParamCount > 0) and
	(pos('Q',UpperCase(paramStr(1))) <> 0) ;
	if IsWinNT then
	InstallDriver32('')
	else
	InstallDriver('APFGEN.DRV');

	if not QuietOperation then
	case DrvInstallError of
	ecOK :
	MessageDlg('APF Fax Printer Driver Installed OK',
	mtInformation, {mbOK], 0 ;
	ecUniAlreadyInstalled : ;
	ecUniCannotGetSysDir :
	MessageDlg('Couldn't determine Windows\System directory',
	mtError, {mbOK], 0) ;
	ecUniCannotGetPrinterDriverDir
	MessageDlg('Couldn't determine Windows NT printer driver
	directory', mtError, {mbOK}, 0) ;
	ecUniCannotGetWinDir :
	MessageDlg('Couldn't determine Windows directory',
	mtError, {mbOK], 0) ;
	ecUniUnknownLayout :
	MessageDlg(' -- Unknown Windows Layout --'+#13+
	'Unable to locate require support'+#13+
	'files', mtError, [mbOK], 0) ;
	ecUniCannotParseInfFile :
	MessageDlg('Cannot locate unidriver files in'+#13+
	'Windows Setup (INF) file.', mtError, [mbOK], 0) ;
	ecUniCannotInstallFile
	MessageDlg('Unidriver files'+'not installed. The print
	driver'+#13+'may not be configured properly.',
	mtError, [mbOK], 0) ;
	ecNotNTDriver :
	MessageDlg('This printer driver is not compatible with
	Windows NT', mtError, [mbOK], 0) :
	ecDrvCopyError :
	MessageDlg('Unable to copy printer driver to Windows
	system directory', mtError, [mbOK], 0) ;
	ecCannotAddPrinter :
	MessageDlg('Could not install APFGEN.DRV as a Windows
	printer', mtError, [mbOK], 0) ;
	ecDrvBadResources :
	MessageDlg('Printer driver file contains bad or missing
	string resources', mtError, [mbOK], 0) ;
	ecDrvDriverNotFound :
	MessageDlg('A required printer driver file was not found',
	mtError, [mbOK], 0) ;
	else
	MessageDlg('Unknown installation error : '+
	IntToStr(DrvInstallError), mtError, [mbOK], 0) ;
	end;
	end.
	The Async Professional fax printer drivers rely on several files supplied by Microsoft. These are...
	Required printer driver files:
	Windows 95/98/ME
	APFGEN.DRV
	UNIDRV.DLL
	UNIDRV.HLP
	ICONLIB.DLL
	Windows NT 4/2000
	APFPDENT.DLL
	APFMON40.DLL
	APFAXCNV.DLL
	RASDD.DLL
	RASDDUI.DLL
	RASDDUI.HLP
	Note: Windows 2000 Professional does not contain the RASDD* files required by our printer driver....


	Recompiling
	It is possible to rebuild the Async Professional fax printer drivers, but it is seldom required t...
	Async Professional provides two fax printer drivers: one for Windows 95/98/ME, another for Window...
	For the latest information concerning rebuilding the Async Professional printer drivers, search t...


	TApdFaxDriverInterface Component
	The TApdFaxDriverInterface component provides control for the fax printer drivers. Using this com...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdFaxDriverInterface (AdFaxCtl)


	Properties
	Events
	Reference Section
	DocName read-only, run-time property
	property DocName : string

	Contains the name of the print job as it appears in the print spooler.
	DocName is a read-only property that contains a textual description of the document that is being...

	FileName property
	property FileName : string
	Default: “C:\DEFAULT.APF”


	Contains the name of the output file used by the printer driver.
	FileName holds the name of the file used by the printer driver to store the output. The default f...

	OnDocEnd event
	property OnDocEnd : TNotifyEvent

	Defines an event handler that is called when the printer driver finishes processing a print job.
	When a fax print server application receives this event, it can take some further action on the f...
	The following example uses the OnDocEnd event for notification that the fax printer driver has fi...
	procedure TForm1.ApdFaxDriverInterface1DocEnd(Sender : TObject);
	begin
	{ Done printing to the fax file so send the fax }
	ApdSendFax1.FaxFile := ApdFaxDriverInterface1.FileName;
	ApdSendFax1.PhoneNumber := '260-7151';
	ApdSendFax1.StartTransmit;
	end;
	See also: OnDocStart


	OnDocStart event
	property OnDocStart : TNotifyEvent

	Defines an event handler that is called when the printer driver is ready to start printing a new ...
	This event is primarily used to supply an output file name for the printer driver to use. Control...
	The following example uses OnDocStart to set the output file name prior to the fax printer driver...
	procedure TForm1.ApdFaxDriverInterface1DocStart(
	Sender : TObject);
	begin
	ApdFaxDriverInterface1.FileName := 'TEMPFAX.APF';
	end;
	See also: FileName, OnDocEnd





	Chapter 16: Paging Components
	The ability to locate and send some kind of message to someone carrying a small electronic device...
	The ability to send and receive alphanumeric messages (i.e., those containing textual information...
	The desire to be able to send and receive such information has also increased, perhaps somewhat i...
	The fairly recent development of new standards for preparing and sending alphanumeric messages ha...
	Given Async Professional’s mission of providing well structured and encapsulated solutions to ser...
	Sending Alphanumeric Pages
	Async Professional provides components that support sending messages to alphanumeric paging devic...
	While these two protocols are fairly different in their implementations, the Async Professional p...
	Requirements
	The primary difference between TAP paging and SNPP paging from the Async Professional programmer’...
	In order to successfully send a page by either protocol, the recipient’s pager must be serviced b...
	Values for these paging parameters must be entered into the relevant properties of a paging compo...
	Certain additional requirements are generally automatically handled by the components, see the in...


	TApdAbstractPager Component
	All of the Async Professional paging components are descended from TApdAbstractPager. This abstra...
	Hierarchy
	TComponent (VCL)
	TapdAbstractPager (AdPager)


	Properties
	Methods
	Reference Section
	Message property
	property Message : TStrings
	Contains the text of the alphanumeric message to be sent as a page.
	As a TStrings, message may be filled using all the methods open to TStrings and TStrings descenda...
	ApdPager1.Message.Assign(Memo1.Lines);



	PagerID property
	property PagerID : string
	Defines the identification string (frequently the phone number) of the pager to which the message...


	PagerLog property
	property PagerLog : TApdPagerLog

	An instance of a pager logging component.
	If PagerLog is nil (the default), the pager component does not perform automatic logging. You can...
	If you create an instance of (or a descendant of) a TApdPagerLog component (see page 862), and as...

	Send method
	procedure Send; virtual; abstract;
	Provides a “root” for send methods in descendant components.
	Send is a virtual, abstract method. All descendants must override this method to implement their ...




	TApdTAPPager Component
	The TApdTAPPager Component is used to send alphanumeric pages to paging services that support Tel...
	Dialing events
	The TApdTAPPager component goes through a number of stages in the process of sending a page, thes...
	The TApdTAPPager component provides the mechanism for tracking the first two kinds of event in th...

	Dialing error handling
	The Error parameter to OnDialError is of type TDialError, which is a subrange (deNone..deNoConnec...
	Table 16.1: TDialError values

	Dialing status
	The Event parameter to OnDialStatus is of type TDialingStatus, which is a subrange (dsNone..dsCle...
	Table 16.2: TDialingStatus values

	TAP paging status
	During the course of a TAP Page transmission, the TAP server returns several codes indicating the...
	The Event parameter to OnTAPStatus is of an enumerated type (TTAPStatus) that indicates the detec...
	Table 16.3: TTAPStatus values

	Hierarchy
	TComponent (VCL)
	uTApdBaseComponent (OOMisc) 8
	v TApdAbstractPager (AdPager) 839
	TApdCustomModemPager (AdPager)
	TApdTAPPager (AdPager)


	Properties
	Methods
	Events
	Reference Section
	AbortNoConnect property
	property AbortNoConnect : Boolean

	Default: adpgDefAbortNoConnect
	Defines what happens when the connection to a paging terminal number cannot be made after the def...
	If True, the paging process ends and generates an OnDialStatus event with dsCancelling. If False,...
	See also: DialAttempts, OnDialStatus


	BlindDial property
	property BlindDial : Boolean

	Default: adpgDefBlindDial
	Allows a page to be sent regardless of whether the modem detects a dial tone.
	If BlindDial is True, a different initialization sequence is sent to the modem before a page is s...

	CancelCall method
	procedure CancelCall;
	Cancels the current phone call being sent.
	TApdTAPPager sends the TAP “Cancel” command to the remote TAP server before proceeding with shut ...
	The following example shows how to cancel a page:
	procedure TForm1.Button1Click(Sender : TObject);
	begin
	ApdTAPPager1.CancelCall;
	end;
	See also: OnDialStatus, OnDialError



	DialAttempt property
	property DialAttempt : Word

	Indicates the number of times the current paging server number has been dialed.
	If the dialed number is busy, TApdTAPPager waits briefly and calls the number again. It tries up ...
	See also: DialAttempts, DialRetryWait


	DialAttempts property
	property DialAttempts : Word

	Default: adpgDefDialAttempts
	Determines the number of times to automatically dial a paging server number.
	This is the number of times a page is attempted, it is not the number of retries. When DialAttemp...
	See also: DialAttempt, DialRetryWait


	DialPrefix property
	property DialPrefix : TModemString
	TModemString = string[40];

	An optional dial prefix.
	DialPrefix specifies an optional dial prefix that is inserted in the dial command between “ATDT” ...
	Do not include “ATD” or a ‘T’ or ‘P’ tone/pulse modifier in the dial prefix. “ATD” is automatical...
	See also: Send, ToneDial


	DialRetryWait property
	property DialRetryWait : Word

	Default: adpgDefDialRetryWait
	The number of seconds to wait after a busy signal before trying the number again.
	After encountering a busy signal, TApdTAPPager checks to see if it should try this number again b...
	If no more dialing attempts are required, TApdTAPPager does not wait, but immediately progresses ...
	See also: DialAttempt, DialAttempts


	DialStatusMsg method
	function DialStatusMsg(Status : TDialingCondition) : string;

	Returns an English string for a call progress status or error code.
	This routine is intended primarily for use in calling status routines. It returns a status string...
	The returned string is never longer than MaxMessageLen (80) characters.

	DialWait property
	property DialWait : Word

	Default: adpgDefDialWait
	The number of seconds to wait for a connection after dialing the number.
	The default is 60 seconds.

	Disconnect method
	procedure Disconnect;

	Sends the TAP “logout” code to the paging server.
	ExitOnError property
	property ExitOnError : Boolean

	Default: adpgDefExitOnError
	Determines what happens when an error occurs during an attempt to send a page.
	If ExitOnError is True, no more attempts are made to send the page, regardless of the status of D...
	See also: AbortNoConnect, DialAttempts


	MaxMessageLength property
	property MaxMessageLength : Integer

	Default: MAX_MSG_LEN (80)
	Defines a maximum length for message blocks sent to the paging server.
	The TAP specification permits blocks of up to 256 characters (including all delimiters, which red...
	Also, some TAP paging servers will not allow a single message to a single pager to exceed 256 cha...

	Message property
	property Message : TStrings

	Contains the text of the alphanumeric message to be sent as a page.
	See UseEscapes on page 854 for how to embed control characters inside TAP messages.

	ModemInit property
	property ModemInit : TModemString
	TModemString = string[40];

	A custom modem initialization string.
	If you assign a custom modem initialization string to ModemInit, TApdTAPPager always sends this s...
	The string should not contain an “AT” prefix or a trailing carriage return.
	See also: Send


	OnDialError event
	property OnDialError : TDialErrorEvent
	TDialErrorEvent = procedure(
	Sender : TObject; Error : TDialError) of object;
	TDialingCondition = (dsNone, dsOffHook, dsDialing, dsRinging,
	dsWaitForConnect, dsConnected, dsWaitingToRedial, dsRedialing,
	dsMsgNotSent, dsCancelling, dsDisconnect, dsCleanup, deNone,
	deNoDialTone, deLineBusy, deNoConnection);
	TDialError = deNone..deNoConnection;

	Defines an event handler that is called when an error occurs in the dialing procedure.
	Sender is the pager component that generated the error. Error is a TDialError value number indica...
	See also: OnDialStatus


	OnDialStatus event
	property OnDialStatus : TDialStatusEvent
	TDialStatusEvent = procedure(
	Sender : TObject; Event : TDialingStatus) of object;
	TDialingCondition = (dsNone, dsOffHook, dsDialing, dsRinging,
	dsWaitForConnect, dsConnected, dsWaitingToRedial, dsRedialing,
	dsMsgNotSent, dsCancelling, dsDisconnect, dsCleanup, deNone,
	deNoDialTone, deLineBusy, deNoConnection);
	TDialingStatus = dsNone..dsCleanup;

	Defines an event handler that is called regularly during a page call.
	This event is generated after the completion of each major operation (e.g., going off hook, diali...
	Sender is the pager component that is in progress. Event is a value of TDialingStatus type that i...

	OnTAPFinish event
	property OnTAPFinish : TNotifyEvent
	Defines an event handler that is called when a TAP page operation completes.
	The OnTAPFinish event occurs when the TApdTAPPager component has received a connection terminatio...
	To determine the success vs. failure of a page attempt, use the OnPageStatus event.
	See also: OnTAPStatus



	OnTAPStatus event
	property OnTAPStatus : TTAPStatusEvent
	TTAPStatus = (psNone, psLoginPrompt, psLoggedIn, psLoginErr,
	psLoginFail, psMsgOkToSend, psSendingMsg, psMsgAck, psMsgNak,
	psMsgRs, psMsgCompleted, psDone);
	TTAPStatusEvent = procedure(
	Sender : TObject; Event : TTapStatus) of object;

	Defines an event handler that is called regularly during communication with the paging server.
	This event is generated after the completion of stages in connecting with the paging server (e.g....
	Sender is the pager component that is in progress. Event is of type TTAPStatusEvent which indicat...

	PagerLog property
	property PagerLog : TApdPagerLog

	An instance of a pager logging component.
	If PagerLog is nil (the default), the pager component does not perform automatic logging. You can...
	If you create an instance of (or a descendant of) a TApdPagerLog component (see page 862), and as...

	PhoneNumber property
	property PhoneNumber : string

	Defines the phone number to be dialed to access the Alphanumeric Paging Server.
	The phone number is usually not the pager’s phone number. Set PhoneNumber to the number to dial p...
	PhoneNumber can be used with status and logging routines to return the phone number dialed for th...
	See also: DialPrefix, Send


	Port property
	property Port : TApdCustomComPort

	Determines the serial port used by the Modem Pager component.
	A properly initialized comport component must be assigned to this property before sending pages. ...
	ApdComPort1.DataBits := 7;
	ApdComPort1.StopBits := 1;
	ApdComPort1.Parity := pEven;
	ApdComPort1.Baud := 9600;
	These values are the most common requirements for TAP paging servers and should be changed only i...
	You can set these properties manually in code prior to sending a page. If you wish to make the ch...


	ReSend method
	procedure ReSend;

	Causes the pager component to attempt to resend the paging message.
	This is only effective when logged into the paging terminal.

	Send method
	procedure Send;

	Causes the paging component to dial the phone number specified in PhoneNumber.
	The number may be modified by DialPrefix. If it receives a successful answer, Send calls the prot...
	The following example shows how to send a simple page with the TApdTAPPager component:
	procedure TForm1.Button1Click(Sender : TObject);
	begin
	ApdTAPPager1.PhoneNumber := '555-1234';
	ApdTAPPager1.PagerID := '12345';
	ApdTAPPager1.Message.Add('Hi There!');
	ApdTAPPager1.Send;
	end;
	See also: DialPrefix, PhoneNumber


	TAPStatusMsg method
	function TAPStatusMsg(Status : TTAPStatus) : string;

	Returns an English string for a TAP status code.
	This routine is intended primarily for use in status monitoring routines. It returns a status str...
	The returned string is never longer than MaxMessageLen (80) characters.

	ToneDial property
	property ToneDial : Boolean

	Default: adpgDefToneDial
	Determines whether tone or pulse dialing is used for paging calls.
	If ToneDial is True (the default), tone dialing is used. Otherwise, pulse dialing is used. Settin...
	See also: DialPrefix


	UseEscapes property
	property UseEscapes : Boolean

	Default: False
	Determines whether or not the paging component scans the text of Message prior to sending and exp...
	If True, escapes are processed according to TAP 1.8. If False, escapes are stripped from the mess...
	Version 1.8 of the TAP specification allows for embedding control characters in pages by use of a...
	For example, Ctrl-H (ASCII #8, “BS”, or BackSpace) would be sent as #26‘H’; and the escape charac...
	TApdTAPPager allows such characters to be embedded in the Message property using the standard Bor...
	You may use ‘#’ style character constants with either decimal or hex numeric values; and you may ...
	Some paging terminals are not using the TAP 1.8 specification and don’t provide this mechanism. S...

	UseTapi property
	property UseTapi : Boolean

	Default: False
	UseTapi determines whether or not the Pager component uses TAPI (“Telephony API”) to present dial...
	This is desirable because it allows the user to pick the port/modem by installed name rather than...



	TApdSNPPPager Component
	TApdSNPPPager is an implementation of Internet based paging using the Simple Network Paging Proto...
	TApdSNPPPager implements the simplest form (“Level One”) of SNPP transaction, and automates sendi...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	v TApdAbstractPager (AdPager) 839
	TApdCustomINetPager (AdPager)
	TApdSNPPPager (AdPager)


	Properties
	Methods
	Events
	Reference Section
	CommDelay property
	property CommDelay : Integer

	Default: 1
	The number of seconds to insert between sending SNPP commands.
	CommDelay is intended to give the TApdSNPPPager component user some control if the SNPP server do...

	OnLogin property
	property OnLogin : TNotifyEvent

	Defines an event handler that is called when the TApdSNPPPager detects the ServerInitString.
	OnLogout event
	property OnLogout : TNotifyEvent
	Defines an event handler that is called when a SNPP page operation logs out of the paging server.
	The OnLogout event occurs when the TApdSNPPPager component has sent the SNPP “QUIT” command and r...
	To determine the success vs. failure of a page attempt, monitor the OnSNPPError and OnSNPPSuccess...
	See also: OnLogin, OnSNPPError, OnSNPPSuccess



	OnSNPPError property
	property OnSNPPError : TSNPPMessage
	TSNPPMessage = procedure(
	Sender : TObject; Code : Integer; Msg : string) of object;

	Defines an event handler that is called whenever TApdSNPPPager detects a “400” or “500- Level” er...
	Sender is the TApdSNPPPager component generating the event. Code is the numeric code of the error...

	OnSNPPSuccess property
	property OnSNPPSuccess : TSNPPMessage
	TSNPPMessage = procedure(
	Sender : TObject; Code : Integer; Msg : string) of object;

	Defines an event handler that is fired whenever TApdSNPPPager detects a “200-Level” success/proce...
	Sender is the TApdSNPPPager component generating the event. Code is the numeric code of the succe...
	TApdSNPPPager overrides the TApdAbstractPager.Send method to implement the required behaviors for...

	Port property
	property Port : TApdWinsockPort

	Determines the Winsock communications port used by the TapdCustomINet pager component.
	A properly initialized Winsock Port component must be assigned to this property before pages can ...

	Send method
	procedure Send;

	Causes TApdSNPPPager to connect and send a page.
	When you call Send, the TApdSNPPPager component instructs its associated TApdWinsockPort componen...
	TApdSNPPPager waits for the response defined in the ServerInitString property and then begins an ...
	The following example shows how to send a simple page with the TApdSNPPager component:
	procedure TForm1.Button1Click(Sender : TObject);
	begin
	ApdWinsockPort1.WsAddress := 'snpp.myservice.com';
	ApdWinsockPort1.WsPort := '9999';
	ApdSNPPPager1.PagerID := '12345';
	ApdSNPPPager1.Message.Add('Hi There!');
	ApdSNPPPager1.Send;
	end;


	ServerDataInput property
	property ServerDataInput : string

	Default: SNPP_RESP_DATAINPUT (“3??”)
	Defines the string that indicates the server is ready for multi-line input.
	The ServerDataInput property is the string that the user wishes TApdSNPPPager to watch for to ind...
	The string may contain wildcards in the form of question marks to indicate that any character (us...

	ServerDoneString property
	property ServerDoneString : string

	Default: “221”
	Defines the string that indicates server log-out.
	The ServerDoneString property is the string that the user wishes TApdSNPPPager to watch for to in...
	The string may contain wildcards in the form of question marks to indicate that any character (us...

	ServerInitString property
	property ServerInitString : string

	Default: “220”
	Defines the string indicating successful login.
	The ServerInitString property is the string that the user wishes TApdSNPPPager to watch for to in...
	The string may contain wildcards in the form of question marks to indicate that any character (us...

	ServerResponseFailContinue property
	property ServerResponseFailContinue : string

	Default: SNPP_RESP_FAILCONTINUE (“5??”)
	Defines the string that indicates a non-fatal error in the paging transaction.
	The ServerResponseFailContinue property is the string that the user wishes TApdSNPPPager to watch...
	The string may contain wildcards in the form of question marks to indicate that any character (us...

	ServerResponseFailTerminate property
	property ServerResponseFailTerminate : string

	Default: SNPP_RESP_FAILTERMINATE (“4??”)
	Defines the string that indicates a fatal error in the paging transaction.
	The ServerResponseFailTerminate property is the string that the user wishes TApdSNPPPager to watc...
	These responses may vary among servers, but they are generally prefixed by a code in the range 40...

	ServerSuccessString property
	property ServerSuccessString : string

	Default: SNPP_RESP_SUCCESS (“25?”)
	Defines the string that indicates a processing of a paging command.
	The ServerSuccessString property is the string that the user wishes TApdSNPPPager to watch for to...
	The string may contain wildcards in the form of question marks to indicate that any character (us...



	TApdPagerLog Component
	TApdPagerLog is a small class that can be associated with a TApdAbstractPager descendant (e.g., T...
	TApdPagerLog creates or appends to a text file whose name is given by the PageHistoryName propert...
	Following is a sample of the text that might be created by a TApdPagerLog attached to a TApdSNPPP...
	09/09/1999 17:03:58 TAP page to 123456 at (800)555-1234 Started
	09/09/1999 17:05:05 TAP page to 123456 at (800)555-1234 Completed
	09/09/1999 17:08:42 TAP page to 123123 at (800)555-1122 Started
	09/09/1999 17:09:51 TAP page to 123123 at (800)555-1122 Completed
	09/09/1999 17:14:20 SNPP page to 1261261 at
	snpp.myservice.com:2222 Started
	09/09/1999 17:14:25 SNPP page to 1269694 at
	snpp.myservice.com:2222 Completed
	09/09/1999 17:27:17 TAP page to 112233 at (800)555-9999 Started
	09/09/1999 17:27:32 TAP page to 112233 at (800)555-9999 Failed -
	Reason: Cancel Requested
	09/09/1999 17:27:17 TAP page to 2222211 at (800)555-9999 Started
	09/09/1999 17:27:32 TAP page to 2222211 at (800)555-9999 Failed -
	Reason: Line Busy
	09/09/1999 18:06:52 SNPP page to 1269694 at snpp.pageinc.com:9797
	Started
	09/09/1999 18:07:01 SNPP page to 1269694 at snpp.pageinc.com:9797
	Failed - Reason: Cancel Requested
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMisc) 8
	TApdPagerLog (AdPager)


	Properties
	Methods
	Reference Section
	HistoryName property
	property HistoryName : string

	Default: adpgDefPagerHistoryName (“APROPAGR.HIS”)
	Determines the name of the file used to store the protocol log.
	You should generally set the value of HistoryName before calling the pager component’s Send metho...

	Pager property
	property Pager : TApdAbstractPager

	The pager component that is using the log component.
	Pager is automatically initialized when the PagerLog property of the owning pager component is se...

	UpdateLog virtual method
	procedure UpdateLog(LogStr : string); virtual;

	Called for each page logging event.
	You may call this method with your own strings to add items to the log at any time.



	TApdGSMPhone Component
	The TApdGSMPhone component provides access to cellular phones and other GSM compliant devices. On...
	Async Professional and SMS messaging
	The TApdGSMPhone component encroaches upon a technology that is often misunderstood. GSM is the G...
	One of the features that make GSM popular is the text messaging that it provides. When people thi...
	There are several cellular protocols being used around the world. GSM is used primarily in Europe...
	The TApdGSMPhone component requires a GSM capable device that support text-mode AT commands. This...

	GSM—more than paging
	The TApdGSMPhone component supports sending and receiving SMS messages through the GSM device. It...
	The TApdSMSMessage class
	When the TApdGSMPhone.Connect method is called, the cell phone is initialized to support text-mod...
	Table 16.4: TApdSMSMessage class properties
	The TApdSMSStatus type is an enumeration of the possible status flags for an SMS message. The Sta...

	Table 16.5: TApdSMSStatus enumeration

	The TApdMessageStore class
	The cell phone maintains a list of messages in a message store. The TApdGSMPhone component provid...
	When adding messages to the MessageStore property, the message is not sent automatically, it is m...
	The TApdMessageStore class is a TStringList descendent. Most public methods are overridden to man...


	Protocol implementation
	The GSM Technical Specification (GTS) 07.05 version 5.1.0 dated December 1996 defines three inter...
	Binary protocol (Block mode).
	Character-based interface using “AT” commands (Text mode).
	Character-based interface with hex-encoded binary transfer of message blocks (PDU mode).

	The TApdGSMPhone component implements the Text-mode interface. In text mode, the TApdGSMPhone wil...
	Table 16.6: Supported GSM AT commands
	The QuickConnect property determines whether or not the TApdGSMPhone component will automatically...


	Using the TApdGSMPhone component
	The TApdGSMPhone component is designed to be functional and easy to use. The first example will d...
	Sending a single SMS message
	Create a new project; drop a TApdComPort and TApdGSMPhone component onto the form. Set the ComNum...
	procedure TForm1.Button1Click(Sender: TObject);
	begin
	{ set the message properties }
	ApdGSMPhone1.SMSAddress := Edit1.Text;
	ApdGSMPhone1.SMSMessage := Edit2.Text;
	{ tell the component not to synchronize the message store }
	ApdGSMPhone1.QuickConnect := True;
	{ send the message }
	ApdGSMPhone1.SendMessage;
	end;
	When the message has been sent to the phone, the OnSessionFinish event will be generated. The Err...

	procedure TForm1.ApdGSMPhone1SessionFinish(Pager: TApdCustomGSMPhone;
	ErrorCode: Integer);
	begin
	ShowMessage('Message status: ' + ErrorMsg(ErrorCode));
	end;
	Compile and run your project. Enter a destination address in the first edit control and a short m...
	To expand upon this example, you can send multiple messages in the same session. To do this, add ...


	Displaying the phone’s message store
	This example demonstrates how to connect to your GSM compliant cell phone, and retrieve and displ...
	procedure TForm1.Button1Click(Sender: TObject);
	begin
	{ connect to phone and synchronize the message store }
	ApdGSMPhone1.QuickConnect := False;
	ApdGSMPhone1.Connect;
	end;
	If the QuickConnect property is False, the MessageStore property of the TApdGSMPhone component wi...

	procedure TForm1.ApdGSMPhone1GSMComplete(
	Pager: TApdCustomGSMPhone; State: TApdGSMStates;
	ErrorCode: Integer);
	begin
	if State = gsListAll then
	ListBox1.Items.AddStrings(Pager.MessageStore);
	end;
	In this example we will be displaying the details of the message when the list box is double clic...

	procedure TForm1.ListBox1DblClick(Sender: TObject);
	var
	I : Integer;
	Msg : TApdSMSMessage;
	begin
	if ListBox1.ItemIndex > 0 then begin
	I := ListBox1.ItemIndex;
	Msg := ApdGSMPhone1.MessageStore.Messages[I];
	edtAddress.Text := Msg.Address;
	edtTimestamp.Text := Msg.TimeStampStr;
	edtStatus.Text := ApdGSMPhone1.StatusToStr(Msg.Status);
	MemoMessage.Text := Msg.Message;
	end;
	end;




	TApdSMSMessage Class
	The TApdGSMPhone component uses the TApdSMSMessage class to defines SMS messages contained in the...
	Hierarchy
	TObject (VCL)
	TApdSMSMessage (AdGSM)


	Properties
	Reference Section
	Address property
	property Address : string

	Contains the SMS address of the message.
	Address is the SMS address of the SMS message. For received messages, Address is the address of t...

	Message property
	property Message : string

	The SMS message text.
	Message is the text of the SMS message. SMS text messages are usually limited to 160 characters, ...

	MessageIndex property
	property MessageIndex : Integer

	The position in the phone’s message store.
	The MessageIndex property reflects the position of the message in the phone’s message store. The ...

	Status property
	property Status : TApdSMSStatus
	TApdSMSStatus = (ssUnread, ssRead, ssUnsent, ssSent, ssAll);

	Status determines the status of the message.
	Status is the phone’s flag for the message. Status can be one of the following:
	The StatusToString method of the TApdGSMPhone component can convert a TApdSMSStatus value to a st...

	TimeStamp property
	property TimeStamp : TDateTime

	TimeStamp is a TDateTime indicating the timestamp of the message.
	TimeStamp is the timestamp for the message. The SMS timestamp is usually inserted into the messag...
	See also: TimeStampStr


	TimeStampStr property
	property TimeStampStr : string

	A string containing the message timestamp.
	The GSM specification defines a fairly specific format to indicate the timestamp of the message. ...
	See also: TimeStamp




	TApdMessageStore Class
	The TApdGSMPhone maintains a list of messages which reflects the message store on the cell phone....
	Hierarchy
	TStringList (VCL)
	TApdMessageStore (AdGSM)


	Properties
	Methods
	Reference Section
	AddMessage method
	function AddMessage(const Dest, Msg : string) : Integer;

	Adds an SMS message to the message store.
	Use the AddMessage method to add an SMS message to the message store. If the TApdGSMPhone is conn...
	Dest is the destination address of the message. Msg is the text of the message.

	Capacity read-only, run-time property
	property Capacity : Integer

	Indicates the message store capacity.
	Different cell phones will have internal message stores with different capacities. The Capacity p...

	Clear method
	procedure Clear;

	Deletes all messages from the message store.
	Use the Clear method to delete all messages from the TApdMessageStore and the cell phone.

	Delete method
	procedure Delete(Index: Integer);

	Deletes a single message from the TApdMessageStore and the cell phone.
	Delete is an indexed property that deletes the specified message from both the cell phone’s messa...

	Messages run-time property
	property Messages[Index: Integer] : TApdSMSMessage

	Contains the messages stored in the TApdMessageStore.
	The Messages property of the TApdMessageStore class is an indexed property that provides access t...



	TApdGSMPhone Component
	TApdGSMPhone forms the foundation for accessing cell phones or other GSM devices and provides a s...
	Hierarchy
	TComponent (VCL)
	u TApdBaseComponent (OOMISC) 8
	TApdCustomGSMPhone (AdGSM)
	TApdGSMPhone (AdGSM)


	Properties
	Methods
	Events
	Reference Section
	ComPort property
	property ComPort : TApdCustomComPort

	Determines the serial port used by the TApdGSMPhone component.
	A comport component must be assigned to this property before connecting to the phone with the Aut...

	Connect method
	procedure Connect;

	Connects to the cell phone or GSM device.
	The Connect method configures the device, verifies that it supports the GSM AT command set, and s...
	Once Connect completes, the OnGSMComplete event will be generated. If QuickConnect is False, the ...
	See also: Connected, OnGSMComplete, QuickConnect


	Connected property
	property Connected : Boolean

	Determines whether a connection to the phone has been made or not.
	Connected is True when a successful link to the device has been made, and False when not linked t...
	See also: Connect


	ErrorCode property
	property ErrorCode : Integer

	The result of the last operation
	ErrorCode contains the result of the last operation. ErrorCode can be one of the following values:

	GSMState property
	property GSMState : TApdGSMStates
	TApdGSMStates = (
	gsNone, gsConfig, gsSendAll, gsListAll, gsSend, gsWrite)

	The state the GSM Phone is in at that moment.
	The GSMStates are used internally primarily to determine that state of the GSM state machine. GSM...
	The following table shows the TApdGSMStates values:

	MessageStore property
	property MessageStore : TApdMessageStore

	Contains a list of SMS messages.
	The MessageStore property contains a list of SMS messages. The MessageStore property is a TApdMes...

	NotifyOnNewMessage property
	property NotifyOnNewMessage : Boolean

	Determines whether notification is provided for new messages.
	The GSM specification permits initializing the device to provide notification when new messages a...
	When a new message is received, and the device has been properly configured, the OnNewMessage eve...
	See also: OnNewMessage


	OnGSMComplete event
	property OnGSMComplete : TApdGSMCompleteEvent
	TApdGSMComleteEvent = procedure(Pager : TApdCustomGSMPhone;
	State : TApdGSMStates; ErrorCode : Integer) of object;

	Defines an event handler that is called when the GSM operation is complete.
	A GSM operation is started when the Connect, SendAllMessages, SendMessage, and Synchronize method...
	Pager is the TApdCustomGSMPhone component that generated the event. State is a TApdGSMState that ...
	See also: ErrorCode, GSMState


	OnNewMessage event
	property OnNewMessage : TApdGSMNewMessageEvent
	TApdGSMNewMessageEvent = procedure(Pager : TApdCustomGSMPhone;
	Index : Integer; Message : string) of object;

	Defines an event handler that is called when there is a new SMS message in the memory store.
	If the NotifyOnNewMessage property is True, and the device supports it, the device will send noti...
	Pager is the TApdCustomGSMPhone component that generated the event. Index is the position in the ...
	See also: MessageStore, NotifyOnNewMessage


	OnNextMessage event
	property OnNextMessage : TApdGSMNextMessageEvent
	TApdGSMNextMessageEvent = procedure(Pager : TApdCustomGSMPhone;
	Index : Integer; NextMessageReady : Boolean) of object;

	Defines an event handler that returns the next message to send.
	The TApdGSMPhone component supports sending multiple SMS messages in a single operation. When the...
	If another message is ready to be sent, change the SMSAddress and SMSMessage properties to reflec...
	ErrorCode contains the result of the last message sent.
	See also: OnGSMComplete, SendMessage, SMSAddress, SMSMessage


	QuickConnect property
	property QuickConnect : Boolean
	Default: False


	This property determines whether to connect without synchronizing the phone.
	When the Connect method of the TApdGSMPhone component is called, the device is initialized and th...
	Set QuickConnect to True if your device does not support an internal message store, or if you do ...
	See also: Connect


	SendAllMessages method
	procedure SendAllMessages;

	This procedure sends all the SMS messages in the memory store.
	SendAllMessages iterates through all of the messages contained in the MessageStore property and s...

	SendMessage method
	procedure SendMessage;

	This routine will send a message without placing the message in memory.
	This method is used to send a single message, or to start sending a series of messages, without a...
	The OnGSMComplete event handler will be generated once SendMessage completes sending messages.
	See also: OnGSMComplete, OnNextMessage, SMSAddress, SMSMessage


	SMSAddress property
	property SMSAddress : string

	The SMS address of the recipient for an SMS message.
	The SMSAddress property determines where the SMS message will be sent. This property is used with...
	The SMSAddress and SMSMessage properties, and the SendMessage method, do not access the message s...
	See also: OnNextMessage, SendMessage, SMSMessage


	SMSMessage property
	property SMSMessage : string

	The SMS message.
	The SMSMessage property determines the message to send. This property is used with the SendMessag...
	The SMSAddress and SMSMessage properties, and the SendMessage method, do not access the message s...
	See also: OnNextMessage, SendMessage, SMSAddress


	Synchronize method
	procedure Synchronize;

	This routine will synchronize the message store of the GSM device.
	The Synchronize method is used to synchronize the messages contained in the MessageStore property...
	See also: Connect, MessageStore, QuickConnect





	Chapter 17: Low-level Facilities
	The routines described in this chapter come from a few units that Async Professional uses interna...
	The first section documents procedures and functions that manage event timers. These non-object-o...
	The second section documents a few functions that return strings for numeric codes: serial port n...
	The third section documents the IsPortAvailable method, which can be used to determine whether a ...
	Timers
	The OoMisc unit provides the timer routines used internally by Async Professional. You might find...
	OoMisc’s basic time unit is the BIOS clock tick. One clock tick is approximately 55 milliseconds....
	Unless otherwise specified, all Async Professional routines that have time-out parameters— the Ti...
	The basic timer record is called an EventTimer. When an EventTimer is initialized it is passed th...
	Here is an example program that uses some timer functions:
	uses OoMisc;

	procedure TForm1.Button1Click(Sender: TObject);
	var
	ET: EventTimer;
	begin
	Aborted := False; { Global Boolean Flag }
	Label2.Caption := '';
	NewTimer(ET, Secs2Ticks(60));
	repeat
	Label1.Caption := Format(
	'Elapsed ticks: %d Remaining ticks: %d',
	[ElapsedTime(ET), RemainingTime(ET)]);
	Application.ProcessMessages;
	until Abort or TimerExpired(ET);
	end;

	procedure TForm1.Button2Click(Sender: TObject);
	begin
	Aborted := True;
	Label2.Caption := 'Aborted';
	end;
	This example uses a simple WinCrt-based interface because the EventTimer is user-interface indepe...
	An EventTimer is initialized by calling NewTimer, which is passed an EventTimer and the number of...
	This program loops continuously, displaying the elapsed ticks and the remaining ticks, until the ...
	It is perfectly legal to use the ElapsedTime routines even after a timer has expired. If the exam...
	A timer is good for 24 hours at most. If you reference a timer after 24 hours, the results are mo...

	Routines
	Reference Section
	DelayTicks
	function DelayTicks(Ticks: LongInt; Yield : Bool) : LongInt;

	Delays for a specified number of clock ticks.
	If Yield is False, DelayTicks does not yield to other applications and returns control only after...
	If Yield is True, DelayTicks yields to other applications and to the owning application. The retu...
	Even with Yield set to True, DelayTicks should not be used to delay for periods of time longer th...

	ElapsedTime
	function ElapsedTime(ET : EventTimer) : LongInt;
	EventTimer = record
	StartTicks : LongInt; {Tick count when timer was initialized}
	ExpireTicks : LongInt; {Tick count when timer will expire}
	end;

	Returns the elapsed time, in ticks, for this timer.
	This routine returns the number of ticks that have elapsed since NewTimer was called to initializ...
	See also: ElapsedTimeInSecs, NewTimer

	ElapsedTimeInSecs
	function ElapsedTimeInSecs(ET : EventTimer) : LongInt;

	Returns the elapsed time, in seconds, for this timer.
	This routine returns the same result as ElapsedTime, but converted to seconds. Partial seconds ar...
	The following example shows how to use an EventTimer within a simple WinCrt application. Async Pr...
	This example displays the elapsed time until a key is pressed or 20 seconds have elapsed:
	var
	ET : EventTimer;
	begin
	WriteLn('You have 20 seconds to press a key:');
	NewTimerSecs(ET, 20);
	repeat
	Write(^M, ElapsedTimeInSecs(ET));
	until KeyPressed or TimerExpired(ET);
	WriteLn;
	if not KeyPressed then WriteLn('Time is up.');
	end.
	See also: ElapsedTime, NewTimer


	NewTimer
	procedure NewTimer(var ET : EventTimer; Ticks : LongInt);

	Initializes a timer that will expire in the specified number of clock ticks.
	This routine initializes an EventTimer record, which is used to measure elapsed time or to schedu...
	The following example initializes a timer and then loops until the timer expires in 20 seconds.
	var
	ET : EventTimer;
	...
	NewTimer(ET, Secs2Ticks(20));
	repeat
	...
	until TimerExpired(ET);
	See also: ElapsedTime, NewTimerSecs, RemainingTime, TimerExpired


	NewTimerSecs
	procedure NewTimerSecs(var ET : EventTimer; Secs : LongInt);

	Initializes a timer that will expire in the specified number of seconds.
	This routine is identical to NewTimer except that the time-out period is expressed in terms of se...
	See also: ElapsedTime, NewTimer, RemainingTimeInSecs, TimerExpired

	RemainingTime
	function RemainingTime(ET : EventTimer) : LongInt;

	Returns the amount of time remaining, in clock ticks, until the specified timer expires.
	If the timer has already expired, RemainingTime returns zero.
	See also: ElapsedTime, RemainingTimeInSecs, TimerExpired

	RemainingTimeInSecs
	function RemainingTimeInSecs(ET : EventTimer) : LongInt;

	Returns the remaining time, in seconds, for the specified timer.
	Partial seconds are truncated. If the timer has already expired, RemainingTimeInSecs returns zero.
	See also: ElapsedTime, RemainingTime, TimerExpired

	Secs2Ticks
	function Secs2Ticks(Secs : LongInt) : LongInt;

	Converts seconds to clock ticks.
	The conversion uses long integer arithmetic to do the conversion, which does not throw away any a...
	See also: Ticks2Secs

	Ticks2Secs
	function Ticks2Secs(Ticks : LongInt) : LongInt;

	Converts clock ticks to seconds.
	This routine uses long integer arithmetic and rounds to the nearest second.
	The following example gets the elapsed time in ticks from a timer and displays it to the nearest ...
	var
	ET : EventTimer;
	...
	WriteLn(Ticks2Secs(ElapsedTime(ET)));
	See also: Secs2Ticks


	TimerExpired
	function TimerExpired(ET : EventTimer) : Bool;

	Returns True if the specified timer has expired.
	The timer expires when the time originally passed to NewTimer or NewTimerSecs has elapsed. A time...
	See also: ElapsedTime, NewTimer, NewTimerSecs



	Name Routines
	Async Professional provides several routines that are useful in message boxes, status dialogs, an...
	Routines
	Reference Section
	ComName
	function ComName(const ComNumber : Word) : string;

	Returns the name of a serial port.
	ComName simply appends ComNumber to “COM.” For example, if ComNumber is 3, ComName returns “COM3.”
	ComName is interfaced by the AdPort unit.

	ErrorMsg
	function ErrorMsg(const ErrorCode : SmallInt) : string;

	Returns an English string describing an error code.
	These strings are stored in a string table in APW.RES, which is linked into the application. The ...
	The error code you pass to ErrorMsg is usually obtained from the ErrorCode property of any except...
	The error code can also be obtained from the TApdProtocol component’s ProtocolError property when...
	A complete list of error codes, exceptions, and error messages is given in “Error Handling and Ex...
	ErrorMsg is interfaced by the AdExcept unit.
	The following example shows an exception handler that takes specific action for some error codes ...
	try
	ApdComPort.Open := True;
	...work with comport component
	except
	on E : EAPDException do
	case E.ErrorCode of
	...handle specific errors
	else
	{show error message for all errors not handled above}
	ShowMessage(ErrorMsg(E.ErrorCode));
	end;
	end;


	IsPortAvailable
	function IsPortAvailable(ComNum : Cardinal) : Boolean;

	Determines whether a serial port is valid or not.
	The IsPortAvailable method will return true if a given serial port is valid, or false if the seri...
	Serial port validity is determined by two typed constants: ApdShowPortsInUse and ApdUseDispatcher...
	ApdShowPortsInUse defaults to true. When ApdShowPortsInUse is true, IsPortAvailable will consider...
	ApdUseDispatcherForAvail also defaults to true. This typed constant determines whether the validi...
	The serial device selection dialog, displayed when the TApdComPort.ComNumber = 0 and TApdComPort....
	The following example will populate a TListBox with a list of all ports that are available and no...
	uses
	AdSelCom, AdPort;
	procedure TForm1.Button1Click(Sender: TObject);
	var
	I : Integer;
	begin
	ApdShowPortsInUse := False;
	for I := 1 to 50 do
	if IsPortAvailable(I) then
	ListBox1.Items.Add(ComName(I) + ' is available');
	end;


	ProtocolName
	function ProtocolName(const ProtocolType : TProtocolType) : string;
	TProtocolType = (
	ptNoProtocol, ptXmodem, ptXmodemCRC, ptXmodem1K, ptXmodem1KG,
	ptYmodem, ptYmodemG, ptZmodem, ptKermit, ptAscii, ptBPlus);

	Returns the name of a protocol.
	The ProtocolType property of a TApdProtocol component can be passed to this function to return th...
	ProtocolName is interfaced by the AdProtcl unit.
	See also: TApdProtocol.ProtocolType




	Chapter 18: Appendices
	This chapter contains a discussion of error handling, a description of the Async Professional con...
	Error Handling and Exception Classes
	Async Professional takes a consistent approach to error handling throughout the library. It uses ...
	In two particular cases, exceptions are not a sensible way of reporting errors. The first case is...
	In both of these cases, errors are reported by using status codes that the application can check....
	All Async Professional exceptions descend from a class named EAPDException, itself descended from...
	Further descended from EAPDException are eight exception classes that encompass error groups as s...
	Table 18.1: Exception class descendants of EAPDException (continued)
	Additional exception classes derived from these groups correspond to particular error conditions ...

	Table 18.2: Additional Async Professional exception classes (continued)
	As you can see, there is largely a one-to-one correspondence between exceptions and error codes.
	In some cases, Async Professional catches and either handles or re-raises standard VCL exceptions...
	The ErrorMsg function of Async Professional (see page 895) can be used to generate an English-lan...
	The ErrorMsg function of Async Professional (see page 895) can be used to generate an English-lan...
	The Table 18.3 shows the default string for each error code. These strings provide additional exp...

	Table 18.3: Error code default strings (continued)
	The “ie_” designations refer to error codes returned by the Windows communications API.
	All of the Async Professional error codes are defined in numeric order in the source file OOMISC....


	Conditional Defines
	Before using Async Professional, you need to understand and perhaps modify various conditional de...
	After modifying AWDEFINE.INC, save it to disk and use the compiler to rebuild all affected files....
	1. Delete all *.OBJ, *.HPP, and *.DCU files in the \ASYNCPRO directory. Be careful not to delete ...
	2. From the C++Builder main menu choose Component|Rebuild Library.
	3. After modifying AWDEFINE.INC, save it to disk and use the compiler to rebuild all affected files.
	The following paragraphs describe the options that can be controlled through AWDEFINE.INC. The de...
	{.$DEFINE EnableTapi16}
	This define enables TAPI components in 16-bit applications. Typically TAPI can’t be used in 16-bi...
	{.$DEFINE Prot16OpenStrings}
	This define activates an Async Professional 1.0 behavior for Async Professional 2.0 programs. Whe...


	Glossary
	This glossary contains a combination of industry accepted definitions and, where noted, definitio...
	ANSI
	American National Standards Institute. In Async Professional, references to ANSI usually refer to...
	asynchronous serial communication
	Serially transmitted data in which each character is surrounded by start and stop bits. That is, ...

	AT commands
	An industry-standard set of commands for controlling modems introduced with the Hayes SmartModem.

	baud rate
	A measure of modulation rate, not communication speed. Technically, baud rate means the number of...

	Bell 103
	The AT&T modem standard for asynchronous communication at speeds up to 300 bps.

	Bell 212A
	The AT&T modem standard for asynchronous communication at speeds up to 1200 bps on dial-up teleph...

	bps
	Bits per second, a measure of raw communications speed, which quantifies how fast the bits within...

	break
	A signal that can be transmitted or received over serial communication links. A break is not a ch...

	client
	An application that connects to a server for the purpose of exchanging of data.

	CCITT
	Comité Consultatif International de Télégraphique et Téléphonique (International Telegraph and Te...

	character-time
	This term is used to mean the amount of time between the start bit and stop bit of a serial byte ...

	checksum
	A byte, or bytes, appended to the end of a block of data that is used to check the integrity of t...

	comport
	In this manual, refers to a TApdComport component, or a component derived from TApdCustomComport ...

	COMM.DRV
	The Windows device driver that performs all of the low-level work required to send and receive us...

	CRC
	A byte, or bytes, appended to the end of a block of data that is used to check the integrity of t...

	CTS
	Clear to send. This is a modem control signal that is raised by the modem when it is ready to acc...

	data bits
	The bits in a serial stream of data that hold data as opposed to control information. The number ...

	data compression
	Refers to the ability of some modems to compress data before passing it to the remote modem. Ther...

	DCB
	Device control block. A structure passed from a Windows program to the communications driver. It ...

	DCD
	Data carrier detect. A signal provided by a modem to indicate that it is currently connected to a...

	DCE
	Data communications equipment. Generally, this refers to a modem.

	device layer
	This layer of Async Professional provides the physical connection between the software and the ha...

	DNS
	A remote database that contains a list of host names and their corresponding IP addresses.

	dot notation
	A way of specifying an IP address (e.g., 165.212.210.12).

	DSR
	Data set ready. This is a modem control input signal to a UART that tells the UART that the remot...

	DTE
	Data terminal equipment. Generally, this refers to a terminal or a PC emulating a terminal.

	DTR
	Data terminal ready. This is a modem control signal raised by a UART to notify the remote (usuall...

	error correction
	Refers to the ability of some modems to check the integrity of data received from a remote modem....

	FIFO mode
	A mode of operation for 16550 UARTs that takes advantage of the UART’s first-in-first-out buffers.

	flow control
	A facility that allows either side of a serial communication link to request a temporary pause in...

	full duplex
	1. A mode of communication in which the receiving computer automatically echoes all data it recei...

	half duplex
	1. A mode of communication in which the receiving computer does not echo any data back to the tra...

	handshaking
	Refers to the initial transfers of data between two processes. Usually this term is used to descr...

	host name
	The text description of an IP address (e.g., joeb.turbopower.com).

	interface layer
	The layer of Async Professional that contains the majority of the applications programming interf...

	IP address
	The 32-bit address of a network computer. All IP addresses are unique.

	IRQ
	One of the lines on the PC or PS/2 bus that is used to request a hardware interrupt. Any device t...

	ITU-TSS
	International Telecommunications Union-Telecommunications Standardization Sector. A European comm...

	LAP M
	An error-correction protocol included with the most recent CCITT communications standard V.42.

	line error
	Refers to one of the following errors: UART overrun, parity error, or framing error. Such errors ...

	lookup
	An action that Winsock performs to retrieve the IP address for a host name, or to retrieve the po...

	MNP
	Microcom Networking Protocol. A communications protocol designed by Microcom, Inc. and placed in ...

	modem
	A device that facilitates serial communication over phone lines. The term is derived from the phr...

	network shared-modem pool
	A collection of modems in a network that are available to any PC in the network. In a typical sit...

	parity
	A bit that is used to check the integrity of a byte. The parity bit is set by the transmitter and...

	port (Winsock)
	A number from 0 to 32767 that, along with the IP address, is used to create a socket.

	protocol
	Generally, an agreed upon set of rules that both sides of a communications link follow. This term...

	remote device
	In Async Professional this term is used to describe what’s attached to your serial port. Since it...

	RI
	Ring indicator. A signal provided by the modem to indicate that a call is coming in (i.e., the ph...

	RS-232
	An EIA (Electronic Industries Association) standard that provides a physical description (voltage...

	RTS
	Request to send. This is a modem control signal that the UART uses to tell the modem that it is r...

	S-registers
	A register in a Hayes-compatible modem that stores configuration information. Lower numbered S-re...

	serial data
	Refers to data transmitted over a single wire where bits are represented as either high or low si...

	server
	An application that listens on a socket for client connection attempts.

	socket
	A Windows object that is created using a combination of an IP address and port number. A socket i...

	start bit
	The bit in a serial stream that indicates a data byte follows. This value cannot be changed; UART...

	stop bits
	The bits in a serial stream that indicate all data bits were sent. One or two stop bits can be us...

	streaming protocol
	A file transfer protocol that doesn’t require an acknowledgement for each block. Such protocols a...

	Telnet
	A network protocol designed to allow two network computers to communicate via a terminal screen.

	terminal emulator
	Software that interprets special sequences of characters as video control information (for settin...

	terminal
	A device (or software) that displays received data to a CRT and transmits keyboard characters to ...

	trigger
	An Async Professional term describing an event or condition noted by the internal dispatcher and ...

	UART
	An acronym for Universal Asynchronous Receiver Transmitter. This is the device (usually one integ...

	V.17
	CCITT 7200, 9600, 12000, and 14400 bps faxmodem standard.

	V.21
	CCITT 300 bps faxmodem standard.

	V.22
	CCITT 1200 bps modem standard.

	V.22bis
	CCITT 2400 bps modem standard.

	V.25bis
	CCITT communications command set. Frequently implemented in addition to the AT command set.

	V.27, V.27 ter
	CCITT 2400 and 4800 bps faxmodem standard.

	V.29
	CCITT 7200 and 9600 bps faxmodem standard.

	V.32
	CCITT 9600 bps communications standard which describes a standard modem modulation technique. Any...

	V.32bis
	CCITT standard for data modem modulation rates up to 14400 bits per second.

	V.34
	CCITT 28800 bps communication standard which describes a standard modem modulation technique. V.3...

	V.42
	CCITT error correcting protocol standard. Includes both MNP-4 and LAP-M error correction protocols.

	V.42bis
	CCITT 4:1 data compression protocol. This data compression scheme generally achieves a much highe...

	V.FC/V.Fast
	An early unratified version of the V.34 specification. V.34 modems can usually connect to V.FC an...


	Debugging Windows Communications Programs
	This is a list of tips and techniques for debugging Windows communications programs. Some of thes...
	First, always make sure that your hardware is set up correctly (check connections, cabling, switc...
	Using the debugger
	If you have used the DOS libraries Async Professional or Async Professional for C/C++, you may re...
	Under Windows you can ignore those cautions. The communications interrupt service routine is in t...
	Be aware, however, that it is still possible for incoming data to “stack up” in the communication...

	Using the Async Professional Debugging Tools
	Async Professional has several built-in features that aid in the debugging process. The simplest,...
	Async Professional provides another auditing tool called dispatch logging, which works at a much ...

	Getting technical support
	TurboPower Software Company offers a variety of technical support options. For details, please se...
	Technical support is always a tough job and throwing communications problems into the equation ma...
	First and foremost, if you’re writing an application and “not getting anything” please try the su...
	If you’ve proven that all is well with your hardware but your program still isn’t behaving proper...
	Finally, any Async Professional routine that can fail generates an exception or returns an error ...
	If you tried a “known good program” and applied all the built-in debugging tools and you’re still...

	Common problems
	Here’s a brief discussion of some of the common problems that popped up during development and te...
	Nothing works, not even the supplied test programs. What’s wrong?
	Probably a hardware or cabling problem that you’ll need to figure out before you go any further. ...
	Another possibility is misnamed ports if there is a gap in the serial ports in your machine. For ...
	The simplest solution to this problem is to accept the Windows name for the port and add appropri...
	COM3BASE = 2E8
	COM3IRQ = 4
	to SYSTEM.INI.

	Why am I getting leOverrun errors?
	A UART overrun occurs when a character is received at the serial port before the Windows communic...
	There is a finite limit to the speed at which a given machine can receive data. Because of the ex...
	A more likely cause, however, is that another Windows task is leaving interrupts off for too long...
	One known cause of long interrupts-off time is virtual machine creation and destruction. The only...
	Interrupts could also be left off by other Windows device drivers or virtual device drivers.

	Why do my protocol transfers seem slow?
	This usually means that your status routine is taking too much time. You shouldn’t try to do any ...

	Why am I getting parity and framing errors?
	Either you’re operating with a different set of line parameters than the remote device, or your c...

	My protocol transfer never gets started. What’s wrong?
	This could be due to any of several problems, including mismatched line parameters, wrong protoco...

	My Zmodem file transfer program generates lots of psBlockCheckError errors and psLongPacket error...
	The answer in this case is almost always lack of hardware flow control. The problem shows up in Z...




	Identifier Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


