
Async Professional
ActiveX

TurboPower Software Company
P.O. Box 49009

Colorado Springs, CO 80949-9009

Order line (U.S. and Canada): 800/333.4160
Elsewhere: 719/260.9136

Fax: 719/260.7151

www.turbopower.com

© 2000 TurboPower Software Company. All rights reserved.

™

License Agreement

This software and its documentation are protected by United States copyright law and also by International Treaty provisions. Any
use of this software in violation of copyright law or the terms of this agreement will be prosecuted to the best of our ability.

© 2000 by TurboPower Software Company. All rights reserved.

TurboPower Software Company authorizes you to make archival copies of this software for the sole purpose of back-up and
protecting your investment from loss. Under no circumstances may you copy this software or documentation for the purposes of
distribution to others. Under no conditions may you remove the copyright notices made part of the software or documentation.

You may distribute, without run-time fees or further licenses, your own compiled programs based on any of the source code of
OfficePartner. You may not distribute any of the OfficePartner source code, compiled units, or compiled example programs without
written permission from TurboPower Software Company. You may not use OfficePartner to create components or controls to be
used by other developers without written approval from TurboPower Software Company. OfficePartner is licensed for use solely on
Microsoft Windows platforms.

Note that the previous restrictions do not prohibit you from distributing your own source code or units that depend upon
OfficePartner. However, others who receive your source code or units need to purchase their own copies of OfficePartner in order to
compile the source code or to write programs that use your units.

The supplied software may be used by one person on as many computer systems as that person uses. Group programming projects
making use of this software must purchase a copy of the software and documentation for each member of the group. Contact
TurboPower Software Company for volume discounts and site licensing agreements.

This software and accompanying documentation is deemed to be “commercial software” and “commercial computer software
documentation,” respectively, pursuant to DFAR Section 227.7202 and FAR 12.212, as applicable. Any use, modification,
reproduction, release, performance, display or disclosure of the Software by the US Government or any of its agencies shall be
governed solely by the terms of this agreement and shall be prohibited except to the extent expressly permitted by the terms of this
agreement. TurboPower Software Company, PO Box 49009, Colorado Springs, CO 80949-9009.

With respect to the physical media and documentation provided with OfficePartner, TurboPower Software Company warrants
the same to be free of defects in materials and workmanship for a period of 60 days from the date of receipt. If you notify us of
such a defect within the warranty period, TurboPower Software Company will replace the defective media or documentation at no
cost to you.

TurboPower Software Company warrants that the software will function as described in this documentation for a period of 60 days
from receipt. If you encounter a bug or deficiency, we will require a problem report detailed enough to allow us to find and fix the
problem. If you properly notify us of such a software problem within the warranty period, TurboPower Software Company will
update the defective software at no cost to you.

TurboPower Software Company further warrants that the purchaser will remain fully satisfied with the product for a period of 60
days from receipt. If you are dissatisfied for any reason, and TurboPower Software Company cannot correct the problem, contact the
party from whom the software was purchased for a return authorization. If you purchased the product directly from TurboPower
Software Company, we will refund the full purchase price of the software (not including shipping costs) upon receipt of the original
program media and documentation in undamaged condition. TurboPower Software Company honors returns from authorized
dealers, but cannot offer refunds directly to anyone who did not purchase a product directly from us.

TURBOPOWER SOFTWARE COMPANY DOES NOT ASSUME ANY LIABILITY FOR THE USE OF OFFICEPARTNER
BEYOND THE ORIGINAL PURCHASE PRICE OF THE SOFTWARE. IN NO EVENT WILL TURBOPOWER SOFTWARE
COMPANY BE LIABLE TO YOU FOR ADDITIONAL DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR
OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE THESE
PROGRAMS, EVEN IF TURBOPOWER SOFTWARE COMPANY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

By using this software, you agree to the terms of this section and to any additional licensing terms contained in the DEPLOY.HLP
file. If you do not agree, you should immediately return the entire OfficePartner package for a refund.

All TurboPower product names are trademarks or registered trademarks of TurboPower Software Company. Other brand and
product names are trademarks or registered trademarks of their respective holders.

i

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Table of Contents

Chapter 1: Introduction .1
Technical Support . 3
System Requirements. 4
Installation . 5
An Overview of the APAXPort ActiveX Control . 6
Using the APAXPort’s Property Pages . 8

Chapter 2: Communications Basics .13
Communications Overview . 14
Data In/Out . 15
Terminals and Emulators . 16
Modems and TAPI . 17
Protocols . 18

Chapter 3: Advanced Communication Principles.19
Basics of Asynchronous Communication . 20
Serial Communication Under Windows . 39
Event Management. 41

Chapter 4: Overviews and Troubleshooting Sessions43
Overview: Choosing a Modem . 44
Overview: TAPI Voice Support . 48
Overview: Debugging Windows Communications
Programs and Communications Hardware . 50
Troubleshooting a Connection Session . 59
Troubleshooting a File Transfer. 61

Chapter 5: Serial Ports and Logging .63
RS-485 Support Overview. 64
Debugging Facilities . 67
Port and Logging References . 77

Chapter 6: Winsock Mode . 121
Understanding Winsock . 122
Winsock support in APAX . 124
Winsock References . 125

ii

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 7: Terminal Window and Emulations . 135
TTY, VT100, and VT52 Emulations . 138
Terminal and Emulator References. 142

Chapter 8: TAPI Devices . 167
TAPI Device Control from an Application . 169
TAPI Events . 170
TAPI Status Processing . 171
Making Calls . 174
Answering Calls . 174
TAPI Service Providers . 175
Using TAPI for Configuration Only . 176
Wave File Support . 177
Dual Tone Multiple Frequency (DTMF) . 178
TAPI References . 179

Chapter 9: File Transfer Protocols . 213
General Issues . 214
Xmodem . 226
Ymodem . 229
Zmodem . 231
Kermit . 237
ASCII . 243
Protocol References . 245

Chapter 10: Data Trigger Management . 297
The Data Trigger Mechanism. 298
Data Trigger References . 300

Chapter 11: Visual Elements . 307
Status Bar References. 309
Toolbar References . 316

Appendix . 327

Identifier Index . i

Subject Index . i

 1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 1: Introduction

Whether you are new to TurboPower or one of our many long-time customers, we would
like to express our sincere appreciation for the confidence you have placed in us by choosing
Async Professional ActiveX (APAX) for your serial communications needs.

The APAXPort ActiveX control contains all of the necessary functionality required to build
any application, from simple direct serial communications to large scale applications
requiring complex data communications facilities. All of the tools you need to perform
direct serial, network, and Internet communications, file transfers, terminal emulations,
automated data recognition, TAPI control, and session logging are packaged into the
APAXPort control.

This manual attempts to simplify the broad functionality of the APAXPort control by
addressing its capabilities in logical groupings as follows:

• Serial ports (RS-232 and RS-485) and logging facilities

• Winsock operation

• Terminal emulations

• TAPI devices

• File transfer protocols

• Data trigger management

• Visual features including status bar and tool bar

The first few chapters of this manual introduce the APAXPort ActiveX control and cover (at
a fairly detailed level) the basics of serial communications. In using the APAXPort control,
this is probably more information than you’ll ever be required to know. The intent of
including it in the manual was to lay a firm foundation of fundamental serial
communications theory.

Chapter 4 provides some general guidelines for testing and troubleshooting serial
connections from both a hardware and software vantage point. This list has evolved from
years of experience addressing difficult serial communications problems. Should you find
yourself experiencing difficulty, this chapter serves as an excellent starting point.

The remainder of this manual is a dedicated reference section to the APAXPort control.
Here you’ll find the details you need to get up and running quickly with APAX.

2 Chapter 1: Introduction

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

As many long-time customers can tell you, TurboPower Software Company is genuinely
committed to your success using our products. We welcome all your comments,
suggestions, and even constructive criticisms. We continue to strive to fully meet your
expectations. Please let us know how we’re doing. And thank you again for choosing APAX.

Technical Support 3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Technical Support
The best way to get an answer to your technical support questions is to post them in the
APAX newsgroup on our news server (news.turbopower.com). Many of our customers find
the newsgroups a valuable resource where they can learn from others’ experiences and share
ideas in addition to getting answers to questions.

To get the most from the newsgroups, we recommend that you use dedicated newsreader
software. You’ll find a link to download a free newsreader program on our web site at
www.turbopower.com/tpslive.

Newsgroups are public, so please do not post your product serial number, 16-character
product unlocking code or any other private numbers (such as credit card numbers) in your
messages.

The TurboPower KnowledgeBase is another excellent support option. It has hundreds of
articles about TurboPower products accessible through an easy-to-use search engine
(www.turbopower.com/search). The KnowledgeBase is open 24 hours a day, 7 days a week.
This provides another way to find answers to your questions even when we’re not available.

Additionally, you can read about support options at www.turbopower.com/support.

4 Chapter 1: Introduction

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

System Requirements
To use the APAXPort ActiveX control you must have the following hardware and software:

1. A computer capable of running Microsoft Windows 95/98/2000/ME or Windows NT.
A minimum of 16MB of RAM is recommended.

2. Any development platform that serves as an ActiveX container. The most common
examples are Visual Basic, Visual C++, and Borland’s Delphi.

3. A hard disk with at least 50MB of free space is strongly recommended. To install the
APAXPort control and all of the example programs requires about 5MB of free disk
space.

Installation 5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Installation
APAX can be installed directly from the TurboPower Product Suite CD-ROM. Before
installing the product, please scan through the README.TXT file to find any late news that
may affect installation.

To install from the CD, insert the TurboPower Product Suite CD and follow the instructions
presented by the SETUP program. SETUP installs APAX in the C:\APAX directory by
default. You can specify a different directory, if desired.

The setup program registers the APAXPort control with Windows. You will then need to
install the control into your development environment. For development environments
other than Visual Basic, consult the documentation pertaining to importing and using
ActiveX controls. For Visual Basic developers, follow the instructions below:

1. Start Visual Basic.

2. Click on the Tools menu or right-click on the Visual Basic toolbox.

3. Select Custom Controls from the menu. A dialog displaying the entire list of custom
controls will be displayed.

4. Ensure that the check box labeled Controls is checked. The list should now display all
of the ActiveX controls registered in your system.

5. Locate the TurboPower APAXPort control in this list and ensure that a check mark
appears in the box adjacent to this entry.

6. Click OK and the APAXPort control will appear in the Visual Basic toolbox.

You are now ready to start using the APAXPort control in your applications.

6 Chapter 1: Introduction

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

An Overview of the APAXPort ActiveX Control
This section is intended to give you a very brief introduction to the APAXPort control. For
functionality beyond this basic introduction, refer to the APAXPort reference chapters.

Once running in an application, the APAXPort control will (by default) appear in your form
as the following figure illustrates.

A surprising amount of functionality is already built into the control—without writing a
single line of code! Simply choose a device type, select an appropriate device, click the
Connect button, and you’re ready to communicate! The paragraphs below introduces you to
the visual features of the APAXPort control.

Choosing a device type and establishing a connection
The APAXPort control allows for three different device connection types: Direct, TAPI, or
Winsock. To select a device type, just click the Device Type button in the upper left of the
control and make your selection.

An Overview of the APAXPort ActiveX Control 7

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Direct devices
To communicate directly with a remote device such as a weight scale or other data-collection
device, select the Direct device type. APAX will then provide you with a list of all the
available COM ports on your system. All you have to do is select the desired COM port.

TAPI devices
Selecting TAPI as a device type automatically presents you with a list of all the TAPI devices
registered on your system. Here, all that is required is to select a device from this list and
specify the phone number to dial.

Winsock devices
APAX provides for network and Internet communications as well. Select Winsock as your
device type to specify a connection of this type. To complete the connection details for a
Winsock device, specify a computer address, enter a service (such as ftp) or port number
(e.g. 21), and instruct APAX to act as either a client or a server.

Note: APAX is limited to a single client connection if acting as a server.

Establishing a connection
If your device selection is anything but Winsock server mode, all you need to do to complete
the connection is to click the Connect button.

If you have selected a device type of Winsock server mode, you’ll need to listen for
connections rather than connecting directly. To do this, simply click the Listen for
Connection button.

Initiating a file transfer
To initiate a file transfer (using Zmodem as the default) or receive a file transfer from a
remote machine, just click the corresponding button on the tool bar. If you are initiating the
file transfer, the standard Windows File Open dialog will be displayed. Navigate to and select
the file you want to send.

Setting the terminal font
The font that the terminal displays can be set by clicking the Font button and selecting the
desired font from the standard Windows dialog.

8 Chapter 1: Introduction

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Using the APAXPort’s Property Pages
APAX provides several property sheets that assist you in setting the most commonly used
design time properties. To access the property pages, right-click on the component at design
time and select Properties from the context menu. APAX’s property sheets simplify the
configuration of the control as it relates to the terminal, basic device configuration, file
transfer protocols, data triggers, and status light property settings. Following is a brief
introduction to each of APAX’s property sheets.

Terminal property page

The Terminal property page allows you to specify the number of rows and columns
displayed by the terminal window, the emulation mode (TTY, VT100, or VT52), the
terminal window’s background color (in TTY emulation mode only), and various general
properties that define the terminal window’s behavior. A capture file can also be specified
and capture mode can be enabled to record a terminal session to a disk file. The terminal
property page also allows you to specify the size (in lines) of the scrollback buffer.

Using the APAXPort’s Property Pages 9

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Device configuration property page

The Device Configuration property page allows you to specify the device type (Direct,
TAPI, or Winsock).

If a Direct device type is selected, click the Configure Line Settings button to invoke an
editor that allows you to specify the port number, baud rate, parity, data bits, and stop bits.

If a TAPI device type is selected, then this property page allows you to specify the TAPI
device to use, whether or not voice is enabled, dial attempts, dial retry wait, and answer on
ring settings. You can also specify what devices are displayed to your end user and filter
serial ports (COMx) from the displayed list.

If a Winsock device type is selected, the device configuration property page allows you to
specify the remote computer’s address, and the port. You can specify this value as a service
name such as ftp, or you can enter the port number directly. You can also specify whether
the Winsock device should act as a client that initiates a connection or as a server that simply
listens for incoming connections.

10 Chapter 1: Introduction

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Protocol options property page

The Protocol Options property page allows you to select the type of file transfer protocol
used to send and receive files. After selecting a protocol type, click the Configure button to
specify additional parameters that are specific to the type of protocol selected. Several other
properties that apply to all protocols are available as well on this property page.

Using the APAXPort’s Property Pages 11

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Data triggers property page

The Data Triggers property page provides a simple grid that allows you to specify multiple
data triggers. Each individual data trigger should be entered on a single line. APAX
concatenates these individual strings and separates them with the pipe (“|”) character and
assigns this value to the DataTriggerString property. The DOS wildcard symbols (“?” and
“*”) can be used within each string entered.

12 Chapter 1: Introduction

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Status lights property page

The Status Lights property page allows you to specify which (if any) of the status line lights
appear on the APAXPort control. This property page also allows you to specify the colors (lit
and not lit) of the lights and whether or not their corresponding caption should be
superimposed. In addition, you can configure the toolbar from this property page. You can
hide or show the toolbar altogether, or you can set the visible state of individual toolbar
buttons.

 13

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 2: Communications Basics

Communications is a very difficult field of programming. Several factors contribute to this
perception. First, many areas of communications programming lack sufficiently thorough
(and understandable) documentation. Second, the typical communications program is
expected to interface with a variety of hardware, software and drivers (all which may have
slightly different behaviors). Additionally, the many issues that are dealt with during the
course of programming a communications application are often very difficult to
troubleshoot.

One of the biggest goals of APAX is to insulate you from these difficulties. It’s possible for an
average programmer to work some communications functionality into an application with a
minimum of communications knowledge by using an abstract control like APAX.
Obviously, there is a certain amount of required knowledge to tackle something in a difficult
field such as communications—but we hope to give you a good head start in any case.

This chapter introduces some of the communications fundamentals in a fairly basic way and
describes how the functionality of APAX fits into the picture. If you have been programming
in the field of communications for some time, you may be tempted to skip this chapter.
However, there’s always the possibility that you may pick up a few tips here and there
regarding how the different areas of APAX’s functionality fit into the overall equation. If you
have a need for more detailed information, refer to “Chapter 3: Advanced Communication
Principles” on page 19.

14 Chapter 2: Communications Basics

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Communications Overview
As mentioned in the previous section, communications is a tough field. Many people
consider it a black art, and that designation is very well deserved in many circumstances.
Programming for environments such as Windows simplifies things in some ways, and
makes things much more frustrating in other ways.

Some of the advantages of programming in Windows include the fact that you don’t need to
know things such as the intricacies of UART operation or the way bytes are framed by
start/stop bits. It’s now possible to save study of those topics for a rainy day. Not only is
knowledge of what’s going on at that level unnecessary, but it’s often the case that the
operating system actually prevents you from accessing the hardware directly.

The next few sections present communications basics in what is hoped to be a fairly simple
manner. This chapter is by no means intended to be a comprehensive guide to data
communications; it’s merely intended to give you a base knowledge so you can start to
understand the functionality available in APAX. Be sure to refer to the applicable sections of
the reference chapters to get more information about the various areas of APAX
functionality.

Data In/Out 15

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Data In/Out
Every communications program has at least one thing in common: the fact that the program
communicates with other programs or devices. This means that data flows into or out of the
application in some way. In most applications, data flows in both directions, but it’s certainly
possible for an application to only receive or send data. The data can be binary or text, but
it’s always treated as a stream of bytes by the low-level hardware and drivers. The methods of
communication may differ slightly—they could be though an RS-232 serial port, an RS-485
port, a parallel port, or network communications card. The actual implementation of these
methods differ, but the net result that bytes flow in and/or out of the program remains the
same.

APAX provides all of the functionality you need to send and receive data over a serial or
network connection. When communicating directly over a serial connection, APAX handles
all of the necessary communications to the Windows communications drivers. APAX
provides support for both the RS-232 protocol as well as the RS-485 protocol. Of these two
protocols, RS-232 is by far the most common. Additionally, the Winsock services provided
by APAX allow you to establish network and Internet connections to send and receive data.

The low-level functionality of APAX provides an interface to the rest of the world for your
program. No longer do you need to concern yourself with the intricate details of serial
communications. Using APAX, you can even define multiple data triggers that essentially
monitor the input stream and notify you automatically when crucial data arrives.

16 Chapter 2: Communications Basics

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Terminals and Emulators
Terminals display data and emulators decide how the data should displayed. They are always
used together in APAX. Without an emulator, a terminal would have nothing to display.
Without a terminal, an emulator would have nowhere to display the data it had interpreted.

An emulator has two jobs. It must, first and foremost, interpret the data coming through a
serial communications device from a remote host computer. This incoming data will
contain text to be displayed on the terminal and it will also contain terminal control
sequences. These are sets of characters which, taken as a whole, denote commands for the
terminal. Examples of such commands are to scroll the text on the terminal display, to
switch from one character set to another, to move or position the cursor, and so on. The
emulator thus has to separate out the incoming data stream into terminal control sequences
(e.g., “move the cursor to row 1 column 1”) and the text that is to be displayed at the cursor
(e.g., “Hello, world”).

The second job for the emulator is to convert keystrokes into their terminal equivalents.
With many terminals, pressing a function key on the keyboard results in a sequence of
characters being sent to the host computer. The host computer can identify this sequence
and know which key was pressed. Obviously, the alphanumeric keys would generate the
corresponding character, and there would be no conversion required.

Hence, it is the emulator that provides the characteristics of a given terminal. APAX
supports two emulation protocols: TTY, which provides teletype emulation, and VT100
which provides true VT100 emulation. Either of these emulations can be selected via a
single property setting aptly named Emulation. The terminal, on the other hand, has it
easy—it merely displays the text that the emulator provides.

Modems and TAPI 17

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Modems and TAPI
Modems are hardware devices that make it possible to connect to a phone line via a standard
serial port. Modem stands for MOdulator/DEModulator. They modulate the outgoing serial
data so it can be properly transmitted along the phone line, and demodulate the incoming
data, so it can be received by the serial port. Variations on this theme include ISDN
modems, cable modems, and so on. Modems are somewhat difficult to work with in a
general manner since there are several different standards used by modem manufacturers.
These standards define the communication between an application and the modem. Your
application must be able to adapt to those differences.

APAX has several internal tools that are designed to simplify the process of adapting to, and
communicating with, different modems. All of the functionality you’ll need to communicate
with modems is built into the APAXPort control.

Telephony Application Programming Interface (TAPI) is an attempt by Microsoft to
simplify the process of communication with the modem. It is a standardized API with which
the application can interface, making it simple (in theory) to communicate with many
different modems in a standardized way. Under TAPI, a great deal of the burden (and also
control) is removed from the application developer in favor of placing the burden on the
designers of the operating system and the manufacturers of the modems. This point has
good and bad sides—it’s great if everything works as planned, but can be very frustrating if
things don’t work so well. Again, TAPI support is already integrated in the APAXPort

18 Chapter 2: Communications Basics

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Protocols
Protocols come in many flavors. The word “protocol” simply refers to a standard way of
doing something. A log on/log off process on a BBS can actually be considered a protocol. A
simple send string/receive string protocol, such as the one used to check Internet mail
(POP3) is best handled using the data trigger mechanism built into APAX. Other protocols,
such as the ones used to transfer binary data, are a bit more complicated and require the use
of complex state machines to track how the process is progressing.

APAX provides a built in file transfer protocol engine that handles all of the most common
protocols automatically. The protocol engine greatly simplifies the process of sending and
receiving binary and ASCII text files. In fact, all you have to do is set a few properties and
call a method to get things going in many cases.

 19

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 3: Advanced Communication Principles

This chapter provides a more advanced discussion of some the principles of serial
communications and the general issues of serial communication under Windows. An APAX
user is typically insulated from many of these details; both by APAX’s encapsulation of the
various communication APIs and by the layers of drivers that exist in Windows. With this in
mind, it is possible to write a successful APAX program without reading (or fully
understanding) this chapter.

This chapter is mainly intended for users who want (or need) a more detailed understanding
of some of the low-level processes that may be affecting their application. This chapter is not
intended to be a comprehensive guide to all aspects of serial communication.

20 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Basics of Asynchronous Communication
After presenting some basic concepts, this discussion continues into some of the lower-level
details of serial communications (starting with a detailed discussion of the UART chip).
Generally, you do not need such detailed knowledge to use APAX effectively.

The broadest definition of serial communications includes anything that transmits or
receives data in a serial fashion, where one bit follows another in a single stream over one
wire. In parallel communications, by contrast, many bits are sent in parallel over many
wires. Asynchronous serial communications simply means that the data stream includes
start and stop bits, bits that mark the beginning and end of each character in the data
stream. This is in contrast to synchronous communications where no start or stop bits are
provided and the two ends of the link rely on synchronized clocks to know where each
character starts and stops.

In the PC world, when people speak of serial communications they are invariably talking
about the communications facility provided by the serial ports (or COM ports) at the back
of a PC. To these ports you can attach a wide variety of input and output peripheral devices.
In fact, you can attach and communicate with anything that adheres to the same serial
communications standard as the serial port.

Given the wide variety of serial peripherals available and the corresponding variety of
applications, it’s sometimes hard to find a general purpose term for what you have attached
to your serial port. When the term is too general it can be hard to understand. When the
term is too specific it might not be clear how the point relates to other cases. In this manual
the appropriate terms are used as they are called for. The manual uses the term “device” or
“remote device” or just “remote” when the kind of device is not really important. When the
point relates to a specific device such as a modem, the more specific term is used.

Information presented throughout this manual refers to something called a Universal
Asynchronous Receiver/Transmitter (UART). This is the chip within your PC that handles
the low-level details of receiving and transmitting data. You don’t really need to know any
more beyond that. If you are interested in learning more about the UART, read “Universal
Asynchronous Receiver/Transmitter (UART)” on page 24.

Line parameters
Because serial communications are somewhat standardized, you don’t need to know the
lowest level details such as line voltages, pin names, and so forth. However, you do need to
know about line parameters—baud rate, parity, data bits and stop bits—which specify the
transfer rate and format of the data on the serial line. Usually, the line parameters are
expressed like this:

9600,N,8,1

Basics of Asynchronous Communication 21

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

This describes a communications link operating at 9600 baud, no parity bit, eight data bits,
and one stop bit. Both ends of the link must be using the same line parameters before any
communication can take place.

You specify line parameters in your APAX application whenever you open a serial port. In
some cases, you might not have any leeway at all—the device you want to communicate with
might force particular line parameters upon you. More likely, though, you’ll need to choose
appropriate line parameters for your PC and the device attached to your serial port. Here are
brief definitions of these line parameters and some guidelines for choosing appropriate
values.

Baud rate
Baud rate is commonly used to mean bit rate—the number of bits transmitted per second.
This is technically incorrect. Baud rate actually means the number of events per second in a
communications line. Since an event can contain information about more than one bit, as is
the case with high-speed modems, baud rate could be quite different than bit rate. At the
serial port itself (where APAX usually concerns itself) each event is a single bit, so equating
baud rate and bit rate is accurate.

When given a choice, you should generally select a baud rate as high as possible to give you
the highest possible throughput. Understand, however, that there are very likely factors in
your application or environment that might limit your throughput. The speed of your PC,
the type of UART, the quality of the Windows communications driver, and the behavior of
concurrently running tasks all affect the highest achievable communications speed.

Generally, any ’386 machine should be able to achieve 9600 baud. Faster ’486 and Pentium
machines can achieve higher speeds, in some cases up to the limit of the Window
communications driver, 115.2K baud. Due to the architecture of Windows, even the fastest
machines may sometimes lose data. See “Performance issues” on page 40 for more
information on getting the best performance out of your Windows machine.

Other factors affect your choice of baud rate as well. For example, if you’re using a 2400 baud
modem there is little reason for selecting 38400 baud transfer between your PC and the
modem. Or, if you are collecting data from a device that sends only a few hundred bytes of
data per minute, there’s no sense in selecting a high baud rate. You would do better to select
a lower baud rate, which would minimize transmission errors.

Data bits
A data byte can contain 5, 6, 7, or 8 bits. The vast majority of applications use either 7 or 8
bits since binary data is expressed in 8-bit bytes and text data can often be expressed in only
7 bits.

22 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Many time-sharing systems, such as CompuServe, work with only 7 data bits because that’s
all they need to display text data. However, when binary data is transferred with a file
transfer protocol, the system almost always switches to 8 data bits. In fact, Kermit is the only
file transfer protocol in APAX that works with 7 data bits.

Stop bits
Stop bits follow the data bits in the serial data stream to mark the end of each data byte. The
value for stop bits is always either 1 or 2. Generally, you should use 1 stop bit.

Parity
Parity describes a bit checking scheme. When used, all of the bits in each data byte are added
together. A final bit, called the parity bit, is added so that the sum of all bits is either odd or
even, whichever you specify. The transmitter calculates and transmits a parity bit. The
receiver also calculates a parity bit and compares it to the parity bit it received. If the bits are
equal, it is assumed that the character was received without error. Otherwise, it is assumed
that there was an error during transmission.

The possible values for parity are:

Whether or not you should use parity depends on your application. Generally, you don’t
need to use parity bits if your application relies on some other means of checking data
integrity such as block check characters in a file transfer.

Line errors and breaks
Serial I/O, like all forms of I/O, is subject to errors. A line error has occurred when the
characters received by the receiver are different from those sent by the transmitter. This
usually happens when the data line is disturbed by electrical interference. Your programs
must be prepared to deal with line errors. Typical actions are to discard and ignore errant
data or to ask the transmitter to send the data again. The action you take depends on the
requirements of your application.

Value Result

pNone No parity bit is added

pEven A parity bit is added such that the bit sum is
always even

pOdd A parity bit is added such that the bit sum is
always odd

pMark A parity bit of value one is always added

pSpace A parity bit of value zero is always added

Basics of Asynchronous Communication 23

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Line errors can also occur if the receiver and transmitter are using different line parameters
or if you’ve selected a baud rate that is too high for the environment in which your
application is running.

The following sections describe the types of line errors that can occur, what they mean, and
how you can deal with them.

UART overrun error
This error means that a second character arrived at the serial port before the first one was
processed. Generally this means that you are running at a baud rate that is too high and your
machine is not fast enough to handle the characters as fast as they are arriving. The usual
solution is to lower the baud rate until the UART overrun errors go away.

In some cases the problem is not that the baud rate is too high, but that another process is
leaving interrupts disabled for too long or another virtual machine is hogging the CPU. See
“Performance issues” on page 40 for more information about dealing with UART overruns.

Parity errors
Parity errors occur when the parity bit received differs from the parity bit calculated. If the
receiver specifies odd parity and receives a character with even parity, a parity error results.
The most common cause of parity errors is a mismatch in the parity line parameter between
the transmitter and the receiver. Always suspect this if you get a lot of parity errors when you
first connect to a new device. Another clue is when certain characters always return parity
errors and other characters never return parity errors.

Parity errors can also be caused by interference on the data line (i.e., transmission errors).
When this is the case, errors occur randomly with groups of errors interspersed with long
periods of error-free transmission. In this case the recommended solution is to reroute the
serial cable away from any sources of electrical interference. Shortening the cable could also
help.

Framing errors
A framing error occurs when the data bits in the serial stream are not followed by a valid
stop bit, which must always have the value ‘1’. As with parity errors, the most likely cause of
framing errors is a mismatch in line parameters between the receiver and transmitter.
Always verify the line parameters at both ends of the communication link whenever you get
framing errors.

Framing errors can also be caused by electrical interference. Again, the recommended
solution for such errors is to shorten or reroute the serial cable.

24 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Breaks
Breaks are not really line errors, but they do represent a special line condition. A “line
break” or “break” is a condition in which zero bits are transmitted for at least as long as it
takes to send one character (one “character time”). The UART recognizes this special
condition and can notify you that it has received a break. Breaks are used when a device
needs to signal another device to handle a special condition.

Universal Asynchronous Receiver/Transmitter (UART)
This topic covers the detailed inner workings of the UART chip, which is at the heart of most
serial ports. You don’t need to know these details. In fact, Windows insulates applications
from these details to such a degree that you can’t apply them even if you know them.

In some circumstances, however, you might find this information helpful for thinking
through a debugging problem, or you just might want a clearer picture of what’s really
happening on the chip. If you’re just getting started with APAX, or you already know all you
care to know about UARTs, you might want to skip this section. But be sure to pick up the
discussion at “Flow control” on page 32.

The UART chip is the brain of the serial communications facilities on IBM PCs, PS/2s, and
compatibles. In nearly all cases, this chip is from a family of National Semiconductor
integrated circuits. Older PCs use UARTs with chip designations INS8250 and INS8250B.
Newer machines use NS16450 and NS16550 chips. Although there are slight differences
between the chips in speed, internal behavior, and features, their basic properties are the
same.

The UART is responsible for all of the grunt work of serial communications. It transmits
data by taking a byte and serializing the bits onto the output line. It receives data by reading
a stream of bits from the input line and de-serializing them into a data byte. The UART also
controls the line parameters discussed earlier, and is responsible for setting and reacting to
various line and modem control and status signals.

The UART does all of these things in response to requests from a program. The program
exchanges data with the UART through the UART’s registers. To the program, these registers
are nothing more than addresses somewhere in the PC’s I/O address space.

The IBM PC architecture also associates a hardware interrupt with each UART. You can use
the serial port without using the interrupt, but it’s generally not practical to do so. The
names that are typically used to refer to serial ports (Com1, Com2, etc.) tell you the address
of the UARTs and what hardware interrupt they use.

Basics of Asynchronous Communication 25

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

These addresses and interrupts are governed by two standards: the IBM PC standard for
Com1 through Com4; and the IBM PS/2 standard for Com1 through Com8. The following
tables show the addresses and interrupts for each standard:

IBM PC Standard (Com1, 2) and de facto Standard (Com3, 4)

IBM PS/2 Standard

Even though the standards only define up to eight serial ports, many serial port boards
support additional serial ports at other base addresses and IRQs. APAX can open any serial
port that is defined in Windows by simply using the COM number. Windows defaults to the
values shown in the tables above. To inform Windows of a non-standard address or IRQ,
you must run Control Panel/Ports or Control Panel/Add New Hardware.

Registers
The Windows communications driver communicates with a UART via the UART registers.
It controls the UART by writing information into its registers and it retrieves data and status
information by reading the registers. A UART contains eight registers, each with a specific
purpose, accessed on the PC through I/O ports starting at the base address and continuing

ComName Base Address IRQ Vector

Com1 03F8h 4 0Ch

Com2 02F8h 3 0Bh

Com3 03E8h 4 0Ch

Com4 02E8h 3 0Bh

ComName Base Address IRQ Vector

Com1 03F8h 4 0Ch

Com2 02F8h 3 0Bh

Com3 3220h 3 0Bh

Com4 3228h 3 0Bh

Com5 4220h 3 0Bh

Com6 4228h 3 0Bh

Com7 5220h 3 0Bh

Com8 5228h 3 0Bh

26 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

for the next eight port addresses. The register at the base address is called register 0, the next
register is register 1, and so on. Since the COM1 UART’s base address is 03F8h, register 0 is
at 03F8h, register 1 is at 03F9h, and so on up to register 8 at 03FFh.

Each of these registers also has one or more names, as shown in the following descriptions.
Registers that provide status information when read are designated (read). Registers that are
used to program the UART are designated (write). Those that are used both ways are
designated (read/write).

Register 0: receiver buffer register (read)

 transmit holding register (write)

 divisor latch low (read/write)

Register 0 has three names and three purposes. When you read from register 0, you are
reading the latest received character (if there is one). When you write to register 0, you are
passing the next character to be transmitted (if the UART is ready).

The third purpose of register 0 comes into play when setting the baud rate. When the divisor
latch access bit is set, register 0 specifies the low byte of the baud rate divisor. The baud rate
divisor is a value which, when divided into a preset constant, yields the desired baud rate.
This preset constant is determined by an internal clock rate that is the same for all PCs.

The baud rate divisor is determined by this equation:

divisor = 115200 / baud rate

Hence, the process for setting the baud rate on a UART is to calculate the baud rate divisor,
set the divisor latch access bit, write the low byte of the divisor to register 0, write the high
byte of the divisor to register 1, and finally clear the divisor latch access bit.

Register 0 Bit Definitions

data
bit7

data
bit6

data
bit5

data
bit4

data
bit3

data
bit2

data
bit1

data
bit0

7 6 5 4 3 2 1 0

Basics of Asynchronous Communication 27

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Register 1: interrupt enable register (write)
divisor latch high (read/write)

UARTs can generate an interrupt in response to four different conditions. Programs specify
which interrupt conditions they want to enable by writing into this register. Here are the four
interrupt conditions:

• A character was received

• The transmitter just finished transmitting a character

• An error or break signal occurred

• A modem status signal changed

To enable a particular interrupt, set the proper bit in a byte mask and write the byte mask to
the interrupt enable register. To disable the condition, reset the bit to 0 and write the byte
mask to the interrupt enable register.

Register 1 also has a second name (divisor latch high) and a second purpose. When the
divisor latch access bit is set, register 1 becomes the high byte of the baud rate divisor (used
for setting the baud rate). See the previous discussion of the divisor latch low register for
more information on setting the baud rate.

Register 2: interrupt identification register (read)
 FIFO control register (write)

This is the counterpart to the interrupt enable register. Once you’ve enabled the desired
interrupt conditions and received an interrupt, this register indicates which condition
caused the interrupt. Only the three least significant bits of the register are actually used, as
described in the following paragraph.

Interrupt Enable Bit Definitions

N/A N/A N/A N/A
modem
status

line
error/
break

xmit
ready

recv
char

7 6 5 4 3 2 1 0

Interrupt Identification Bits

FIFO
enabled

FIFO
enabled N/A N/A see below int

pend

7 6 5 4 3 2 1 0

28 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Since it is possible, even likely, that more than one condition can occur at the same time, bit
0 is used to determine whether all conditions that currently exist have been handled. When
bit 0 has a value of 0, there are conditions waiting to be handled. When bit 0 has a value of 1,
all outstanding conditions have been handled. Bits 3, 2, and 1 taken together identify the
cause of the interrupt.

Because multiple conditions can occur at the same time, the UART presents the conditions
in a prioritized order. The following table shows the priority used by the UART and the
corresponding bit masks:

The FIFO time-out condition obviously occurs only on UARTs operating with a FIFO (first
in, first out) buffer. The FIFO buffer is typically a 16-byte buffer on the UART chip that
holds received characters until the application can retrieve them. When the FIFO buffer is
filled to a preset level, a received data available interrupt is generated. The FIFO time-out
interrupt occurs only when the data does not reach this preset level. The interrupt is
generated when characters are waiting in the receive FIFO buffer and four character-times
elapse without receiving any new characters.

In addition to providing information about pending interrupt conditions, this register also
provides two FIFO status bits. These bits are always 0 for UARTs that don’t possess FIFO
buffers. They are both set for UARTs that possess the FIFO buffers if FIFO mode is currently
activated.

Register 2 doubles as a writable register for enabling and disabling FIFO buffers. In its role as
the FIFO control register, the 8 bits have the following meanings:

Bits 3-0 Priority Interrupt type

0 0 0 1 None None

0 1 1 0 Highest Line error or line break

0 1 0 0 Second Received data available

1 1 0 0 Second Received data available (FIFO time-out)

0 0 1 0 Third Transmitter holding register empty

0 0 0 0 Lowest Modem status change

FIFO Control Bit Definitions

receiver
trigger
high

receiver
trigger

low
N/A N/A DMA

mode
transmit

reset
receiver

reset
FIFO

enable

7 6 5 4 3 2 1 0

Basics of Asynchronous Communication 29

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

The first step in specifying FIFO control information is always to set bit 0. This enables
writing to the other FIFO control bits. When FIFO mode is enabled or disabled, the FIFO
data buffers are cleared of all data.

Writing a 1 to bit 1 clears just the receive FIFO buffer. Writing a 1 to bit 2 clears just the
transmit FIFO buffer.

Bit 3 is used to control DMA access.

Bits 6 and 7 are used to specify the receive FIFO trigger level, the number of bytes stored in
the FIFO before a receive interrupt is generated. The following table shows the possible
trigger levels and the corresponding bit values:

Register 3: line control register (write)

The line control register is used to set the line parameters baud rate, data bits, stop bits, and
parity.

Bits 0 and 1 specify the number of data bits to use. The following table shows how these bits
are interpreted:

Bit7 Bit6 Trigger level

0 0 1

0 1 4

1 0 8

1 1 14

Bit1 Bit0 Data bits

0 0 5

0 1 6

1 0 7

1 1 8

Line Control Bit Definitions

div
latch

access

send
break

stick
parity

parity
type

enable
parity

stop
bits

data
bits

7 6 5 4 3 2 1 0

30 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Bit 2 specifies the number of stop bits to use. When bit 2 is set, two stop bits are generated
and checked. When bit 2 is clear, one stop bit is generated and checked. (Note that when
data bits is 5, setting bit 2 actually specifies 1.5 stop bits.)

Bits 3, 4, and 5 control parity as shown in the following table:

“Space” parity means that a 0 is transmitted after each character regardless of its value.
“Mark” parity means that a 1 is transmitted. The UART automatically computes the parity
bit and transmits it when appropriate.

Bit 6 is used to generate a line break. While this bit is set, the UART continuously sends zeros
on the output line.

Bit 7 is the divisor latch access bit described earlier. When this bit is set, registers 0 and 1
become the divisor latch registers used to set the desired baud rate.

Register 4: modem control register (write)

The primary purpose of the modem control register is to manage the DTR (Data Terminal
Ready) and RTS (Request To Send) signals of the serial port. These two signals are also
called the handshaking or hardware flow control signals.

Bit 0 controls the state of the DTR signal. Writing a 1 into bit 0 raises the DTR signal and
writing a 0 lowers it. Bit 1 controls the state of the RTS signal. Writing a 1 into bit 1 raises the
RTS signal and writing a 0 lowers it.

Bit 2, OUT1, is a general purpose output signal, but it’s not used in the PC architecture. Bit 3,
OUT2, is a general purpose output signal that must always be enabled before interrupts can
occur.

Bit5 Bit4 Bit3 Parity type

0 0 0 None

0 0 1 Odd

0 1 1 Even

1 0 1 Space

1 1 1 Mark

Modem Control Register Bit Definitions

7 6 5 4 3 2 1 0

N/A N/A N/A
enable
loopbk

OUT2
(reqd)

OUT1
(N/A)

enable
RTS

enable
DTR

Basics of Asynchronous Communication 31

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Bit 4 enables an internal loopback mode that can be used to test some facets of proper UART
operation.

Register 5: line status register (read)

This register provides information about line error and line break conditions. It also
provides the status of receive operations (whether a character was received) and transmit
operations (whether the UART is ready to transmit a character).

Bit 7, the FIFO error status bit, is set if a character in the FIFO has a line error. Generally, you
don’t need to worry about this because the error is revealed in the normal fashion when the
character is extracted from the FIFO buffer.

Bit 6, when set, indicates that the transmitter shift register is empty. The shift register, used
internally by the UART, holds the character currently being transmitted while the individual
bits are being shifted onto the output data line.

Bit 5, when set, indicates that the transmitter holding register, register 0, is empty. You
should never write a character to register 0 unless this bit is set. After a character is placed in
the holding register and any character already in the shift register has been transmitted, the
UART moves the new character into the shift register and clears bit 5.

Bit 4 is set whenever a line break is received. This also causes a line error interrupt.

Bits 3 through 1, when set, indicate a line error has occurred. The nature of these line errors
is discussed earlier in this section. All of these bits also generate interrupts.

Bits 4 through 1 are automatically cleared when this register is read.

Bit 0, when set, indicates that characters are waiting in the receive buffer register (register 0)
or the receive FIFO. It remains set until all received data is read.

Line Status Bit Definitions

FIFO
error

shift
register
empty

hold
register
empty

break
received

frame
error

parity
error

data
overrun

char
received

7 6 5 4 3 2 1 0

32 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Register 6: modem status register (read)

Just as the UART can control the modem control signals, it can also read and report on the
status of similar signals that are controlled by the attached device.

The modem status register actually provides two types of information. The most significant
4 bits show the current state of the four modem signals. The least significant 4 bits indicate
which of the signals have changed state since the last time the register was read.

All these signals assume that a modem is connected to the serial port by a cable that contains
all of the proper connections. Some non-modem devices also use these signals to provide
hardware flow control or other device specific control functions.

Bit 7, data carrier detect (DCD), means that the local modem has established a connection
to a remote modem. This bit remains set for as long as this connection is valid.

Bit 6, ring indicator (RI), is set whenever the phone is ringing (i.e., a call is coming in and
needs to be answered).

Bit 5, data set ready (DSR), is generally set whenever a modem is attached and turned on.
This assumes that the modem is configured to provide the DSR signal.

Bit 4, clear to send (CTS), is generally set whenever an attached modem is ready to receive
data. This assumes that the modem is configured to provide the CTS signal.

Bits 3 through 0 are set whenever the corresponding modem signal changes. These bits are
automatically cleared when this register is read.

For consistency, bit 2 is called the delta RI bit, but its proper name is the trailing edge ring
indicator. It is set, and generates an interrupt, on the first ring from an incoming call. This is
the most reliable way of checking for an incoming call.

Flow control
Flow control refers to the ability of either end of a communications link to control the rate of
data it is receiving. Flow control is required when different parts of a communication link
have different maximum speeds for handling data.

Modem Control Register Bit Definitions

7 6 5 4 3 2 1 0

DCD
carrier
detect

RI
ring

indicator

DSR
data
set rd

CTS
clear to
send

delta
DCD

delta
RI

delta
DSR

delta
CTS

Basics of Asynchronous Communication 33

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Consider the example of a PC that is receiving data, at a very high speed, from an attached
device (e.g., data collection equipment). Assume this data is arriving so fast that the PC
doesn’t have time to process and store it all. This situation, continuing unchecked, would
eventually overflow the PC’s input buffer and data would be lost.

The solution is for the PC to tell the other end of the link to temporarily stop sending data.
Once the PC is caught up, it tells the other end of the link to resume sending data again. In
lengthy transactions, this stop/start process might be repeated many times. This process is
called flow control.

You can look at flow control from two perspectives: receive flow control and transmit flow
control. Receive flow control is the ability to tell the other side of a communication link to
stop sending data to you. Transmit flow control is the ability to honor a request from the
other end of a communication link to stop sending data to it. In order for your program to
fully implement flow control, it must be able to do both.

Flow control comes in two varieties: hardware flow control and software flow control.
Hardware flow control relies on signal lines within the serial cable to stop and start the flow.
Software flow control relies on special characters in the data stream.

It is the Windows communications driver that imposes or honors flow control requests.
APAX routines request that the driver enable, disable, or modify flow control. After the
communication driver’s flow control feature is enabled, it starts and stops the data flow
automatically, as needed.

The following two subsections discuss flow control between a PC and whatever is directly
attached to the PC’s serial port. This is rather straightforward when the port is attached to an
instrument or another computer. However, when it is connected to a modem, which is then
connected via a phone link to a remote modem and PC, other issues arise. One such issue is
the difference between the local PC to local modem flow control, and the local PC to remote
PC flow control. These issues are covered in “Modem flow control” on page 36.

Hardware flow control
Hardware flow control (sometimes called hardware handshaking) is implemented using
control signal lines in the serial cable. The name and meaning of these signals comes from
the RS-232 specification. Since the RS-232 specification describes a connection between a
terminal and a modem, these hardware flow control signals are properly called modem
control signals and modem status signals.

Many other serial devices—printers, plotters, lab instruments, and so on—also support
these modem signals for hardware flow control. Unfortunately, some manufacturers that
claim to support the RS-232 standard actually treat these signals somewhat differently.

34 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Nevertheless, much common ground does exist, particularly among modems. The type of
automatic hardware flow control used by Windows should work with any popular modem
on the market. However, when connecting to instruments, lab equipment, printers, or other
computers, you might find slight variations in their interpretation of hardware flow control.
Flow control options are provided to help you cope with these situations.

APAX hardware flow control is completely automatic. Once you turn it on, the Windows
communication driver manages the modem control output signals for receive flow control
and honors the modem status input signals for transmit flow control.

Standard hardware flow control requires that the modem should raise the CTS signal before
the PC will transmit characters, and that the PC should lower the RTS signal when its input
buffer fills while receiving. Once the PC has drained the input buffer it raises the RTS signal
again. Variations on this flow control scheme exist (using different control lines, lowering
signals instead of raising them) but they can all be handled using the same concepts.

Flow control happens automatically. The application can continue to send and receive
characters without regard for flow control. The only issue you might need to be concerned
about is how to determine if sufficient output buffer space is available before sending data.
That is, you must handle the possibility that characters won’t be transmitted immediately
because they are blocked by flow control. You can easily check for available space by reading
the OutBuffFree property of the APAXPort control.

This covers everything you need to know to use hardware flow control with APAX. The
discussion continues with a more detailed look at hardware flow control. If you’re curious,
you might want to read on.

Let’s look at the case of a PC that is sending commands to a laboratory instrument and
receiving large amounts of data back from it.

data input
data output

DTR
RTS
DSR
CTS

data input
data output
DTR
RTS
DSR
CTS

PC Instrument

Basics of Asynchronous Communication 35

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

The lines between the PC and the instrument represent some of the physical lines within the
cable connecting these two devices. The meaning of the lines marked data input and data
output should be obvious (that’s where the data flows). The names of the other signals are
straight from the RS-232 specification. The arrows in the diagram indicate whether a signal
is an output from the PC or an input to the PC. A quick glance shows that DTR and RTS are
outputs and DSR and CTS are inputs. The following is an explanation of the acronyms used:

• DTR - data terminal ready

• RTS - request to send

• DSR - data set ready (“data set” is another term for modem)

• CTS - clear to send

These signals have two states: on and off. (You might also see these two states referred to as
high and low, raised and lowered, or asserted and de-asserted.)

DTR is commonly turned on by your application to indicate that your program is up and
running but not necessarily ready to receive data. RTS is turned on by your program when it
is ready to receive data.

DSR is an input signal from the attached device that, when on, means it is correctly attached
and is turned on, but not necessarily ready to receive data. CTS is an input signal from the
attached device that, when on, means it is ready to receive data.

DTR and DSR aren’t usually used in flow control (although the standard Windows
communication driver and APAX allow it). Instead, DTR is usually turned on when you
open a port just to notify the attached device that the port is now open. Likewise, the
attached device usually turns on DSR as soon as you power it on.

The RTS and CTS signals are the ones commonly used to provide hardware flow control.
These signals are set and monitored automatically by the communication driver. The driver
lowers RTS when its input buffer fills to the threshold you specified and it raises RTS again
when your program has emptied the input buffer below the resume threshold. While
transmitting data, the communication driver honors the setting of the CTS input signal and
won’t transmit unless the signal is high. Whenever the CTS signal switches from low to high,
the communication driver resumes transmitting any data that is waiting in its output buffer.

Software flow control
Software flow control (sometimes called XOn/XOff flow control) is implemented by creating
a “stop” character and a “start” character. The most commonly used characters are XOff
(ASCII 19) and XOn (ASCII 17). When the communication driver receives an XOff
character, it stops sending data to the remote. When it receives an XOn character, it resumes
sending any data that is waiting in its output buffer.

36 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Conversely, if the input buffer rises above the specified threshold, the communication driver
sends an XOff to stop the remote from sending data. Once the input buffer is drained
sufficiently, the driver sends XOn to request the remote to start transmitting again.

As with hardware flow control, all of this is handled automatically by the communication
driver. You only need to enable it.

Buffer margins are built into APAX to account for propagation delays. This situation occurs
because the remote device may continue to send characters for a brief period after the XOff
is sent. The same issue applies to the resuming the data communications. To keep things
going as fast as possible, we don’t want to completely empty the input buffer before sending
the XOn. Since the remote device might take a while to respond to the XOn, it should be sent
before the input buffer is completely empty. Again, this functionality is automatic and built
into the APAXPort control.

APAX also provides support for one way software flow control. The two types of one way
flow control are transmit flow control and receive flow control. With transmit flow control,
data transmission is halted when an XOff is received and resumed when an XOn is received.
With receive flow control, an XOff is sent when the input buffer hits the upper internal buffer
margin, and an XOn is sent when the input buffer drops below the lower internal buffer
margin.

Modem flow control
This discussion focuses on how flow control relates to various modem configurations. The
following diagram is used to discuss modem flow control.

Terminal1 and Terminal2 are PCs. Terminal1 is local; Terminal2 is at a distant location.
Modem1 is the local modem sitting next to the local PC; Modem2 is the remote modem
sitting next to the remote PC. In terms of the RS-232 naming conventions, the terminals are
data terminal equipment (DTEs) and the modems are data communications equipment
(DCEs).

Let’s take the simplest case first. Assume that the two modems are both low-speed (2400
bps), non-MNP, non-V.42 modems. Such modems typically do not support any type of flow
control between the terminal and the modem. The link between two such modems is not

terminal 1 terminal 2

modem 1 modem 2

phone
line

Basics of Asynchronous Communication 37

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

being managed for error control or data compression. When a serial stream of bits leaves
Terminal1, it travels through Modem1, across the phone line into Modem2, and into
Terminal2. So logically, this is a straight line connection and there aren’t any stopping points
where flow control might be needed.

This is not to say that you’d never have flow control in such situations. Certainly you can’t
have hardware flow control, since there’s no direct connection between the modem control
signals from Terminal1 and Terminal2. But you can, and sometimes must, have software
flow control. The software flow control acts as though the modems aren’t part of the
connection at all and only controls flow between Terminal1 and Terminal2 (known as a
pass-through connection).

Let’s say that Terminal1 is sending lots of text to the person sitting in front of Terminal2.
Once the Terminal2 screen fills, that person will want to pause the flow of data while reading
the text. If both terminals are honoring software flow control, then pressing Ctrl-S (which is
the XOff character) on the keyboard is sufficient. This XOff gets transmitted without
interference all the way to Terminal1, which then stops transmitting. When the person in
front of Terminal2 is ready for additional text, Ctrl-Q (which is the XOn character) is
pressed. This XOn gets transmitted to Terminal1, which resumes sending text. This is
software flow control.

Now consider the case of managed modem links. “Managed modem link” means that the
link between Terminal1 and Terminal2 is no longer a pass-through connection. Instead,
Modem1 collects a group of bytes from Terminal1, packages them into a block, and sends
that block, complete with error control information, to Modem2. If the block is received
without errors, Modem2 acknowledges receipt of the block (i.e., it tells Modem1 that it got
the block OK) and passes the stream of bytes on to Terminal2. If there are errors, Modem2
doesn’t pass the data on to Terminal2, but instead asks Terminal1 to retransmit the block.

Before this can work, both modems must agree to the same management scheme. Currently,
the modem industry supports two standards for managing this link: V.42 LAPM (Link
Access Procedure for Modems, a standard supported by CCITT) and MNP (for Microcom
Network Protocol). Describing either of these standards is far beyond the scope of this
manual. If your modem supports one of these standards, then your modem manual will
provide the necessary information.

Each of these standards provides a managed link between the two modems. This provides
opportunities for error detection and correction, data compression, and end-to-end
hardware or software flow control.

The following example clarifies what is meant by end-to-end hardware flow control.
Suppose that Terminal1 is transmitting data at a high rate over the link to Terminal2.
Terminal2 can’t process the data fast enough, so it drops its RTS line, forcing Modem2 to

38 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

stop passing data. This also causes Modem2 to stop accepting data from Modem1 (which
forces Modem1 to stop accepting data from Terminal1). Since Modem1 cannot accept data
any more, it lowers its CTS signal, telling Terminal1 to stop transmitting its data.

With unmanaged links, however, the software flow control is between the terminal and
modem instead of between the two terminals. But, as explained earlier, a managed link’s
flow control between the terminal and modem is just as good as terminal-to-terminal in an
unmanaged link. Managed links generally require either software or hardware flow control.
This is true even if the link is operating at low speeds (2400 bps) since you never know when
modem-to-modem retransmissions might occur, potentially causing the transmitting
terminal to overflow its modem’s buffer.

Serial Communication Under Windows 39

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Serial Communication Under Windows
Windows communications drivers handle the hardware details. Applications rely on a set of
Windows functions to configure and manage the serial port. These functions serve as a
bridge between the communications driver and the applications program.

First, Windows communications routines send serial port control and I/O requests to a
standard communications driver named VCOMM. However, VCOMM does not directly
control the serial port, but relies on port drivers to do that. Windows provides a built-in port
driver for standard serial port hardware.

Second, Windows provides support for multiple concurrent threads. Because of this, a
program can simply create a thread that sleeps while it waits for communications events.

APAX takes advantage of threads to minimize CPU usage, while at the same time
minimizing response time to communications events. When an APAXPort control opens
the associated port, it creates three threads: a communications thread; a timer/dispatcher
thread to handle incoming data; and an output thread to send data in the background.

The communications thread uses the Windows communications functions SetCommMask
and WaitCommEvent to sleep while waiting for communications events (e.g., incoming data
or changes in line or modem status). When a communications event occurs, Windows
wakes up the communications thread, which then notifies the timer/dispatcher thread that a
communications event occurred and must be processed.

As its name suggests, the timer/dispatcher thread has two roles: timing and dispatching. It
sleeps until its sleep time elapses or a communications event occurs. Then the dispatcher
processes the event, checking for any events that are due. If an event is required, the
dispatcher formats and generates the corresponding event.

The dispatcher is working within its own thread, not within your application’s thread. To
avoid synchronization problems, it always generates events via the Windows message
dispatcher (SendMessage). SendMessage assures that the thread that created the window is
active before the message is delivered. Therefore all APAX events are processed on the
expected thread (the thread that created the component in question).

If a needed application thread, say a thread that created a protocol, is blocked (waiting for a
semaphore or other event) when an OnProtocolStatus event is generated, the
OnProtocolStatus event must wait until the protocol thread becomes unblocked. Because
the OnProtocolStatus event is generated from the dispatcher thread, the dispatcher itself
becomes blocked until the OnProtocolStatus can be delivered. This presents the possibility
of the deadlock where neither side can proceed and the application appears to be hung.

40 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

To avoid such deadlocks, trigger events are always generated conditionally. If the recipient
thread doesn’t respond to the SendMessage within a short period of time (usually 3
seconds), the SendMessage attempt is abandoned and the deadlock is prevented. The
downside to this protection is that the event in question is never seen, but this is more
desirable than deadlock.

The best way to avoid missed events is to assure that threads that are expecting events are
never blocked for more than a fraction of a second. If you must block for longer periods, you
should create alternate, unblocked threads for handling the expected serial port, protocol,
fax or other communications events.

Performance issues
Communications applications gain a lot from the Windows architecture: a common API for
communications tasks, multitasking support, and device independence. This ease of use is
unfortunately offset by a loss in performance. The Windows architecture forces a huge
amount of overhead onto communications applications, with the result that the highest
achievable baud rate and throughput will always be reduced.

Because there are so many variables that come into play (machine speed, device settings, ill-
behaved Windows applications, etc.) it is impossible to predict how well an application will
perform.

There are several ways you can optimize performance:

• Use as low a baud rate as possible. For example, don’t use a baud rate of 38.4K baud
when the data rate is only a few hundred bytes per second.

• While communicating, reduce the number of active windows that are performing
background processes. If you are redistributing your application to other users, warn
them of lower data throughput when multiple background windows are active during
communications.

• Use a 16550 UART, which has a 16 byte FIFO buffer.

• In those cases where incoming data is extremely critical, use an intelligent serial port
board, which off-loads serial interrupt processing tasks from the CPU.

Event Management 41

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Event Management
Windows is a message-driven environment and APAX is designed to fit into the Windows
message system. APAX provides a communication dispatcher that is activated regularly to
process data received by the Windows communication driver. The dispatcher transfers the
received data from the Windows input buffer to its own dispatch buffer and, when
appropriate, generates trigger events that can be processed by your application.

The standard dispatcher is started whenever a COM port is opened. Each opened port starts
three new threads that together provide the dispatching functions. When the port is closed
the three threads are released. A Winsock specific dispatcher is used when you are operating
in Winsock mode.

Once the dispatcher gains control, it copies received data from the Windows buffers to its
buffer and updates internal fields with new line or modem status information. If any of these
actions require trigger events, the dispatcher sends a message to the appropriate component
and the component generates the corresponding event.

APAX uses the term “trigger” for any event that can cause the dispatcher to generate a
message. Triggers are associated with a particular APAXPort control and their internal
handling is done transparently to the APAX user.

42 Chapter 3: Advanced Communication Principles

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

 43

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 4: Overviews and Troubleshooting Sessions

Communications programming is such an intricate undertaking—and APAX so
comprehensive a library—that many developers find gaining a broad view of the
requirements and possible solutions for any task to be the largest obstacle they face.

This chapter provides overviews of two issues that have been raised frequently by APAX
users: picking the right modem for your next project and issues regarding voice modems
and TAPI voice support. A third overview offers a collection of tips and techniques for
debugging Windows communications programs and diagnosing common hardware
difficulties.

Two troubleshooting topics give some common questions and answers that appear regularly
in the TurboPower newsgroups regarding communications sessions and file transfers.

44 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Overview: Choosing a Modem
This topic covers recommendations for picking the right modem for your next project.

“What modem should I buy?” is a very common question. Those of you asking the question
probably had a hard time getting a straight answer. Unfortunately, this particular question is
difficult to answer with any reasonable degree of accuracy. This section explains why, along
with some general recommendations for buying your next modem.

It's a jungle out there!
The modem market is extremely dynamic and competitive. Any modem may cease to exist
tomorrow. (Indeed, the manufacturer of the modem may have disappeared.) Those of you
keeping an eye on technology news probably noticed that some of the “big boys” in the
modem business (such as Motorola and Hayes) closed up shop over the last year or two.

This level of competition has driven margins down to a bare minimum. Unfortunately, the
competition seems to be primarily based on price and feature set. Competition is good, but
not when it gets to the point that corners are cut. We’ll mention some specifics about these
“cut corners” a bit later.

You find yourself thinking, “This should be easier…”
The more you learn about modems, their quirks, and how to deal with them, the more you
realize how tough the situation is. There are variations in the hardware and firmware used in
the modems, even modems with the same exact make and model number. These variations
may not be public knowledge: the details of such variations are often kept within the walls of
the modem maker. With modems, like any other piece of hardware, there are variations in
quality due to an imperfect manufacturing process. Granted, the variations are usually kept
to a minimum when you deal with the more respected manufacturers, but they exist
nonetheless. Even top ranked manufacturers can have a bad day (or batch).

Is the situation hopeless? Well, no. To be honest, most modems work reasonably well most
of the time, so there’s no need to panic. Arming yourself with a bit of knowledge before
venturing out to the nearest computer store is worth the effort though; it’ll increase your
chances of getting something with a reasonable level of reliability.

Quick Lesson: Modems 101
What exactly is a modem, anyway? Well, even that is hard to answer these days as it’s become
a bit of a marketing term. As an example, Digital Subscriber Line (DSL) service in the
United States labels the device used to connect the phone line to the computer a modem, but

Overview: Choosing a Modem 45

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

it’s really more of a network router. Strictly speaking, a modem is a
MOdulator/DEModulator. It converts digital signals from the computer’s serial port to
modulated analog signals for the phone line (and vice-versa).

The term “modulated” or “modulation” refers to the technique of combining information
(the data from the serial port) with a carrier wave that travels well through the target
medium (the phone line). The carrier wave for a standard phone line is usually restricted to
audio frequencies, since that is what the phone line (and associated equipment) is designed
to handle. Modulation also makes things like radio and television possible, the carrier wave
there being very high and ultra high frequencies that can travel through air/space.

Besides the basic modulation/demodulation, a modem has a lot of other jobs to do. It needs
to be able to properly connect with a modem on the other end of the line, negotiating things
like the type of carrier to use as well as the type of error correction and data compression to
use. Once a good connection is established and data starts flowing, the modem dynamically
encodes, decodes, compresses, decompresses, modulates, and demodulates the data—all
while checking the data for errors (requesting a resend of any data that has errors). That’s for
simple modem communications. Things like faxing and voice communications add more
factors to the equation.

The good news is most of this work is done without your knowledge (or even APAX’s
knowledge). Just keep in mind that it’s a complex process and things can easily go wrong.

So what should I buy?
Here are some general guidelines. Remember, these are only general guidelines. TurboPower
has several modems that break one or more of these guidelines and still work fine. We also
have a couple modems that follow all the rules and are problematic.

Avoid Winmodems and RPI modems, otherwise known as software modems
These modems offload some of the processing that the modem has to perform to the host
computer. They use software drivers to handle things like compression and error correction
that are normally handled by the hardware/firmware in the modem. To be fair, these
modems have a couple of advantages: the drivers are easy to update, and the overall cost of
the modem is lowered (the whole concept of a software modem probably came about as a
result of the competition in the modem market).

However, software modems have several disadvantages. For example:

• The host computer is forced to donate resources in support of the communications
session (not only the CPU, but also memory, data bus, power, and so on).

• Shifting these duties to software results in an overall loss of efficiency (custom
hardware is better suited to handle this type of processing).

46 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

• Most software modems will replace the standard Windows serial port drivers. This
could affect all serial communications on the system, since all access to the serial
ports will go through the replacement drivers. For example, some replacement drivers
only support 8 data bits, no parity, and 1 stop bit, which would cause garbled
characters if a connection is made by any serial port on the system using any other
serial port settings.

• The modems are tied to the operating system. They currently do not work in alternate
operating systems such as Linux due to the lack of drivers.

• The software drivers that support these modems are proprietary, and cannot be used
directly without license. For this reason, APAX does not have access to the error
correction and compression features of these modems unless the modem is accessed
through TAPI.

How can you tell if a modem is a software modem? Usually, you’ll see “Winmodem” or
“RPI” somewhere on the box. Another indicator is if Windows is the only supported
operating system. A fairly comprehensive database of modems that identifies software
modems can be found at http://www.o2.net/~gromitkc/winmodem.html. This Web site also
has additional information about modems, as well as useful links to other modem Web sites.

Use external modems
This is simply the best way to ensure you get a modem with all its brains intact. It does not
seem to be practical to produce an external modem that uses drivers to handle things like
error correction and compression. An external modem is also easier to monitor and
troubleshoot (most have status indicator lights on the front panel). External modems have
their own power supply, so there is no additional load on your computer’s power supply.
External modems are often easier to install and set up, since you don’t have to open the
computer case and deal with system settings such as IRQs. Admittedly, this situation has
improved somewhat with innovations like Plug and Play, but that’s not available with all
operating systems. USB modems are sometimes Winmodems also. We have found one USB
external modem that supports RS232 and USB. The RS232 connection is not a Winmodem,
but the USB connection is.

Don’t “chase the latest technology”
Modem makers frequently race to hit the market first with a new feature in order to gain
market share. It often takes a little while to make new features reliable though, so the first few
batches of modems sporting a brand new feature often aren’t as reliable as subsequent
batches will be.

Overview: Choosing a Modem 47

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Get a modem with the features you need, and no more
In other words, if you need a modem strictly for faxing, why get a voice modem? This is a
cost saving recommendation for the most part, but there’s a certain “less can go wrong”
issue also.

Get a modem that supports more than one fax class if you'll be faxing
Having options in this area is a good thing. If one of the available standards doesn’t work for
a given situation, another option often will.

Apply common sense
Use well-known brands. It’s tough to know for sure if the maker of your modem will still be
around in a year or two in the event you need a new driver or support for your modem. The
odds seem to be a bit better if you stick to an established brand.

Buy from a store with a reasonable return policy

This should allow you to test the modem in the environment and with the application you’ll
be using. If you need to buy many modems for a project, buy one or two first and test them
thoroughly with the code you’ll be using before committing the money for all of them. If
you’re going to be buying several hundred modems, make sure you’re getting modems that
will work well in your situation.

48 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Overview: TAPI Voice Support
This topic offers tips and techniques for using voice modems and TAPI voice support.

• TAPI Voice support is only available with the Unimodem/V TSP (TAPI Service
Provider) and the Unimodem/5 TSP. Unimodem/V is installed by default in Windows
95OSR2, Windows 98 and Windows ME. Unimodem/5 is installed by default in
Windows 2000. A voice modem that is TAPI compliant and accepts the AT+V or
AT#V command set is also required. Unimodem/V is available for download from
Microsoft’s web site for Windows 95. A list of voice modems that Microsoft has tested
is included in the Unimodem/V and Unimodem/5 installation’s Readme. TAPI Voice
support is not available in Windows NT 4.0 unless the modem manufacturer provides
a voice-enabled TSP.

• Windows 95 OSR1 does not come with Unimodem/V, but OSR2 does. You can verify
whether you have Unimodem/V by checking the version number of the
Windows\System\Unimdm.tsp. It will be 4.1 or greater for Unimodem/V.

• Windows NT does not support the Unimodem/V Driver. However, some
manufacturers may supply their own TAPI compliant driver for NT support.
Windows 2000 includes Unimodem/5, which is fully voice capable. Unimodem/V
and Unimodem/5 are not the same thing. The “V” in Unimodem/V stands for
“Voice”, the “5” in Unimodem/5 is for NT 5 (Windows 2000).

• Be aware that manufacturers (hardware and TSPs) may include or exclude TAPI
functionality at their discretion. Some devices may or may not support certain
functionality.

• Implement organized and optimized state machines in the OnTapiDTMF and/or
OnTapiWaveNotify event handlers if you are implementing DTMF for automated
Voice and wave recording prompting.

• Both the telephone line and the modem must support Caller ID for an application to
support it. Caller ID formats vary around the world: make sure your modem supports
the format used by your telephone company.

• Wave files used in TAPI applications must be of a specific format. Simply opening the
Sound Recorder and recording will not provide compatible WAVE files. PCM 8,000
Hz, 16 Bit, Mono is usually a valid format, but you will have better sound quality if
you use a format directly supported by your modem. (See your modem’s
documentation for the native formats it supports.) You can convert other WAVE files
by running Sound Recorder, opening an existing WAVE file, selecting the Properties
Dialog, choosing the Convert Now... button and changing the settings. It is a good
idea to go ahead and create a new TAPI quality selection for the wave type list.

Overview: TAPI Voice Support 49

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

• Trim your wave prompts. In sound recorder (or any wave editor), trim silence from
the beginning and the end of the wave file. Otherwise, users may get impatient with
your application.

• In general, it is good practice to set InterruptWave to True. This allows callers to break
the current wave prompt being played and proceed with the call. However, if there is a
voice prompt that must be listened to completely before the caller should proceed, set
InterruptWave to False for that single prompt. Always reset InterruptWave back to
True when possible.

• The sound quality provided by a voice modem varies greatly between manufacturers,
models, and sometimes the modem batch. The best sound quality and control will
come with a dedicated voice board such as those provided by Dialogic, BrookTrout,
MediaPhonics, etc. Regular, off the shelf voice modems are primarily data modems
with the voice command set added on. Many voice modems do not have facilities for
volume control or audio stream normalization. The dedicated voice boards cost
more, but they are worth it for higher quality voice processing.

• Not all voice modems or TSPs provide accurate call progress detection. This means
that your modem may not be able to tell when the remote party actually answers the
phone when you call them. Unimodem/V and Unimodem/5 bypass call progress
detection to a large extent when an outbound call is made, and they signal a
connection shortly after dialing, regardless of whether or not the called party has
answered the phone. Inbound calls are signaled more reliably, since the TSP knows
when it answered the call. Likewise, Unimodem/V and Unimodem/5 usually cannot
tell when the remote party hangs up the phone. Dedicated voice boards usually
provide much more reliable call progress detection.

• APAX negotiates for TAPI version 1.4, which is backwards compatible in all later
TAPI versions as of this writing. APAX implements a few TAPI 2.0 functions, such as
retrieving the port number associated with the device. APAX also implements the
TAPI Line device; TAPI Phone devices are not supported.

• Unimodem does not provide any voice modem capabilities. Unimodem/V,
Unimodem/5, and some third party TAPI service providers support voice modem
capabilities.

TSP Win 95 OSR1 Win 95 OSR2 Win 98 Win ME NT 4 W2K

Unimodem X X

Unimodem/V Download X X X

Unimodem/5 X

50 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Overview: Debugging Windows Communications
Programs and Communications Hardware

In this section, we provide a collection of tips and techniques for debugging Windows
communications programs and diagnosing common hardware difficulties. Some of these
suggestions are very simple and you may well already use them. Others, however, are
specific to communications programs and might cover issues you haven’t previously faced.

First, always make sure that your hardware is set up correctly (check connections, cabling,
switches, etc.). The best way to verify this is to start with a known, reliable communications
program. If your known, reliable communications program doesn’t work, you know that
there’s something wrong with the serial port, the cable, the device you are connected to, or
the line parameters. In this case, try the techniques listed below for diagnosing hardware
problems.

Using the debugger
If you have used some older communications libraries, you may recall cautions about using
debuggers with communications programs. For example, some DOS debuggers tend to
interfere with communications interrupt service routines and cause loss of incoming data
and prevent outgoing data from being transmitted.

Under Windows you can ignore those cautions. The communications interrupt service
routine is in the Windows device driver and isn’t blocked by Windows debuggers. While in a
debugger, you can freely step into or over any communications routine without harming
either the input or output data flow.

Be aware, however, that it is still possible for incoming data to “stack up” in the
communications driver. While you are leisurely stepping through a routine in the debugger,
your application won’t be processing timer or communications notification messages. If
these messages aren’t processed, data cannot be removed from the communications driver.
If data is arriving in an uninterrupted stream, the driver’s input buffer will eventually fill to
capacity. If flow control is in place, the driver will impose flow control, otherwise data will
certainly be lost.

Using APAX dispatch logging
APAX provides an auditing tool called dispatch logging, which works at a very low level.
Dispatch logging provides an exact chronology (with millisecond timestamps) of all events
processed by the internal dispatcher, as well as state changes in the APAXPort control. It’s
handy for figuring out problems with hardware flow control and other control signal
situations (e.g., “Why isn’t my program answering a ringing phone?”). See “Dispatch
logging” on page 67 for more information on this facility.

Overview: Debugging Windows Communications Programs and Communications Hardware 51

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Getting technical support
TurboPower Software Company offers a variety of technical support options. For details,
please see the “TurboPower Product Support” card enclosed in the original package or go to
www.turbopower.com/support.

Technical support is always challenging and throwing communications problems into the
equation makes the task even more difficult. For that reason, you should do several things
before asking for support. These may seem like trivial things (and some of them are indeed
trivial) but getting them out of the way ahead of time could save you some effort.

• First and foremost, if you’re writing an application and “not getting anything” please
try the supplied, unmodified, demonstration programs. This is a polite way of saying
“make sure it’s plugged in” before deciding your application doesn’t work. Whether
you’re connecting to a piece of data collection equipment, plugging in a new plotter,
or just trying to send commands to a modem, start from a known, reliable program
to prove to yourself that the device is hooked up, properly configured, and connected
with a working cable.

• If you’ve proven that all is well with your hardware but your program still isn’t
behaving properly, be sure to use APAX’s built-in dispatch logging to try to find the
problem.

• Finally, any APAX routine that can fail generates an exception or returns an error
code if an error occurs. A fair percentage of technical support requests are the result of
an application program continuing to use an object after an error has been reported.
To avoid this problem in your programs, be sure to follow up on exceptions and check
all error codes.

• If you tried a “known good program” and applied the built-in logging tool and you’re
still having a problem figuring out what’s going on, then contact us through one of
our support options and we’ll do our best to help you find a solution. Depending on
the problem you’re having, we may ask such questions as “What did the example
programs do in that situation?” or “Did you try TermDemo?” or “What error code
was returned?”. If you have answers to such questions handy, we’ll probably be able to
zero in on the problem much faster. We might also need to discuss your log file. Please
be sure to have such files available when the problem warrants it.

52 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Common problems
Here’s a brief discussion of some of the common problems that popped up during
development and testing of APAX. They are organized in a question and answer format.

Nothing works, not even the supplied test programs. What’s wrong?
It may be a hardware or cabling problem that you’ll need to figure out before you can go any
further. Common problems include disconnected, improperly configured, or outright bad
modems. Other causes include two or more serial ports using the same system resource(s),
or another device (e.g.: a mouse or network card) using a system resource usually reserved
for a serial port.

Despite the increasing power and sophistication of desktop computer systems, serial
communications remains a remarkably primitive and awkward set of standards and
practices that leaves a lot of room for problems to arise.

The modem isn’t working. What do I do?
Modems are peculiarly delicate devices; they can be easily damaged by physical events, static
discharge, or “spike” currents over the phone line. They even sometimes fail right out of the
box.

In general:
• Make sure that the phone line is attached and is live (check with an actual phone

device to make sure you get a dial tone).

• Make sure the phone cord is going into the correct modem jack. Most modems have
two: one for the “line” into which you should plug the line that is going to the wall
jack, and one for the “phone” which allows you to attach a phone or other device
beyond the modem.

If you’re using an external modem:
• Make sure the modem is plugged in and turned on (you should see lights on the front

panel).

• Make sure that the cable between the computer and the modem is attached to the
correct port on the computer. Some SCSI interface cards have a port that looks exactly
like a 25-Pin serial port. Also make sure you get a “straight through” cable for this
purpose. A “null modem” cable may sound like what you need, but is actually used
for a different purpose.

If you’re using an internal modem:
• Make sure the modem is seated properly in the card slot and that you have the latest

drivers for the modem installed.

Overview: Debugging Windows Communications Programs and Communications Hardware 53

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

• Check for resource conflicts. See the sections below on serial port setup for
information on possible resource conflicts.

If none of these seem to help:
• Make sure the phone cord is good (test with a phone using that cord).

• If possible, try a different modem device in the same situation to eliminate a bad
modem as the problem.

• Try the serial port checks listed next.

 The serial ports aren’t responding. What do I do?
Serial communications on a PC operates through serial “ports”. These originally were
physical wires that had a particular organization and operation. Now your setup may
include “virtual” serial ports that exist only in software; these allow communicating with
many kinds of devices as if they were serial devices (such as USB modems).

For communication through a serial port to occur, the port must be configured correctly.
Serial ports require certain resources from the computer in which they are installed.
Generally this will consist of a interrupt request (IRQ) number, and a base address.

On IBM PC Compatibles, the traditional resource assignments for the first four serial ports
(COM1-COM4) are:

Note that traditionally COM1 and COM3 share an IRQ, as do COM2 and COM4. This is a
hold over from the early days of the IBM PC when there were only 8 IRQs available. The
nature of software at the time made it unlikely that more than one or two ports would be
accessed simultaneously.

On modern systems it is generally desirable and often necessary to set COM3 and COM4 to
different IRQs than those listed in order to prevent conflicts (it’s generally best to leave
COM1 and COM2 where they are). IRQ 5 (traditional for LPT2) is often available for one of
them.

Internal modems generally present themselves as COM ports to the computer and similarly
require their own unique settings.

Port IRQ Base Address
(in hexadecimal)

COM1 4 03F8

COM2 3 03E8

COM3 4 02F8

COM4 3 02E8

54 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Some specialized serial port hardware (multi-port boards) permit IRQ sharing among a
number of ports. These will typically have specialized driver software to manage the
multiple ports.

My modem/serial port card says it’s “Plug and Play”. What does that mean?
Plug and Play is a set of standards that allows computer systems to query devices installed in
the system and determine what they are and their capabilities. Plug and Play devices may
include items built onto the system’s main circuit board, or may include add-on cards of
various kinds.

Many new computer systems include built-in support for Plug and Play hardware. The
Windows 95 and 98 operating systems include extensive system level support for identifying
hardware. Plug and Play under WindowsNT is somewhat sketchy, but Windows 2000 is on
par with Windows 9x/ME.

Some add-on cards for serial ports are Plug and Play, as are many internal modems. Also
most modern computer main boards have two serial ports on-board which are often
handled by Plug and Play.

For one or two ports these should generally work as-is, but a common requirement to get
multiple ports operating correctly is to disable Plug and Play for these ports and set their
resources manually.

How do I set up those “on-board” serial ports?
If your system’s main circuit board (motherboard) features on-board serial ports, there are
generally some settings for these available in the BIOS Setup program.

The BIOS Setup program is usually accessible via a special keystroke at system start-up
(often pressing by Delete or a function key; look for a message indicating how and when
your system boots).

Accessing the Serial Port settings varies widely among BIOS models, so check your main
board or computer manual for where these might be located.

Often, you can set the on-board ports for some kind of automatic mode, which means the
IRQ and address range are set dynamically by Plug and Play when the system starts.

Ports set up in this way will generally end up with standard IRQ and base address
assignments. This is not guaranteed, however, and some software has problems dealing with
ports with peculiar settings.

So what do I do if something isn’t working?
If you’re having problems with serial ports with hardware, manually set IRQ and base
address values (often set by jumpers on an expansion card). Make sure that each port’s
settings are unique.

Overview: Debugging Windows Communications Programs and Communications Hardware 55

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

If you’re having problems with serial ports with Plug and Play settings, try setting the on-
board (or any other Plug and Play) ports to specific IRQs and base addresses rather than
allowing them to be determined dynamically. Using the traditional resource assignments
mentioned above is usually the best approach.

If the ports are on an expansion card, the same caveat applies as for internal modems: make
sure that the card is properly seated in the slot. If the ports are on the main board, there are
typically small cables that run from the system board to the physical port outlets on the back
of the computer. The connectors used to attach the cables to the main board are often small
and may come loose. Make sure they are oriented correctly and well seated on the correct
pins. Some port cards also use similar short cables and the same applies to them.

So how do I fix the Windows settings?
In 32-bit Windows, all hardware is managed through the Device Manager. This is accessible
in the System applet in Control Panel or by right-clicking on My Computer and selecting
Properties, then clicking on the Device Manager tab.

Look for entries under Ports (COM & LPT). Clicking on one of the ports listed there and
selecting Properties will show an informational dialog. The Resources tab has the settings
for the IRQ and Address Range. You can change the IRQ and base address settings here.
Setting them explicitly can sometimes help with Plug and Play conflicts.

What about TAPI?
TAPI (Telephony Application Programming Interface) is a formalized set of routines to
allow programs to make use of various telephony hardware.

Windows 95 introduced a generic implementation of TAPI that all programs could access,
enhanced versions were included in NT 4.0 and later operating systems.

If you’re having trouble using TAPI to access or operate a particular device:

• Make sure the device actually appears in the list of TAPI devices (in the Modems
applet in Control Panel). If it doesn’t, it probably needs to have drivers installed. If you
know you installed the drivers already and the device has previously worked, it may
not be “visible” to the operating system for some reason, which is usually a hardware
issue. Check the sections “The modem isn’t working. What do I do?” on page 52 and
“The serial ports aren’t responding. What do I do?” on page 53 for diagnostics.

• If you’re using Windows 95 you may need to obtain the updated TAPI
(UNIMODEM/V) software from Microsoft. Later Windows versions should already
have installed newer drivers (though it’s still sometimes prudent to check, some
device may have installed older drivers over the new ones, and Microsoft may have
come out with something new after this manual went to print).

56 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

• If you have device names that are not unique within the first 20 characters, early
versions of TAPI sometimes gets confused in device selection. Unfortunately, the only
way to change the TAPI assigned names for these devices is to edit the registry or the
INF file that is used for installing the modem. The best solution is to install the
updated TAPI drivers that don’t have this problem.

• Make sure you have installed the latest drivers (INF files) for your modem. Check the
modem manufacturer’s Web site for updated drivers.

What about Winmodems?
A current trend in modem technology is to simplify the physical hardware of the modem
device and supply some portion of its functionality in the form of software drivers for the
modem. Such devices are generically referred to as “Software Modems”. Because the vast
majority of them are designed to work with some version of the Microsoft Windows
Operating System, are also frequently called “WinModems”.

This approach has made some sophisticated modem technology much cheaper to
implement, but has also created a number of headaches.

First, these software drivers generally expose a TAPI interface, and so these modems often
must be initialized via TAPI in order to work correctly, which can cause problems with older
or otherwise TAPI naive software.

Second, the drivers for these modems are generally operating system specific; a driver for
Win95 may not work on Win98, and almost certainly won’t on NT (much less OS/2 or
Linux). The skills necessary to write good device drivers are deep and hard won, and many
drivers don’t behave entirely as advertised. Also, even if a particular Win95 driver is good, it
doesn’t mean that the NT driver for the same modem is as good (or that the manufacturer
even has one).

Often the installation software for Winmodem drivers will replace the default Windows
serial drivers with ones of their own. These drivers sometimes behave unpredictably when
accessing other serial hardware in the system.

If you’re having trouble getting a software modem (WinModem) to work:

• Make sure that the drivers are installed correctly.

• Make sure you have the latest drivers from the manufacturer.

• Make sure to open the modem using TAPI in your program.

Why am I getting overrun errors?
A UART overrun occurs when a character is received at the serial port before the Windows
communications driver has a chance to process the previous character. That is, characters
are coming too fast for the driver to handle them.

Overview: Debugging Windows Communications Programs and Communications Hardware 57

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

There is a finite limit to the speed at which a given machine can receive data. Because of the
extra layers of overhead in Windows, this limit is substantially lower than under DOS. A
baud rate that worked under DOS simply may not be achievable under Windows.

A more likely cause, however, is that another Windows task is leaving interrupts off for too
long. While interrupts are off, the communications driver isn’t notified of incoming
characters. If interrupts are left off for more than one character-time, it’s very likely that you
will lose characters due to UART overruns.

One known cause of long interrupts-off time is virtual machine creation and destruction.
The only solution is to avoid opening or closing DOS boxes during critical communication
processes.

Interrupts could also be left off by other Windows device drivers or virtual device drivers.

Why do my protocol transfers seem slow?
This usually means that your status routine is taking too much time. You shouldn’t try to do
any lengthy calculations, disk I/O, or any other time consuming activities in your status
procedure. You can test this hypothesis quickly by trying a test run without your status
procedure or with a very simple status procedure instead.

Why am I getting parity and framing errors?
Either you’re operating with a different set of line parameters than the remote device, or
your cable is picking up interference. Generally, the higher the baud rate you select, the more
likely you are to suffer from electrical interference. If you suspect that your cable is picking
up interference from other electrical sources, consider rerouting the cable run away from
such sources.

My protocol transfer never gets started. What’s wrong?
This could be due to any of several problems including mismatched line parameters, wrong
protocol selected, or the file to transmit could not be found. Your best bet is to generate a
dispatch log and see just how far the protocol was able to progress. Also, try one of the
demonstration programs in the same situation to see if it works. Generally, this should
provide enough information to find and correct the problem.

My Zmodem file transfer program generates lots of psBlockCheckError errors and psLongPacket errors,
but other protocols work fine. What’s going on?
The answer in this case is almost always lack of hardware flow control. The problem shows
up in Zmodem but not other protocols because Zmodem is a streaming protocol. Data is
sent in a continuous stream without pauses for acknowledgments. Flow control is required
to prevent the sender from overflowing the modem or the receiver. Remember, flow control

58 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

must be enabled at four places: your software, your modem, the remote software, and the
remote modem. See “Flow control” on page 32 for information on flow control. Consult
your modem manual for the hardware flow control enable command for your modem.

Troubleshooting a Connection Session 59

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Troubleshooting a Connection Session
This topic addresses some common problems for troubleshooting a communications
session.

Every communications session relies on a stable connection to perform at its best. Modern
phone lines and data cables are relatively reliable and connection parameters are somewhat
standardized, but there will come a time when nothing you do seems to work the way you
hope.

Problems with a communications session can come in many forms and at different times in
the session. The first step in troubleshooting a connection session is to make sure the
application is set up correctly for the system on which it is being run. After that, try one of
the example projects that illustrates what you are trying to do (or comes close). These
programs are used as benchmarks for further troubleshooting. Also, use one of the
communications applications installed with the operating system. HyperTerminal or
Terminal can help in identifying system setup issues.

Here are some common problems and how to resolve them:

Why do I get an exception when I try to open the serial port?
To open a port, the APAXPort control tries to activate the serial port of the computer
identified in the ComNumber property. If the port is not present on the system, in use by
another application, not correctly configured at the system level, or the system resources are
too low, an error is generated. You can trap that error and bring up the default Comport
Selection Dialog by setting the ComNumber property to 0 and then opening the port again.

Why won’t my device won’t respond to commands?
If you send configuration and initialization commands to the device and it does not
respond, make sure the device is turned on, the necessary device drivers are loaded, any
serial cables are functional, and that you have the ComNumber property properly set. You
can test the serial cable by using a different cable. Also, send the commands in upper case
and make sure the device is set up to respond with verbose results instead of numerical
codes.

Why does my mouse stop working when I open the port?
If other serial devices stop working when the port is opened, the most likely cause is an
interrupt conflict, which you will need to resolve by reviewing the IRQs used by all devices
on the system.

60 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Why won’t my device won’t dial?
If you get a “No Dialtone” message, make sure the phone cord is inserted into the correct
jack on the modem and the wall. Also make sure the cord is functional by using it with a
phone. In some cases, services supplied by local telephone companies use an interrupted
dialtone as an alert. This can cause a “No Dialtone” message as well.

Why will my device dial but not connect?
If the modems start handshaking but do not complete the connection, try placing the call
again. The telephone company routes each call differently each time and you might have had
a bad connection. Call a different number or modem to verify that the local setup is correct.
Turn off Error Correction on your device.

Why do I get random or garbage characters after I have connected?
Make sure the Parity, StopBits, DataBits, and Baud properties match the system to which
you are connecting. Verify that you are using the same type of flow control on both ends of
the connection.

Why are the characters in the terminal window doubled when I enter them?
Turn off the Echo mode of the modem, or set the TerminalHalfDuplex property to False.

What do I do when I have tried everything but still nothing works?
There are a few times when changing the component properties do not seem to work. If the
phone lines are verified as being good, reset the modem before using it by sending it the
“Reset to factory defaults” command. For most modems, it is “AT&F”<cr>(refer to your
modem manual for the specific command for your modem). After sending this command,
you must wait until the command has been executed by the device before sending additional
commands. If this doesn’t work, look at the system environment. Remove any non-standard
device drivers one-by-one until the problem is eliminated. Then add the device drivers one-
by-one again until the specific driver that is causing the problem is identified. Once it is
identified, contact the device manufacturer for updated drivers. The video drivers are a
good place to start looking, so change the video mode to a standard Windows-supplied
mode. Believe it or not, this simple change has solved everything from strange displays to
eliminating errors while sending files.

Also, many Winmodem, RPI, HSP, or other software modems replace the standard serial
port drivers when they are installed. Some of these replacement drivers do not support
nonstandard port setting (anything other than 8 data bits, no parity, and 1 stop bit). To
compound the problem, there are several replacement drivers that simply ignore attempts to
change port parameters, which will result in garbled text or connection failures when non-
standard setting are used.

Troubleshooting a File Transfer 61

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Troubleshooting a File Transfer
This topic addresses common problems for troubleshooting a file transfer.

You have a stable connection, everything seems to be in order, but the file transfers aren’t
working as you’d expect.

Where do I begin?
The first step is finding out what caused the failure. To do that, look at the ErrorCode
parameter of the OnProtocolFinish event. “Undefined” error codes are usually Windows
API errors. Look these up in the Windows API help files installed with your compiler. Once
you know what caused the failure, you can usually spot the problem easily.

Why does nothing happen when I call StartTransmit or StartReceive?
Set the ProtocolStatusDisplay property to True. This provides visual feedback on the status
of the transfer. If the local transfer is truly not doing anything, then make sure the other end
is set to send or receive the transfer. For example, if you are sending a file with Zmodem, the
sending machine will send ‘rz’ followed by ASCII 13 to let the receiver know something is
coming. If the receiver is not watching for this character sequence, your transfer will
eventually time-out.

Why does only one OnProtocolFinish event fire when I send or receive a batch transfer?
The OnProtocolFinish event fires when the entire protocol session is complete. In a batch
transfer, the protocol session ends with the transfer of the last file in the batch or upon a
terminal error. The ErrorCode parameter of the OnProtocolFinish event tells you what
caused the termination of the entire session. To get the information for the individual files,
use the OnProtocolLog event.

Why are my transfers are slow?
You first need to determine if this is a valid problem. Each character that gets transferred
takes 10 bits, so a 28,800 bps connection will result in 2,880 cps. If you think the transfers are
still slow, flow control is most likely at the root of the problem. Both sides of the transfer
need to implement the same form of flow control. Hardware flow control is preferable over
software flow control but some systems do not support it. If you are using an external
modem, make sure the cable supports hardware flow control signals. A slow transfer can
also be a sign that the connection is not stable. Hang up and try the call again to see if you
can get a better connection. Other conditions that would cause slow transfers are running
other CPU intensive applications during the transfer, an overloaded protocol status event,
and frequent disk access.

62 Chapter 4: Overviews and Troubleshooting Sessions

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

 63

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 5: Serial Ports and Logging

An application uses the APAXPort control to control serial port hardware. All serial port I/O
is performed by calling methods of APAXPort control and by writing event handlers that
respond to serial events.

Sending and receiving data through the serial port is obviously part of the process, but most
communications applications also need to identify and handle data according to a specific
need. The APAXPort control provides high level functionality that simplifies tasks common
to any serial communications application.

The more common RS-232 communications protocol was covered in detail in Chapter 2:
Communications Basics and will not be covered again here.

64 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

RS-485 Support Overview
RS-485 serial networks usually consist of two or more serial devices all connected to the
same 2-wire serial cable. The transmitted data is represented by voltage differences between
the two lines instead of a voltage difference between a single line and a common ground as
in RS-232. This difference allows RS-485 networks to operate over much greater distances
than RS-232.

RS-485 requires specific serial port hardware that supports RS-485 voltages and
conventions. Most standard serial ports provided on a motherboard and even most add-in
serial ports do not support RS-485 mode.

Since both RS-485 wires are required to transmit data, an RS-485 device can either receive
data or transmit data (but not both) at any given moment. RS-485 devices usually spend
most of their time in receive mode, monitoring the line for incoming data. When one device
starts transmitting all other devices in the network receive that data, so messages usually
include an address byte to allow devices to ignore messages not addressed to them.

With such a network, the PC normally acts as a master, addressing and sending data to each
remote slave device and processing its response before moving on to the next device. Before
the PC can transmit, it must take control of the data line. While transmitting, it cannot
receive any data so it must release control of the line after transmitting so it can receive the
response. This switch from transmit to receive mode can be either automatic (controlled by
the RS-485 board or converter), or it can be manual (controlled by the PC software or
driver).

The mechanism provided by RS-485 boards for switching the data line from receive to
transmit mode falls into three categories:

• RTS Control

• Automatic

• Other

Most currently available RS-485 boards use the RTS line to control the state of the data line.
Before transmitting data, the application raises the RTS line of the port, which tells the RS-
485 board to switch to transmit mode. After transmitting the data the application lowers
RTS to switch the line back to receive mode. These boards are supported by the APAXPort
control by using the RS485Mode property (with some exceptions noted in the following
paragraphs).

Some boards and converters handle the RS-485 data line switch automatically, with no
assistance from the software. These boards are supported by APAX but do not require use of
the RS485Mode property.

RS-485 Support Overview 65

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

The few remaining boards use proprietary techniques for providing RS-485 support instead
of the RTS or automatic switching described above. These boards are not specifically
supported by APAX, but can probably be used anyway if your code performs the actions
required by the board's documentation.

RTS control
Since the APAXPort control provides an RTS property, your application could manually
raise RTS before transmitting data and lower RTS after transmitting. This would work in
theory, but is somewhat problematic in that when a PutXxx method has returned, the data
may not have been completely transmitted. Lowering RTS at that time would result in some
data being truncated. Even lowering RTS after a calculated delay would be error prone since
the calculation would have to account for delays in UART (the serial port chip) buffering
and would be susceptible to unpredictable delays due to multi-tasking.

A better approach is to use the APAXPort control’s built-in RTS line control, which is
available through the RS485Mode property. When RS485Mode is set to True, all PutXxx
methods raise RTS before transmitting the first byte, wait for the data to be completely
transmitted, then lower RTS. The wait accurately accounts for data in the UART, assuring
that RTS is lowered at the proper time.

The RTS line control follows the output buffer. If the output buffer empties while your code
is formatting and transmitting a command, the RTS line could be lowered and raised again.
This might cause some RS-485 devices to misinterpret the message.

It is better to pre-format a command in a buffer and use a single PutData call to transmit it
than to format and transmit at the same time using multiple PutXxx commands.

For example, you should use:

Message = "!" + Address + MsgLength + Message + "$"
PutString(Message)

rather than:

PutString("!")
PutString(Address)
PutString(MsgLength)
PutString(Message)
PutString(MsgLength)
PutString("$")

Under Windows 95/98 and Windows 2000, the waiting is handled within APAX since the
communications API doesn't provide the necessary accuracy. Under Windows NT, the
waiting is handled by the serial port driver, since it does provide the necessary accuracy.

66 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

The automatic handling of the RTS line is possible for standard ports in all environments
and for all non-standard serial ports that provide the necessary driver support. Part of this
support (in Windows 95/98 and Windows 2000) includes the detection of the serial port
hardware’s base address. If this address cannot be detected, attempts to transmit in RS-485
mode will raise an error.

If the serial port doesn’t use standard serial port hardware, then RS485Mode cannot provide
automatic RTS line control for that port. In such cases, however, the board likely provides
some other mechanism for handling RS-485 support (assuming it’s RS-485 capable) and
you will need to consult the board’s documentation for details.

Under Windows NT, the waiting is handled within the serial port driver and replacement
drivers must also provide this support in order for the APAXPort control’s RS485Mode
property to work. If they do not, it is again likely that the board provides some other
mechanism for supporting RS-485.

Debugging Facilities 67

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Debugging Facilities
In a perfect world, all programs would work flawlessly as they were typed in. Since things
rarely work out this nicely, it is often necessary to break out the debugging tools and apply
some hard-won debugging knowledge to get programs to behave themselves.
Communications programs introduce some new debugging issues, and your existing tools
and knowledge may no longer be adequate.

For example, suppose you’re writing a data collection program that regularly receives data
from an instrument and writes the data to a database. While testing, you notice that a small
percentage of the data in the database is wrong. Broadly speaking, there are two
explanations for such a problem: 1) the instrument sent bad data; or 2) your program
somehow corrupted the good data before writing it to disk. Given that the errors occur
infrequently, you’d probably have to add specific debugging code to your program to create
an audit report of all received data. Later you’d compare this audit report to the data in the
database. If the data matched, you would know that the instrument sent bad data; otherwise
you could conclude that your program corrupted the data. Either way, you would know what
debugging steps to take next. To gain this insight you would use Dispatch logging.

Dispatch logging
It is often beneficial to know exactly when data arrived at the port. The standard Windows
communications driver doesn’t provide enough information to determine exactly when
data arrived. The next best thing is knowing when the APAX internal dispatcher got the
data, and that’s how dispatch logging works.

Dispatch logging creates an audit trail of each action taken by the APAXPort control. These
entries are stored in a circular queue of a specified size. Since the queue is circular, it
contains information about the most recent transmitted or received characters. Entries in
this queue are of variable length, and the queue can be as large as 16 million bytes.

68 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

The queue can be dumped to a text file at any time. This text file is a report of all dispatcher
events in the following format:

APAX v1.00
Operating System : Windows NT 4.0 Service Pack 4

Time Type SubType Data OtherData
-------- -------- ---------- -------- ---------
00000010 TrDatChg Avail 00000001
00000010 TrgHdAlc Window 7DDE03CE
00000010 TrgHdAlc Window 870302A2
00000010 TrDatChg Avail 00000001
00000010 TrgHdAlc Procedure 00000000
00000010 TrDatChg Avail 00000001
00000010 TrigAllc Data 00000008 rz[0D]
00000010 TrigAllc Data 00000010 [05]
00000010 TrigAllc Data 00000018 [10]
00000010 TrigAllc Data 00000020 [1B]I
00000010 TrigAllc Status 00000029 (Modem status)

The first three lines are the header of the text file a provide the installed version of APAX,
and the current operating system.

The first column of the report is a timestamp. It represents the time elapsed from the time
dispatch logging was turned on to when the entry was made, measured in milliseconds. The
multimedia API TimeGetTime is used to calculate this timestamp, so it should be accurate
to the nearest millisecond. The second column is the major category of log entry, the third
column identifies the log entry subtype, the forth column provides additional information
related to the event (often a handle or data count), and the remaining column adds any
additional information that could be useful for the event being logged.

Debugging Facilities 69

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

The following tables identify possible entries in a dispatch log.

Log entry type: Dispatch
An entry of this type means that a communications event is being processed.

Log entry type: Trigger
An entry of this type means that a trigger is being dispatched by the dispatcher.

Subtype Data Other Data

ReadCom - The Windows
communications driver has
notified APAX that incoming
data is available and APAX’s
dispatcher has, in turn, read
the available data.

The number of
bytes read

The actual
data

WriteCom - APAX has sent data
to the Windows comm driver.

The number of
bytes sent

The actual
data

Line status - A line status
event has been received from
the Windows comm driver.

None None

Modem status - A modem status
event has been received from
the Windows comm driver.

The numeric
value of the
event received

A translation
of the numeric
value. (DCTS,
DDSR, TERI,
DDCD, CTS,
DSR, RI, DCD)

Subtype Data Other Data

Avail - A data avail event is
being dispatched.

The number of
bytes ready to
be read

None

Timer - A timer event is being
dispatched.

The handle of
the trigger

None

Data - A data trigger match
event is being dispatched.

The handle of
the trigger

None

Status - A status trigger is
being dispatched.

The handle of
the trigger

None

70 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Log entry type: TrigAllc
An entry of this type means that a trigger is being allocated.

Log entry type: TrigDisp
An entry of this type means that a trigger is being disposed.

Subtype Data Other Data

Data - A data trigger is being
allocated.

The handle of
the trigger

What the
trigger is
being set to
trigger on

Timer - A timer trigger is
being allocated.

The handle of
the trigger

None

Status - A status trigger is
being allocated.

The handle of
the trigger

The type of
the status
trigger

Subtype Data Other Data

Data - A data trigger is being
deleted.

The handle of
the trigger

None

Timer - A timer trigger is
being deleted.

The handle of
the trigger

None

Status - A status trigger is
being deleted.

The handle of
the trigger

None

Debugging Facilities 71

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Log entry type: TrgHdAlc
An entry of this type means that a trigger handler has been allocated.

Log entry type: TrgHdDsp
An entry of this type means that a trigger handler has been disposed.

Subtype Data Other Data

Window - A window handle based
trigger handler is being
registered with the comport.

The window
handle

None

Procedure - A procedure pointer
based trigger handler is being
registered with the comport.

None None

Method - A method pointer based
trigger handler is being
registered with the comport.

None None

Subtype Data Other Data

Window - A window handle based
trigger handler is being
deregistered from the comport.

The window
handle

None

Procedure - A procedure pointer
based trigger handler is being
deregistered from the comport.

None None

Method - A method pointer based
trigger handler is being
deregistered from the comport.

None None

72 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Log entry type: TrDatChg
An entry of this type means that data associated with the trigger has been changed.

Log entry type: Telnet
An entry of this type logs the telnet negotiation conversation during a Winsock telnet
session. Each SubType shows the type of negotiation being logged.

Subtype Data Other Data

Avail - The data trigger length
value is being changed.

The new length None

Timer - The time-out value for
a particular timer trigger is
being changed.

The handle of
the timer
trigger

The new time

Status - SetStatusTrigger is
being called for a particular
status trigger.

The handle of
the trigger
being changed

The new value
mask for the
trigger

Subtype Data Other Data

Sent WILL - APAX is
acknowledging that it will
support a requested mode.

The numeric
value of the
command being
negotiated

A translation
of the numeric
command

Sent WON’T - APAX is refusing
to support a requested mode.

The numeric
value of the
command being
negotiated

A translation
of the numeric
command

Sent DO - APAX is requesting
the support of a telnet mode.

The numeric
value of the
command being
negotiated

A translation
of the numeric
command

Sent DON’T - APAX is requesting
that a telnet mode not be
supported.

The numeric
value of the
command being
negotiated

A translation
of the numeric
command

Recv WILL - The telnet host is
acknowledging that it will
support a requested mode.

The numeric
value of the
command being
negotiated

A translation
of the numeric
command

Debugging Facilities 73

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Recv WON’T - The telnet host is
refusing to support a requested
mode.

The numeric
value of the
command being
negotiated

A translation
of the numeric
command

Recv DO - The telnet host is
requesting the support of a
telnet mode.

The numeric
value of the
command being
negotiated

A translation
of the numeric
command

Recv DON’T - The telnet host is
requesting that a telnet mode
not be supported.

The numeric
value of the
command being
negotiated

A translation
of the numeric
command

Command - A subnegotiation
command has been received. APAX
currently doesn’t support any
of these commands, but they are
logged nonetheless.

The numeric
value of the
command being
negotiated

The collected
command

Sent Term - A string
identifying the terminal
emulation type has been sent to
the host.

The numeric
value of the
command being
negotiated

The string
sent

Subtype Data Other Data

74 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Log entry type: Packet
An entry of this type is an event that indicates state changes in packets.

Subtype Data Other Data

Enable - The packet is being
enabled. If the packet is using
start- and/or end-strings, the
next log entries are StartStr
and EndStr events.

None The name of
the packet
component

Disable - The packet is being
enabled.

None The name of
the packet
component

StringPacket - A string packet
event is being dispatched. If
the end condition was a string,
the next log entry is another
StringPacket event with the
value of the end string in the
‘other data’ column. If the end
condition was a size event, the
next log entry is a SizePacket
event.

None The name of
the packet
component

SizePacket - Describes the end
value for a StringPacket.

None The value of
the end
condition of
the previously
listed
StringPacket

PcktTimeout - A packet time-out
event is being generated.

None None

StartStr - Describes the start
string for a particular packet.
The event is always generated
as a part of the enable
sequence for the packet, if it
has a start string. See the
Enable event above.

None The value of
the start
string of an
enable
sequence

Debugging Facilities 75

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Log entry type: Error
The dispatcher was called recursively. This is an error and can cause events to be missed.
The cause is usually that event handlers take too long to process their data. No SubTypes
exist for this type of entry.

Log entry type: XModem
Entries for this Type track APAX’s progress through the send or receive XModem protocol
state machine. The SubType indicates the current state of the state machine.

Log entry type: YModem
Entries for this Type track APAX’s progress through the send or receive YModem protocol
state machine. The SubType indicates the current state of the state machine.

Log entry type: ZModem
Entries for this Type track APAX’s progress through the send or receive ZModem protocol
state machine. The SubType indicates the current state of the state machine.

Log entry type: Kermit
Entries for this Type track APAX’s progress through the send or receive Kermit protocol
state machine. The SubType indicates the current state of the state machine.

EndStr - Describes the current
end string for a particular
packet. The event is always
generated as a part of the
enable sequence for the packet,
if it has an end string. See
the Enable event above.

None The end string
of an enable
sequence

Idle - The packet is not
currently collecting data and
is not waiting for a string.

None None

Waiting - The packet is waiting
for its start string to come
in.

None None

Collecting - The packet’s start
condition has been met and thus
the packet currently has
ownership to the incoming data.

None None

Subtype Data Other Data

76 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Log entry type: Ascii
Entries for this Type track APAX’s progress through the send or receive ASCII protocol state
machine. The SubType indicates the current state of the state machine.

Log entry type: User
A user defined event type. You can add custom strings to a comports logfile using the
comport’s AddStringToLog method. These strings have the type User in the log file.

Logging facility
The state of the logging facility is controlled by setting the Logging property to one of the
following values:

Value Explanation

tlOff Turns off logging without saving the log data

tlOn Turns logging on or resumes logging after a pause

tlDump Writes the log data to a new file, turns off logging

tlAppend Appends the log to an existing file, turns off
logging

tlClear Clears the log buffer but leaves logging on

tlPause Pauses logging

Port and Logging References 77

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Port and Logging References
Following is a list of the APAXPort control’s properties, methods, and events that pertain to
basic serial communications (RS-232 and RS-485), and logging facilities. This is only a
subset of the functionality of the APAXPort functionality. Additional properties, methods,
and events are introduced in other chapters.

Properties
Baud

ComNumber

CTS

DataBits

DCD

DeviceType

DSR

DTR

FlowState

HWFlowRequireCTS

HWFlowRequireDSR

HWFlowUseDTR

HWFlowUseRTS

InBuffFree

InBuffUsed

LineError

LogAllHex

Logging

LogHex

LogName

LogSize

OutBuffFree

OutBuffUsed

Parity

PromptForPort

RI

RS485Mode

RTS

StopBits

SWFlowOptions

TAPIMode

XOffChar

XOnChar

Methods
AddStringToLog

Close

FlushInBuffer

FlushOutBuffer

PortOpen

PutData

PutString

PutStringCRLF

SendBreak

Events
OnCTSChanged

OnDCDChanged

OnDSRChanged

OnLineBreak

OnLineError

OnPortClose

OnPortOpen

OnRing

OnRXD

78 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Reference Section

AddStringToLog method

Description
Adds the specified string to the log file specified by the LogName property.

Syntax
expression.AddStringToLog(S)

Remarks
This procedure is useful if you need to add more human-readable content to the log file. The
parameter passed in appears on a new line of the log file followed by a carriage return/line
feed pair. This procedure has no effect if the Logging property is set to tlOff or tlPause, or if
the LogName property is blank.

Example
The following example adds the line handshaking to the log file:

APAXPort1.Logging = tlOn
APAXPort1.AddStringToLog("Handshaking")

See also
Logging, LogName, LogSize, LogHex, LogAllHex

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

S Specifies the string to be added String

Port and Logging References 79

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Baud property

Description
Determines the baud rate used by the port. Read/write.

Data type
Integer

Syntax
expression.Baud[= value]

expression must reference an APAXPort.

Remarks
Default: 19200

Generally acceptable values for Baud include 300, 1200, 2400, 4800, 9600, 19200, 38400,
57600, and 115200.

If the port is open when Baud is changed, the line parameters are updated as soon as any
data existing in the output buffer has drained. Baud does not validate the assigned value
before passing it on to the communications driver. The driver may reject the value, leading
to an exception.

See also
ComNumber, DataBits, Parity, StopBits

80 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Close method

Description
Closes the port.

Syntax
expression.(Close)

expression must reference an APAXPort.

Remarks
Calling Close terminates an active connection and closes the port. This method applies to
all device types. After the physical port has been closed and input and output buffers have
been deallocated, the OnPortClose event is fired.

See also
OnPortClose, PortOpen

ComNumber property

Description
Determines the serial port number (Com1, Com2, etc.) used by the APAXPort component.
Read/write.

Data type
Integer

Syntax
expression.ComNumber[= value]

expression must reference an APAXPort.

Remarks
Default: 0

ComNumber does not validate the port number. When the port is opened, the Windows
communications driver will determine whether the port number is valid and generate an
error if it is not.

If the port is open when ComNumber is changed, the existing port is closed and then
reopened using the new number. Triggers are maintained during this operation.

Port and Logging References 81

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example creates, configures, and opens a comport component at run time:

Dim MyPort as APAXPort
...
Set MyPort = new APAXPort
MyPort.ComNumber = 1 'use Com1
MyPort.Baud = 9600
MyPort.Parity = pNone
MyPort.DataBits = 8
MyPort.StopBits = 1
ApdComPort.Connected = True
MyPort.PortOpen

See also
Baud, Parity, DataBits, StopBits, PortOpen, DeviceType

CTS property

Description
Returns True if the port’s clear to send line (CTS) is set. Read-only, run-time.

Data type
Boolean

Syntax
expression.CTS

expression must reference an APAXPort.

Remarks
The following example transmits a large block of data after assuring that the remote has
raised the CTS signal:

if APAXPort1.CTS = True Then
APAXPort1.PutData(BigBlock, 1024)

End If

See also
DSR

82 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

DataBits property

Description
Determines the number of data bits of the port. Read/write.

Data type
Integer

Syntax
expression.DataBits[= value]

expression must reference an APAXPort.

Remarks
Default: 8

Acceptable values are 5, 6, 7, and 8.

If the port is open when DataBits is changed, the line parameters are updated immediately.
DataBits does not validate the assigned value before passing it on to the communications
driver. The driver may reject the value, leading to an exception.

See also
Baud, ComNumber, Parity, StopBits

DCD property

Description
Returns True if the port’s data carrier detect line (DCD) is set. Read-only, run-time.

Data type
Boolean

Syntax
expression.DCD

expression must reference an APAXPort.

Remarks
DCD is usually set only for serial connections made through a modem. Your modem sets
DCD to indicate that it has a connection with another modem. If either modem hangs up or
the connection is lost for another reason, your modem clears DCD (assuming it is

Port and Logging References 83

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

configured to do so.) Hence, if your application uses a modem connection, you might want
to check DCD periodically to assure that the connection is still valid or, better yet, use a
modem status trigger for the same purpose.

The following example detects carrier loss and handles the error:

if APAXPort1.DCD = False then
'handle unexpected disconnect

End If

See also
DSR

DeviceType property

Description
Defines the mode in which the port operates.

Syntax
expression.DeviceType[= value]

expression must reference an APAXPort.

Settings
Valid settings for DeviceType are:

Remarks
Default: xdtDirect

See also
PortOpen, WinsockConnect, WinsockListen, TAPIAnswer, TAPIDial

Constant Description

xdtDirect Direct mode is generally used to communicate with a
serial device over a direct connection.

xdtTAPI TAPI mode is generally used to establish or answer
calls using TAPI features.

xdtWinSock Winsock mode is used to establish communications
over network and Internet connections.

84 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

DSR property

Description
Returns True if the port’s data set ready line (DSR) is set. Read-only, run-time.

Data type
Boolean

Syntax
expression.DSR

expression must reference an APAXPort.

Remarks
DSR is a signal that the remote device sets to indicate that it is attached and active. You might
want to check this signal before transmitting and periodically thereafter.

See also
DCD

DTR property

Description
Determines the current state of the data terminal ready signal (DTR). Read/write.

Data type
Boolean

Syntax
expression.DTR[= value]

expression must reference an APAXPort.

Remarks
Default: True

Some types of remote devices require that this signal be raised before they transmit. For
example, the default configuration of many modems is not to transmit data unless the PC
has raised the DTR signal. Use this property to check the status of the DTR line or to assert
the DTR line to inform the remote that you are ready to receive.

Port and Logging References 85

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example lowers the DTR signal after opening the port and later raises it again:

Dim MyPort as APAXPort
Set MyPort = New APAXPort
MyPort.PortOpen
MyPort.DTR = False
...
MyPort.DTR = True

See also
RTS

FlowState property

Description
Returns the state of hardware or software flow control. Read-only, run-time.

Data type
TFlowControlState

Syntax
expression.FlowState

expression must reference an APAXPort.

Settings
Valid settings for FlowState are:

Constant Description

fcOff Flow control is not in use.

fcOn Flow control is enabled, but blocking is not
imposed in either direction.

fcDSRHold The application cannot transmit because the other
side has lowered the DSR line.

fcCTSHold The application cannot transmit because the other
side has lowered the CTS line.

fcDCDHold The application cannot transmit because the other
side has lowered the DCD line. Note: The APAXPort
does not currently provide DCD flow control.

86 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Remarks
Windows doesn’t provide information on the state of receive hardware flow control, so fcOn
is returned even if the local device is blocking received data by using a hardware flow control
line.

In the rare case where both hardware and software flow control are enabled for a port,
FlowState can return ambiguous results. In particular, if flow is blocked by both hardware
and software flow control, FlowState can return only the fact that one type is causing the
block.

See also
HWFlowUseDTR, HWFlowUseRTS, HWFlowRequireDSR, HWFlowRequireCTS,
SWFlowOptions

FlushInBuffer method

Description
Clears the input buffers used by both the Windows device driver and the APAX
internal dispatcher.

Syntax
expression.FlushInBuffer

expression must reference an APAXPort.

Remarks
FlushInBuffer also resets all data triggers to disregard any cleared data.

fcXOutHold The application cannot transmit because it has
received an XOff character from the remote.

fcXInHold The application has sent an XOff character to the
remote to prevent it from transmitting data.

fcXBothHold The application has both sent and received an
XOff character.

Constant Description

Port and Logging References 87

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example flushes all data currently in the input buffer if a line error is detected:

If APAXPort1.LineError <> leNoError Then
'...error handling
APAXPort1.FlushInBuffer

End If

You probably shouldn’t do this routinely after each line error. Logic like this is usually
appropriate only before trying to synchronize with the transmitter in a file transfer protocol.

See also
FlushOutBuffer

FlushOutBuffer method

Description
Clears the output buffers used by both the Windows device driver and the APAX
internal dispatcher.

Syntax
expression.FlushOutBuffer

expression must reference an APAXPort.

Remarks
Any data pending in the output buffer is not transmitted.

Example
The following example discards any data in the output buffer after a remote device reports
an error:

If ErrorDetected = True Then
APAXPort1.FlushOutBuffer
'...resync with remote

End If

See also
FlushInBuffer

88 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

HWFlowRequireCTS property

Description
Determines the CTS hardware flow control options for the port. Read/write.

Data type
Boolean

Syntax
expression.HWFlowRequireCTS[= value]

expression must reference an APAXPort.

Remarks
Hardware flow options can be combined to enable hardware flow control.

Receive flow control stops a remote device from transmitting while the local input buffer is
too full. Transmit flow control stops the local device from transmitting while the remote
input buffer is too full.

Setting the HWFlowUseRTS and/or HWFlowUseDTR properties to True enables receive
flow control. When receive flow control is enabled, the corresponding modem control
signals (RTS and/or DTR) are lowered when the input buffer reaches the 90% level. The
remote must recognize these signals and stop sending data while they are held low.

As the application processes received characters, buffer usage eventually drops below the
10% level. At that point, the corresponding modem control signals are raised again. The
remote must recognize these signals and start sending data again.

Transmit flow control is enabled by setting the HWFlowRequireCTS and/or
HWFlowRequireDSR properties to True. With one or both of these options enabled, the
Windows communications driver doesn’t transmit data unless the remote device is
providing the corresponding modem status signal (CTS and/or DSR). The remote must
raise and lower these signals when needed to control the flow of transmitted characters.

Note that flow control using RTS and CTS is much more common than flow control using
DTR and DSR.

Port and Logging References 89

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example enables bi-directional hardware flow control:

MyPort.HWFlowUseRTS = True
MyPort.HWFlowRequireCTS = True
... 'use port
MyPort.HWFlowUseRTS = False
MyPort.HWFlowRequireCTS = False

RTS is lowered for receive flow control and CTS is checked for transmit flow control. Later in
the application, hardware flow control is disabled.

See also
HWFlowUseDTR, HWFlowUseRTS, HWFlowRequireDSR, HWFlowRequireCTS,
SWFlowOptions

HWFlowRequireDSR property

Description
Determines the DSR hardware flow control options for the port. Read/write.

Data type
Boolean

Syntax
expression.HWFlowRequireDSR[= value]

expression must reference an APAXPort.

Remarks
Hardware flow options can be combined to enable hardware flow control.

Receive flow control stops a remote device from transmitting while the local input buffer is
too full. Transmit flow control stops the local device from transmitting while the remote
input buffer is too full.

Setting the HWFlowUseRTS and/or HWFlowUseDTR properties to True enables receive
flow control. When receive flow control is enabled, the corresponding modem control
signals (RTS and/or DTR) are lowered when the input buffer reaches the 90% level. The
remote must recognize these signals and stop sending data while they are held low.

As the application processes received characters, buffer usage eventually drops below the
10% level. At that point, the corresponding modem control signals are raised again. The
remote must recognize these signals and start sending data again.

90 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Transmit flow control is enabled by setting the HWFlowRequireCTS and/or
HWFlowRequireDSR properties to True. With one or both of these options enabled, the
Windows communications driver doesn’t transmit data unless the remote device is
providing the corresponding modem status signal (CTS and/or DSR). The remote must
raise and lower these signals when needed to control the flow of transmitted characters.

Note that flow control using RTS and CTS is much more common than flow control using
DTR and DSR.

Example
The following example enables bi-directional hardware flow control:

MyPort.HWFlowUseRTS = True
MyPort.HWFlowRequireCTS = True
... ‘use port
MyPort.HWFlowUseRTS = False
MyPort.HWFlowRequireCTS = False

RTS is lowered for receive flow control and CTS is checked for transmit flow control. Later in
the application, hardware flow control is disabled.

See also
HWFlowUseDTR, HWFlowUseRTS, HWFlowRequireDSR, HWFlowRequireCTS,
SWFlowOptions

HWFlowUseDTR property

Description
Determines the DTR hardware flow control options for the port. Read/write.

Data type
Boolean

Syntax
expression.HWFlowUseDTR[= value]

expression must reference an APAXPort.

Remarks
Hardware flow options can be combined to enable hardware flow control.

Receive flow control stops a remote device from transmitting when the local input buffer is
too full. Transmit flow control stops the local device from transmitting when the remote
input buffer is too full.

Port and Logging References 91

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Setting the HWFlowUseRTS and/or HWFlowUseDTR properties to True enables receive
flow control. When receive flow control is enabled, the corresponding modem control
signals (RTS and/or DTR) are lowered when the input buffer reaches the 90% level. The
remote must recognize these signals and stop sending data while they are held low.

As the application processes received characters, buffer usage eventually drops below the
10% level. At that point, the corresponding modem control signals are raised again. The
remote must recognize these signals and start sending data again.

Transmit flow control is enabled by setting the HWFlowRequireCTS and/or
HWFlowRequireDSR properties to True. With one or both of these options enabled, the
Windows communications driver doesn’t transmit data unless the remote device is
providing the corresponding modem status signal (CTS and/or DSR). The remote must
raise and lower these signals when needed to control the flow of transmitted characters.

Note that flow control using RTS and CTS is much more common than flow control using
DTR and DSR.

Example
The following example enables bi-directional hardware flow control:

MyPort.HWFlowUseRTS = True
MyPort.HWFlowRequireCTS = True
... 'use port
MyPort.HWFlowUseRTS = False
MyPort.HWFlowRequireCTS = False

 RTS is lowered for receive flow control and CTS is checked for transmit flow control. Later
in the application, hardware flow control is disabled.

See also
HWFlowUseRTS, HWFlowRequireDSR, HWFlowRequireCTS, SWFlowOptions

92 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

HWFlowUseRTS property

Description
Determines the RTS hardware flow control options for the port. Read/write.

Data type
Boolean

Syntax
expression.HWFlowUseRTS[= value]

expression must reference an APAXPort.

Remarks
Hardware flow options can be combined to enable hardware flow control.

Receive flow control stops a remote device from transmitting while the local input buffer is
too full. Transmit flow control stops the local device from transmitting while the remote
input buffer is too full.

Setting the HWFlowUseRTS and/or HWFlowUseDTR properties to True enables receive
flow control. When receive flow control is enabled, the corresponding modem control
signals (RTS and/or DTR) are lowered when the input buffer reaches the 90% level. The
remote must recognize these signals and stop sending data while they are held low.

As the application processes received characters, buffer usage eventually drops below the
10% level. At that point, the corresponding modem control signals are raised again. The
remote must recognize these signals and start sending data again.

Transmit flow control is enabled by setting the HWFlowRequireCTS and/or
HWFlowRequireDSR properties to True. With one or both of these options enabled, the
Windows communications driver doesn’t transmit data unless the remote device is
providing the corresponding modem status signal (CTS and/or DSR). The remote must
raise and lower these signals when needed to control the flow of transmitted characters.

Note that flow control using RTS and CTS is much more common than flow control using
DTR and DSR.

Port and Logging References 93

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example enables bi-directional hardware flow control with limits at the 10%
and 90% levels of the buffer:

MyPort.HWFlowUseRTS = True
MyPort.HWFlowRequireCTS = True
... 'use port
MyPort.HWFlowUseRTS = False
MyPort.HWFlowRequireCTS = False

RTS is lowered for receive flow control and CTS is checked for transmit flow control. Later in
the application, hardware flow control is disabled.

See also
HWFlowUseDTR, HWFlowUseRTS, HWFlowRequireDSR, HWFlowRequireCTS,
SWFlowOptions

InBuffFree property

Description
Returns the number of bytes free in the dispatcher buffer. Read-only, run-time.

Data type
Integer

Syntax
expression.InBuffFree

expression must reference an APAXPort.

Remarks
This routine returns the number of bytes of free space in the APAXPort dispatcher buffer. It
does not tell you the free space in the Windows communications driver input buffer.

94 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Because the dispatcher automatically drains the Windows buffer, its status is rarely relevant
to the program.

Example
The following example checks to see that there’s significant free space in the dispatcher
buffer before performing a time-consuming operation that doesn’t drain the buffer:

if MyPort.InBuffFree > 128 Then
'...perform a time-consuming operation

End If

See also
InBuffUsed

InBuffUsed property

Description
Returns the number of bytes currently available for reading from the dispatcher buffer.
Read-only, run-time.

Data type
Integer

Syntax
expression.InBuffUsed

expression must reference an APAXPort.

Remarks
This routine returns the number of bytes currently loaded in the APAX dispatcher buffer. It
does not include bytes in the Windows communications driver input buffer that haven’t yet
been moved to the dispatcher buffer.

Because the dispatcher automatically drains the Windows buffer, this buffer’s status is rarely
relevant to the program.

The following example checks InBuffUsed to see if received data is available for processing:

if MyPort.InBuffUsed <> 0 Then
'...process data

End If

See also
InBuffFree

Port and Logging References 95

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

LineError property

Description
Returns a non-zero value if line errors have occurred since the last call to LineError.
Read-only/run-time.

Data type
Integer

Syntax
expression.LineError

expression must reference an APAXPort.

Remarks
Line errors can occur during calls to the PutData or PutString methods. If your application
must detect line errors, it should check LineError after each such call or group of calls.

The LineError property returns 0 if no errors were detected or the port is not yet open.
Otherwise it returns a numeric value from the following list that indicates the most severe
pending error:

Constant Value Description

leBuffer 1 Buffer overrun in COMM.DRV

leOverrun 2 UART receiver overrun

leParity 3 UART receiver parity error

leFraming 4 UART receiver framing error

leCTSTO 5 Transmit time-out waiting for CTS

leDSRTO 6 Transmit time-out waiting for DSR

leDCDTO 7 Transmit time-out waiting for DCD (RLSD)

leTxFull 8 Transmit queue is full

96 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example checks for line errors after receiving data with GetBlock:

Ch = MyPort.PutString("Testing")
if MyPort.LineError <> 0 Then

'...error handling
End If

See also
PutData, PutString

LogAllHex property

Description
Determines whether or not all port data is written to the log file in hex format. Read/write.

Data type
Boolean

Syntax
expression.LogAllHex[= value]

expression must reference an APAXPort.

Remarks
By default, only certain characters are logged in hexadecimal format. Set this property to
True to log all characters in hexadecimal format.

See also
LogHex, LogName, LogSize, Logging

Port and Logging References 97

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Logging property

Description
Determines the current logging state. Read/write.

Data type
TTraceLogState

Syntax
expression.Logging[= value]

expression must reference an APAXPort.

Valid settings for Logging are:

Remarks
Default: tlOff

Setting this property to tlOn allocates an internal buffer of LogSize bytes and informs the
dispatcher to start using this buffer. To disable logging without writing the contents of the
log buffer to a disk file, set Logging to tlOff. This also frees the internal buffer.

Setting Logging to tlDump overwrites any existing file named LogName, or creates a new
file if a file of this name does not exist.

Constant Value Description

tlOff 0 No logging is performed

tlOn 1 Enables logging

tlDump 2 Writes the contents of the logging buffer
to disk and sets logging to tlOff

tlAppend 3 Appends the contents of the logging buffer
to disk and sets logging to tlOff

tlClear 4 Clears the contents of the logging buffer
and continues logging

tlPause 5 Temporarily pauses logging. To resume
logging, set this property to tlOn

98 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example turns on logging and later dumps the logging buffer to APAX.LOG:

MyPort.Logging = tlOn
'...
MyPort.LogName = "APAX.LOG"
MyPort.Logging = tlDump

See also
LogHex, LogAllHex, LogName, LogSize, Tracing

LogHex property

Description
Determines whether non-printable characters stored in a dispatch logging file are written
using hexadecimal or decimal notation. Read/write.

Data type
Boolean

Syntax
expression.LogHex[= value]

expression must reference an APAXPort.

Remarks
Default: True

See also
Logging, LogName, LogSize, LogAllHex

Port and Logging References 99

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

LogName property

Description
Determines the name of the file used to store a dispatch log. Read/write.

Data type
String

Syntax
expression.LogName[= value]

expression must reference an APAXPort.

Remarks
Default: LogName is APAX.LOG

See also
Logging, LogSize, LogAllHex

LogSize property

Description
Determines the number of bytes allocated for the dispatch logging buffer. Read/write.

Data type
Integer

Syntax
expression.LogSize[= value]

expression must reference an APAXPort.

Remarks
Default: 10000

Each dispatch entry consumes at least 10 bytes. Many entries use additional buffer space to
store a sequence of received or transmitted characters.

100 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

This property should normally be set before a logging session begins. If a changed value is
assigned to LogSize while a logging session is active, the current session is aborted (which
clears all information from the logging buffer), the new buffer is allocated, and a new
logging session is started.

See also
Logging, LogName, LogAllHex

OnCTSChanged event

Description
Defines an event that is fired any time the CTS modem line changes state.

Syntax
Private Sub expression OnCTSChanged(ByVal NewValue as Boolean)

Remarks
This event is triggered automatically whenever the CTS (clear to send) modem status line
changes state. The current state of the CTS line is determined by reading the value of
NewValue. NewValue is True when the CTS line transitioned to a high (set) state. Otherwise,
NewValue is False.

See also
OnDCDChanged, OnDSRChanged, OnLineBreak, OnLineError, OnRing

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

NewValue Represents the current state of the
CTS line

Boolean

Port and Logging References 101

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnDCDChanged event

Description
Defines an event that is fired any time the DCD modem line changes state.

Syntax
Private Sub expression_OnDCDChanged(ByVal NewValue as Boolean)

Remarks
This event is triggered automatically whenever the DCD (data carrier detect) modem status
line changes state. The current state of the DCD line is determined by reading the value of
NewValue. NewValue will be True if the DCD line transitioned to a high (set) state.
Otherwise, NewValue will be False.

See also
OnCTSChanged, OnDSRChanged, OnLineBreak, OnLineError, OnRing

OnDSRChanged event

Description
Defines an event that is fired any time the DSR modem line changes state.

Syntax
Private Sub expression_OnDSRChanged(ByVal NewValue as Boolean)

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

NewValue Represents the current state of the
DCD line

Boolean

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

NewValue Represents the current state of the DSR
line

Boolean

102 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Remarks
This event is triggered automatically whenever the DSR (data set ready) modem status line
changes state. The current state of the DSR line is determined by reading the value of
NewValue. NewValue will be True if the DSR line transitioned to a high (set) state.
Otherwise, NewValue will be False.

See also
OnCTSChanged, OnDCDChanged, OnLineBreak, OnLineError, OnRing

OnLineBreak event

Description
Defines an event that is fired any time a line break is received.

Syntax
Private Sub expression_OnLineBreak()

expression references the APAXPort that fired the event.

Remarks
This event is triggered automatically whenever the line break condition was received.

See also
OnCTSChanged, OnDCDChanged, OnDSRChanged, OnLineError, OnRing

OnLineError event

Description
Defines an event that is fired any time a line error occurs.

Syntax
Private Sub expression_OnLineError(ByVal Error as TAPXLineError)

Part Description Data Type

expression References the APAXPort object
that fired the event

APAXPort

Error Indicates the line error that
occurred

TAPXLineError

Port and Logging References 103

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Settings
Possible values for Error are:

Remarks
Line errors can occur during calls to PutData, PutString, or PutStringCRLF. Line errors can
also occur after data has been received (following the OnRXD event). If your application
must detect line errors, you should write a handler for this event.

See also
OnCTSChanged, OnDCDChanged, OnDSRChanged, OnLineBreak, OnRing, PutData,
PutString, PutStringCRLF

OnPortClose event

Description
Defines an event that is fired just before the port is closed.

Syntax
Private Sub expression_OnPortClose()

expression refers to the APAXPort that is about to be closed.

Remarks
Use an event handler here to perform any necessary cleanup prior to closing the port and
freeing the port’s resources.

See also
OnPortOpen

Constant Description

xlsParity A parity error occurred

xlsFraming A framing error occurred

xlsOverrun An overrun error occurred

104 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnPortOpen event

Description
Defines an event that is fired just before the port is opened.

Syntax
Private Sub expression_OnPortOpen()

expression refers to the APAXPort that is about to be opened.

Remarks
Use an event handler here to perform any necessary setup prior to opening the port.

See also
OnPortOpen

OnRing event

Description
Defines an event that is fired any time a ring indication is received.

Syntax
Private Sub expression_OnRing()

expression refers to the APAXPort that fired the event.

Remarks
This event is triggered automatically whenever the leading edge of a ring signal is detected.

See also
OnCTSChanged, OnDCDChanged, OnDSRChanged, OnLineError, OnLineBreak

Port and Logging References 105

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnRXD event

Description
Defines an event that is fired when data is received.

Syntax
Private Sub expression_OnRXD(

Data as OleVariant, ByVal Size as Integer)

Remarks
This event is generated whenever data is received in the port. This event should be used to
read data from the input stream when you don’t know the format of the incoming data. If
you know the format of the incoming data, you should configure one or more data packets
to capture the data and notify you of its arrival rather than use this event.

Most often, the Data parameter will contain only a single character and the Size parameter
will be one. It is possible however, that multiple characters were received before this event
fires. In this situation, you should read exactly Size characters from the Data parameter. See
OnDataTrigger Event on page 305 for additional information.

Part Description Data Type

expression References the APAXPort object
that fired the event

APAXPort

Data Contains the received data OleVariant

Size Contains the number of
characters received

Integer

106 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OutBuffFree property

Description
Returns the number of bytes free in the output buffer. Read-only, run-time.

Data type
Integer

Syntax
expression.OutBuffFree

expression must reference an APAXPort.

Remarks
Use OutBuffFree to assure that the output buffer has enough free space to hold data that you
are about to transmit.

Example
The following example checks for sufficient output buffer space to transmit a block of
NeededSpace bytes:

If (MyPort.OutBuffFree >= NeededSpace) Then
MyPort.PutData(Data, NeededSpace)

End If

If enough space is available the block is transmitted. Otherwise a status trigger is added to
detect the required free space.

See also
OutBuffUsed

Port and Logging References 107

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OutBuffUsed property

Description
Returns the number of bytes currently in the output buffer. Read-only, run-time.

Data type
Integer

Syntax
expression.OutBuffUsed

expression must reference an APAXPort.

Remarks
Use OutBuffUsed to detect whether or not any outgoing data remains in the output buffer.

See also
OutBuffFree

Parity property

Description
Determines the parity checking mode of the port. Read/write.

Data type
TParity

Syntax
expression.Parity[= value]

expression must reference an APAXPort.

Settings
Valid settings for Parity are:

Constant Value Description

pNone 0 No parity checking

pOdd 1 Odd parity

108 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Remarks
Default: pNone

If the port is open when Parity is changed, the line parameters are updated immediately.
Parity does not validate the assigned value before passing it on to the communications
driver. The driver may reject the value, leading to an exception.

See also
Baud, ComNumber, DataBits, StopBits

PortOpen method

Description
Opens the physical port and initializes it with all current port properties.

Syntax
expression.PortOpen()

expression must reference an APAXPort.

Remarks
Calling PortOpen sets the DeviceType to dtDirect and opens the COM port specified by the
ComNumber property. If ComNumber is zero and the PromptForPort property is True, a
port selection dialog is displayed. If the port is already open, the port is first closed and then
reopened.

The APAXPort uses all current property settings to allocate input and output buffers, open
the physical port, initialize the line settings and flow control settings, and enable or disable
logging. The OnPortOpen event is then fired.

The port can be closed by calling the Close method.

pEven 2 Even parity

pMark 3 Mark parity

pSpace 4 Space parity

Constant Value Description

Port and Logging References 109

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example creates, configures, and opens a comport component at run time:

Dim MyPort as APAXPort
...
Set Myport = new APAXPort
MyPort.ComNumber = 1 'use Com1
MyPort.Baud = 9600
MyPort.Parity = pNone
MyPort.DataBits = 8
MyPort.StopBits = 1

MyPort.OpenPort
'transmit/receive data via the com port

MyPort.Close

See also
Close, ComNumber, DeviceType, OnPortOpen

PromptForPort property

Description
Indicates whether the user should be prompted for the serial port number. Read/write.

Data type
Boolean

Syntax
expression.PromptForPort[= value]

expression must reference an APAXPort.

Remarks
Default: True

Applies only when DeviceType = dtDirect.

If PromptForPort is True and ComNumber is zero, a dialog is displayed to prompt the user
for the serial port when the port is opened. If PromptForPort is False and ComPort is zero,
an error is raised when the port is opened.

See also
ComNumber, DeviceType

110 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

PutData method

Description
Copies a block of data to the output buffer of the Windows communications driver.

Syntax
expression.PutData(Data, Size)

expression must reference an APAXPort.

Remarks
After a call to PutData, the communications driver transmits the block byte-by-byte as fast
as possible. When there is insufficient free space in the output buffer, the documented
behavior of the Windows communications driver is to delete old data from the buffer. To
avoid this behavior, programs should always check OutBuffFree before calling any PutXxx
methods.

Example
The following example transmits a block of 20 characters after assuring that space is
available:

S = "Guinness Stout"
If (MyPort.OutBuffFree >= Len(S)) Then

MyPort.PutString(S)
End If

See also
OutBuffFree, PutString, PutStringCRLF

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

Data Refers to the block of data to be
transmitted

OleVariant

Size Specifies the size of the data block Integer

Port and Logging References 111

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

PutString method

Description
Copies a string to the output buffer of the Windows communications driver.

Syntax
expression.PutString(S)

expression must reference an APAXPort.

S defines the String to be transmitted.

Remarks
After calling this method, the communications driver transmits the string as soon as
possible.

Example
The following example transmits a string after assuring that space is available:

S = "Guinness Stout"
If (MyPort.OutBuffFree >= Len(S)) Then

MyPort.PutString(S)
End If

See also
OutBuffFree, PutData, PutStringCRLF

PutStringCRLF method

Description
Copies a string and a carriage return/line feed pair to the output buffer of the Windows
communications driver.

Syntax
expression.PutStringCRLF(S)

expression must reference an APAXPort.

S defines the String to be transmitted.

Remarks
After calling this method, the communications driver transmits the string and the
<CR><LF> pair as soon as possible.

112 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example transmits a string after assuring that space is available:

S = "Guinness Stout"
If (MyPort.OutBuffFree >= Len(S) + 2) Then

MyPort.PutStringCRLF(S)
End If

See also
OutBuffFree, PutData, PutString

RI property

Description
Returns True if the port’s ring indicator line (RI) is set. Read-only, run-time.

Data type
Boolean

Syntax
expression.RI

expression must reference an APAXPort.

Remarks
Because the ring indicator line fluctuates rapidly as rings occur, reliance upon this property
is discouraged.

See also
CTS, DCD, DSR, DTR

Port and Logging References 113

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

RS485Mode property

Description
Determines whether the RTS line should be raised/lowered automatically when transmitting
data. Read/write.

Data type
Boolean

Syntax
expression.RS485Mode[= value]

expression must reference an APAXPort.

Remarks
Default: False

Set this property to True when using an RS-485 board or converter that uses the RTS line to
enable the transmit line. In this mode, RTS will be raised whenever the program is
transmitting data and lowered at all other times.

This property should be set to True only when a program is using RS-485 ports or
converters and only if those ports or converters use RTS for line control. Enabling this
property at other times could cause programs to behave erratically or stop working
completely.

Because RS-485 mode requires control over the RTS line, the RTS property is set to False
and CTS/RTS hardware flow control is disabled whenever RS485Mode is set to True.

114 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

RTS property

Description
Determines the current state of the request to send signal (RTS). Read/write.

Data type
Boolean

Syntax
expression.RTS[= value]

expression must reference an APAXPort.

Remarks
Default: True

This signal is usually used for hardware flow control, in which case your application does
not need to set it directly. Less frequently, devices require that your application raise and
lower RTS to control the device, or require that RTS be permanently set. Use this property in
those cases.

Example
The following example lowers the RTS signal after opening the port and later raises it again:

MyPort.Connected = True
MyPort.RTS = False
...
MyPort.RTS = True

See also
DTR, HWFlowUseDTR, HWFlowUseRTS, HWFlowRequireDSR, HWFlowRequireCTS

Port and Logging References 115

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

SendBreak method

Description
Transmits a break signal.

Syntax
expression.SendBreak(Ticks, Yield)

Remarks
This method transmits a break signal (the transmit line is held in the marking state) for the
number of ticks specified by Ticks. A tick is approximately 55 milliseconds.

When Yield is True, SendBreak yields control back to Windows while sending the break,
giving other applications and other parts of this application a chance to run. When Yield is
False, SendBreak does not yield.

StopBits property

Description
Determines the number of stop bits of the port. Read/write.

Data type
Integer

Syntax
expression.StopBits[= value]

expression must reference an APAXPort.

Part Description Data Type

expression An expression that returns an APAXPort
object

APAXPort

Ticks Determines the duration of the break Integer

Yield Determines the duration of the break Boolean

116 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Remarks
Default: 1

Acceptable values are 1 and 2. If DataBits equals 5, a request for 2 stop bits is interpreted as a
request for 1.5 stop bits, the standard for this data size.

If the port is open when StopBits is changed, the line parameters are updated immediately.
StopBits does not validate the assigned value before passing it on to the communications
driver. The driver may reject the value, leading to an exception.

See also
Baud, ComNumber, DataBits, Parity

SWFlowOptions property

Description
Determines the software flow control options for the port. Read/write.

Data type
TSWFlowOptions

Syntax
expression.SWFlowOptions[= value]

expression must reference an APAXPort.

Settings
Valid settings for SWFlowOptions are:

Constant Value Description

swfNone 0 No software flow control is imposed

swfReceive 1 Stops a remote device from transmitting
when the local receive buffer is too full

swfTransmit 2 Stops the local device from transmitting
when the remote’s receive buffer is too
full

swfBoth 3 Imposes both receive and transmit flow
control

Port and Logging References 117

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Remarks
Default: swfNone

This routine turns on one or both aspects of automatic software flow control based on the
value assigned to the property.

Receive flow control stops a remote device from transmitting while the local receive buffer is
too full. Transmit flow control stops the local device from transmitting while the remote
receive buffer is too full.

Receive flow control is enabled by assigning swfReceive or swfBoth to the property. When
enabled, an XOff character is sent when the input buffer reaches the 90% level. The remote
must recognize this character and stop sending data after it is received.

As the application processes received characters, buffer usage eventually drops below the
10% level. At that point, an XOn character is sent. The remote must recognize this character
and start sending data again.

Transmit flow control is enabled by assigning swfTransmit or swfBoth to the property.
When transmit flow control is enabled, the communications driver stops transmitting
whenever it receives an XOff character. The driver does not start transmitting again until it
receives an XOn character or the application sets SWFlowOptions to swfNone.

The default characters are used for XOn and XOff. Later in the application, software flow
control is disabled.

See also
FlowState, HWFlowUseDTR, HWFlowUseRTS, HWFlowRequireDSR,
HWFlowRequireCTS

118 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPIMode property

Description
Determines whether a APAXPort can be controlled by a TAPI device. Read/write.

Data type
TApxTAPIMode

Syntax
expression.TAPIMode[= value]

expression must reference an APAXPort.

Settings
Valid settings for TAPIMode are:

Remarks
Default: xtmData

To use TAPI only to establish connections, TAPIMode must be set to xtmData. To support
wave files and DTMF (Dual Tone Multiple Frequency), TAPIMode must be set to xtmVoice.

TAPI itself doesn’t implement any of the features necessary for controlling serial ports and
telephony devices. The TAPI architecture dictates that the low-level, physical services are
provided by a TAPI Service Provider (TSP).

Even if TAPI is properly installed, it will not function unless a service provider is also
installed. TSP modules are typically provided by telephony vendors along with their
telephony hardware. Windows 95/98 and Windows NT 4.0 install a general-purpose service
provider named UNIMDM.TSP, which provides basic dial and answer support for modems.
It is this service provider that makes TAPI available to communications programs in
Windows 95/98, Windows NT 4.0, and Windows 2000. The lack of this service provider is
what makes TAPI less likely to be useful in other Windows environments (which may have
TAPI, but don’t have a general purpose modem service provider).

Constant Description

xtmData TAPI immediately enters the connected state and
opens the serial port.

xtmVoice This mode allows you to play and record wave files
over the connection.

Port and Logging References 119

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Since UNIMDM.TSP is the service provider that your application is most likely to
encounter, it’s worth noting a few of its limitations here.

UNIMDM does not provide support for caller identification (caller ID). The CallerID
property of the APAXPort control always returns an empty string when using UNIMDM.

UNIMDM does not support no dialtone detection. TAPI will attempt to dial whether a
dialtone is detected or not.

TAPI Voice support is only available with the Unimodem/V TSP (TAPI Service Provider)
and the Unimodem/5 TSP. Unimodem/V is installed by default in Windows 95OSR2,
Windows 98 and Windows ME. Unimodem/5 is installed by default in Windows 2000. A
voice modem that is TAPI compliant and accepts the AT+V or AT#V command set is also
required. Unimodem/V is available for download from Microsoft’s web site for Windows 95.
A list of voice modems that Microsoft has tested is included in the Unimodem/V and
Unimodem/5 installation's Readme. TAPI Voice support is not available in Windows NT 4.0
unless the modem manufacturer provides a voice-enabled TSP.

You cannot assume UNIMODEM/V is installed on your user's machines since it was
released after the initial release of Windows 95.

XOffChar property

Description
Determines the character that is sent to disable remote sending when software flow control is
active. Read/write.

Data type
Integer

Syntax
expression.XOffChar[= value]

expression must reference an APAXPort.

Remarks
Default: ASCII 19 (^S)

Software flow control almost universally uses the XOff (ASCII 19) character to suspend
transmission, and this is the default character used by APAX. If you should encounter a
device that requires a different character, you can use XOffChar to set it.

See also
SWFlowOptions, XOnChar

120 Chapter 5: Serial Ports and Logging

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

XOnChar property

Description
Determines the character that is sent to enable remote sending when software flow control is
active. Read/write.

Data type
Integer

Syntax
expression.XOnChar[= value]

expression must reference an APAXPort.

Remarks
Default: ASCII 17 (^Q)

Software flow control almost universally uses the XOn (ASCII 17) character to enable
transmission, and this is the default character used by APAX. If you should encounter a
device that requires a different character, you can use XOnChar to set it.

See also
SWFlowOptions, XOffChar

 121

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 6: Winsock Mode

Windows includes routines for network and Internet communications. These routines are
contained in DLLs which are collectively called Winsock (for WINdows SOCKets).
Winsock is a Windows-specific implementation of the Berkley Sockets API. The Berkley
Sockets API was developed as a protocol to allow UNIX machines to communicate with
each other over networks. The concept of sockets is analogous to a telephone operator in the
early days of telephones. When a call came in, the operator used a patch cord to connect the
caller’s socket to the socket of the person being called. Winsock does essentially the same
thing. It provides a means of connecting a calling computer to a host computer so that the
two can exchange information. The calling application is called a client and the host
application is called a server.

122 Chapter 6: Winsock Mode

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Understanding Winsock
Before a connection can be established, Winsock needs to know how to find the host
computer. Each network computer has an address associated with it. This address, called the
IP address, is a 32-bit value that uniquely identifies the machine. Since a number like
32,147,265 is difficult to remember, network addresses are often displayed in dot notation.
Dot notation specifies an IP address as a series of four bytes, each separated by a dot. For
example, the TurboPower Web site address can be specified in dot notation as
209.151.79.30. Network software translates the address specified in dot notation to a real 32-
bit value.

Leading zeros in a dot notation IP address (for example, ‘198.168.010.012’) causes Winsock
to interpret the respective portion of the address in octal (the above IP would actually be
interpreted by Winsock as ‘198.168.8.10’). APRO does not interfere with this behavior; it
simply passes the entered address to Winsock as-is.

While expressing a network address in dot notation is a little better than dealing with a raw
32-bit value, it is still not particularly easy to remember. For that reason a global database
gives you the capability to specify an IP address in plain text. This database, called the
Domain Name Service (DNS), has text entries that correspond to IP address values. For
example, the TurboPower Web site DNS entry is ‘www.turbopower.com’. If Winsock does a
lookup for the host name ‘www.turbopower.com’, it gets the IP address 209.151.79.30.

Not all computers have DNS entries. A DNS entry is usually used to provide public access to
a computer. Servers that are for private use only don’t publish their IP addresses.

Most software allows you to specify either the host name or the IP address in dot notation
when attempting to connect to a server. To illustrate, start your favorite Web browser and
type ‘www.turbopower.com’ at the address prompt. When you hit Enter, your browser
displays the home page of the TurboPower Web site. Now try again, but this time type
‘209.151.79.30’ at the address prompt. Once again the browser takes you to the TurboPower
Web site.

In addition to IP addresses, Winsock uses ports to specify how to connect to a remote
machine. Winsock can be thought of as a trunk line with thousands of individual lines (the
ports) which are used to connect machines. Some ports are considered “well-known” ports.
For example, the port typically used for network mail systems (SMTP) is port 25, the telnet
port is port 23, the network news server port (NNTP) is typically port 119, and so on. To see
a list of well-known ports, inspect the SERVICES file in the Windows directory (for
Windows NT it is in the WINNT\SYSTEM32\DRIVERS\ETC directory). The SERVICES
file is a text file used by Winsock to perform port lookups (which return the service name
for the specified port) and port name lookups (which return the port number for the
specified service name). You can open this file in any text editor to see a list of port numbers
and their corresponding service names. While these well-known ports are not set in stone,

Understanding Winsock 123

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

they are traditional and their use should be reserved for the services that they represent.
When writing network applications, you should select a port number that is not likely to be
duplicated by other applications on your network. In most cases you can choose a port
number other than any of the well-known port numbers.

The IP address and port number are used in combination to create a socket. A socket is first
created and then is used to establish connection between two computers. How the socket is
used depends on whether the application is a client or a server. If an application is a server, it
creates the socket, opens it, and then listens on that socket for computers trying to establish
a connection. At this point the server is in a polling loop listening and waiting for a possible
connection. A client application, on the other hand, creates a socket using the IP address of a
particular server and the port number that the server is known to be listening on. The client
then uses the socket to attempt to connect to the server. When the server hears the
connection attempt, it wakes up and decides whether or not to accept the connection.
Usually this is done by examining the IP address of the client and comparing it to a list of
known IP addresses (some servers don’t discriminate and accept all connections). If the
connection is accepted, the client and server begin “talking” and data is transmitted.

There is one other aspect of Internet communications that should be noted. Telnet is a
protocol that allows a computer to connect to a remote server via a terminal screen. When a
connection is established, a telnet server sends ASCII data to the client application. The
client application then displays the text on the terminal screen. Telnet applications typically
use port 23.

The telnet protocol describes option negotiation (typically at the beginning of a session)
and escaping of certain characters during the entire communication session. This
processing is enabled automatically in APAX.

124 Chapter 6: Winsock Mode

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Winsock support in APAX
The Winsock implementation of the APAXPort allows you to establish a TCP/IP connection
and is an implementation of the Winsock version 1.1 API. The APAXPort includes
properties to allow you to set the network address, the port number, and the mode of the
socket (server mode or client mode). Many of the APAXPort’s properties (such as the line
parameters) are not applicable when operating in Winsock mode. These properties are
simply ignored when operating in Winsock mode. To put the APAXPort control in Winsock
mode, simply set the DeviceType property to dtWinsock.

The APAXPort control provides access to most standard Winsock services, however the
Winsock support in APAX is not intended as a full-featured Winsock implementation.
Rather, it is intended to allow you to perform basic communications operations over local
networks or over the Internet. Certain concessions were made (such as allowing only one
client connection to a server socket) to allow the Winsock implementation to fit into the
existing APAX communications model.

Winsock References 125

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Winsock References
Following is a list of the APAXPort control’s properties, methods, and events that pertain to
Winsock functionality. This is only a subset of the functionality of the APAXPort
functionality. Additional properties, methods, and events are introduced in other chapters.

Properties
WinsockAddress

WinsockMode

WinsockPort

WsTelnet

Methods
OnWinsockAccept

OnWinsockConnect

OnWinsockDisconnect

OnWinsockError

OnWinsockGetAddress

Events
WinsockConnect WinsockListen

126 Chapter 6: Winsock Mode

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Reference section

OnWinsockAccept event

Description
Defines an event that is fired when a client attempts to connect to a server.

Syntax
Private Sub expression_OnWinsockAccept(
ByVal Addr as String, Accept as Boolean)

Remarks
This event is generated when an application is acting as a server (WinsockMode = wsServer)
and a client application attempts a connection. Addr is the network address of the client. To
accept the connection, set Accept to True. To refuse the connection, set Accept to False.

This event is not fired when the application is acting as a client.

See also
WinsockMode, OnWinsockConnect, OnWinsockDisconnect, OnWinsockError

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

Addr The network address of the client String

Accept Allows acceptance or refusal of the
connection

Boolean

Winsock References 127

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnWinsockConnect event

Description
Defines an event that is fired when a Winsock connection is established.

Syntax
Private Sub expression_OnWinsockConnect()

expression refers to the APAXPort that fired the event.

Remarks
When an application is operating as a client (WinsockMode = wsClient) it usually attempts
to connect to a server. This event is generated when the server accepts the connection.

This event is not generated when the application is acting as a server.

See also
OnWinsockAccept, OnWinsockDisconnect, OnWinsockError, WinsockMode

OnWinsockDisconnect event

Description
Defines an event that is fired when a Winsock connection is dropped.

Syntax
Private Sub expression_OnWinsockDisconnect()

expression refers to the APAXPort that fired the event.

Remarks
A connection can be dropped as the result of an error or when a transmission is complete
and one end terminates the connection.

If WinsockMode = wsServer, OnWinsockDisconnect is generated when the client is
disconnected. If WinsockMode = wsClient, this event is generated when the connection is
lost.

See also
OnWinsockAccept, OnWinsockConnect, OnWinsockError, WinsockMode

128 Chapter 6: Winsock Mode

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnWinsockError event

Description
Defines an event that is fired when Winsock error occurs.

Syntax
Private Sub expression_OnWinsockError(ByVal ErrorCode as Integer)

Remarks
Refer to the Error Handling table for a comprehensive list of all possible error codes.

See also
WinsockMode, OnWinsockConnect, OnWinsockDisconnect

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

ErrorCode Indicates the specific error that
occurred

Integer

Winsock References 129

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnWinsockGetAddress event

Description
Defines an event that is fired to obtain network address information.

Syntax
Private Sub expression_OnWinsockGetAddress(

Address as String, Port as String)

Remarks
This event provides a mechanism for obtaining a network address and Winsock port when
establishing or listening for Winsock connection. OnWinsockGetAddress is fired after
calling either WinsockConnect or WinsockListen. If an event handler is defined, the
WinsockAddress and WinsockPort properties are updated prior to creating the socket.

See also
WinsockAddress, WinsockConnect, WinsockListen, WinsockPort

Part Description Data
Type

expression References the APAXPort object that fired
the event

APAXPort

Address The network address String

Port The Winsock port String

130 Chapter 6: Winsock Mode

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

WinsockAddress property

Description
Specifies the network address used to make a Winsock connection. Read/write.

Data type
String

Syntax
expression.WinsockAddress[= value]

expression must reference an APAXPort.

Remarks
The WinsockAddress property accepts the IP address in dot notation (209.151.79.30) or as a
host name (telnet.turbopower.com). If a host name is used, APAX does a DNS lookup to
determine whether a DNS entry exists for the host name. If an IP address can be found, the
port is opened.

Do not add leading zeros in dot notation addresses (e.g. 209.151.210.030). Leading zeros
will cause the number to be interpreted as an octal value.

See also
DeviceType, OnWinsockGetAddress, WinsockConnect, WinsockMode, WinsockPort

WinsockConnect method

Description
Attempts to establish a TCP/IP connection to a network server.

Syntax
expression.WinsockConnect()

expression must reference an APAXPort.

Remarks
Calling WinsockConnect sets the DeviceType to dtWinsock, the WinsockMode to wsClient,
and attempts to establish a connection with the server specified by WinsockAddress and
WinsockPort. The OnGetWinsockAddress event is fired to obtain address and port if

Winsock References 131

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

desired. If the port is already open, the port is first closed and then reopened. Once a
connection has been successfully established, the OnWinsockConnect event is fired. The
port can be closed by calling the Close method.

Example
The following example creates a component at run time and establishes a connection to the
telnet server at turbopower.com:

Dim MyPort as APAXPort
...
Set Myport = new APAXPort
MyPort.WinsockAddress = "turbopower.com"
MyPort.WinsockPort = "telnet"
MyPort.WinsockConnect

'transmit/receive data with server
MyPort.Close

See also
Close, DeviceType, OnWinsockConnect, WinsockAddress, WinsockMode, WinsockPort

WinsockListen method

Description
Listens for possible connections.

Syntax
expression.WinsockListen()

expression must reference an APAXPort.

Remarks
Calling WinsockListen sets the DeviceType to dtWinsock, the WinsockMode to wsServer,
and listens for possible connections on the Winsock port specified by the WinsockPort
property. The OnGetWinsockAddress event is fired to obtain the Winsock port if desired. If
the port is already open the port is first closed and then reopened. When a connection
attempt is detected, the OnWinsockAccept event is fired to accept or deny the connection.
The port can be closed by calling the Close method.

132 Chapter 6: Winsock Mode

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example creates a component at run time and listens for telnet connections:

Dim MyPort as APAXPort
...
Set Myport = new APAXPort
MyPort.WinsockPort = "telnet"
MyPort.WinsockListen

'transmit/receive data with server
MyPort.Cmlose

See also
Close, DeviceType, OnWinsockAccept, WinsockMode, WinsockPort

WinsockMode property

Description
Determines whether the application operates as a server or a client. Read/write.

Data type
TWsMode

Syntax
expression.WinsockMode[= value]

expression must reference an APAXPort.

Settings
Valid settings for WinsockMode are:

Constant Description

wsClient Application operates as a client

wsServer Application operates as a server

Winsock References 133

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Remarks
Default: wsClient

This property has no effect unless the DeviceType property is dtWinsock.

In server mode, the application listens for possible connections on the port specified in the
WinsockPort property when the WinsockListen method is called.

In client mode, the client attempts to connect to the server at the address specified in the
WinsockAddress property when the WinsockConnect method is called.

See also
DeviceType, WinsockAddress, WinsockConnect, WinsockListen, WinsockPort

WinsockPort property

Description
Specifies the Winsock port used to establish a network connection. Read/write.

Data type
String

Syntax
expression.WinsockPort[= value]

expression must reference an APAXPort.

Remarks
WinsockPort is the Winsock port on which to connect (for a client application) or on which
to listen (for a server application). WinsockPort accepts the port as a string representation
of an integer or a service name (e.g. telnet). If a service name is used, Winsock performs a
lookup to map service name with a port number. For a list of service names and their
corresponding port numbers, see the SERVICES file in the Windows directory (for
Windows NT it is in the WINNT\SYSTEM32\DRIVERS\ETC directory).

See also
DeviceType, OnWinsockGetAddress, WinsockAddress, WinsockConnect, WinsockListen,
WinsockMode

134 Chapter 6: Winsock Mode

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

WsTelnet property

Description
Determines whether telnet processing is enabled. Read/write.

Data type
Boolean.

Syntax
expression.WsTelnet[= value]

expression must reference an APAXPort.

Remarks
Default: True

The telnet protocol describes option negotiation and escaping of certain characters. If the
client or server you are communicating with does not support telnet processing, you should
set WsTelnet to False prior to establishing a connection. Otherwise it may appear that your
data is being corrupted because telnet processing modifies the data stream.

 135

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 7: Terminal Window and Emulations

Traditionally, a terminal is a hardware device that communicates with a host computer. The
host computer sends data and special control sequences to the terminal and the terminal
knows how to process them. The terminal also accepts keystrokes and passes them on to the
host computer. The keystrokes are comprised of similar control sequences and actual data.
The premise that allows for successful communication between the terminal and the host is
that they use the same control sequence translation scheme for the control sequences. The
translation scheme defines the terminal type and the control sequences are commonly
referred to as escape sequences. Some of the more common terminal types are TTY
(teletype), VT100, VT52 and VT220. These dedicated hardware terminals are an older
technology and their existence is diminishing. In their place is a software oriented approach
that emulates the terminal’s behavior. The software approach is known as terminal
emulation. APAX provides integrated support for three types of emulation: TTY, VT100,
and VT52. Before discussing these emulations in further detail, we need to address a few
relevant topics that apply to emulations in general. These topics include escape sequences,
buffering, terminal parsing, keyboard mapping, and character set mapping.

Escape sequences
A terminal will transmit and receive two types of data: literal characters and special control
sequences. Control sequences are nothing more than one or more characters that have a
special meaning to the terminal. The control sequences are also known as escape sequences
since the vast majority of them begin with the escape <ESC> character. In the case of literal
characters, the process is simple. If a terminal receives a literal character, it processes that
character without modification. Similarly, the terminal transmits all literal characters
without modification. Escape sequences differ significantly. If a terminal receives an escape
sequence, it must interpret the escape sequence, translate it into a command, and perform
the command. When a terminal transmits an escape sequence, the characters are
transmitted as literal characters. It is the responsibility of the remote computer to recognize
and translate these sequences. Terminals and software emulations of terminals are defined
by a clear and concise table of escape sequences that perform various operations. These

136 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

escape sequences may instruct the receiving computer to clear the terminal window,
position the cursor at a new location, change the font attributes, or even select characters
from a different character set. This requires some intelligence on the receiving computer’s
part. The receiving computer must intercept and parse the incoming data stream. If the
received character is not part of an escape sequence, the receiving terminal simply passes the
character on to the computer. If the receiving computer recognizes the character as the
beginning of an escape sequence, it must extract the following characters that comprise the
remainder of the escape sequence from the input stream. It then translates them into a
command and performs this command on the receiving computer’s terminal window. In
summary, it is the escape sequences and their interpretations that define an emulation type.

Buffering
A terminal window has a fixed number of rows and columns. Typically, a terminal has 24
rows and 80 columns. This typical terminal is capable of displaying exactly 1,920 characters
at a given time. Once the terminal window has received 1,920 characters, additional
characters received force the terminal window to scroll the contents up line by line to
accommodate newer data. How then is the user able to view data that has scrolled off the
screen? The answer is in buffering. APAX maintains two internal buffers. One buffer is used
to store the contents of the terminal window display. An additional larger buffer is used to
store character lines received prior to the lines that are currently displayed in the terminal
window. If the user wants to scroll back in the terminal display, data is retrieved from this
larger scroll back buffer. APAX allows you to specify the size (in lines) of this scroll back
buffer via the ScrollbackRows property. Both of these buffers maintain a set of matrices: one
for the displayable characters, one for the attributes (bold, underline, invisible, and so on),
one for the color of the text, one for the color of the background, and finally one for the
character set identifiers.

Terminal parsing
Terminal parsing refers to the receiving computer’s responsibility of monitoring the input
data stream, and parsing out the escape sequence. The internal terminal parser converts the
escape sequences to commands and executes the command on the terminal window.
APAX’s internal parser automatically recognizes these escape sequences based on the
emulation mode currently selected in the Emulation property, and processes the translated
commands accordingly. No user or programmer intervention is required.

Chapter 7: Terminal Window and Emulations 137

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Keyboard mapping
All terminals have two input sources: the data stream received at the associated COM port,
and user input from the local keyboard. Keyboard mapping requires the emulation to
perform a translation of keystrokes into the corresponding escape sequence that will be sent
to the host computer. For example, with the standard VT100 mappings provided with
APAX, the up arrow key on the PC keyboard is mapped to DEC_UP, the name for the up
arrow on the VT100 keyboard. The terminal key name is looked up in a table to obtain the
control sequence that needs to be sent to the host computer. APAX maintains internal
keyboard mapping tables to store the information required to map a PC keystroke into the
control sequence for the supported emulations that has to be sent to the host computer.

Character set mapping
A terminal window is capable of displaying characters from multiple character sets. The
character set from which to extract a single character is selected via an escape sequence. For
each character set, there may be a different glyph for each character. The classic example is
that of the VT100 terminal. This terminal has several character sets, of which two are the
most commonly used: the USASCII character set and the special graphics character set. To
take as an example, the character ‘m’ is displayed as a lower-case m in the USASCII character
set, but is displayed as a line draw lower left corner (the glyph that looks like an L) in the
special graphics character set. APAX maintains internal keyboard mapping tables that
automatically select characters from the correct set.

138 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TTY, VT100, and VT52 Emulations
APAX supports TTY (teletype), VT100, and VT52 software emulations. The TTY
emulation contains no escape sequences. In TTY mode, the terminal simply echoes typed
keys to the host PC and all characters received from the associated serial port are sent
directly to the terminal window. VT100 is a mature and well-defined standard. APAX
provides full support of the VT100 emulation standard. In addition to the fundamental
VT100 standard, APAX also provides support for two extensions of the standard. The first
extension allows you to specify the foreground and background colors, and the second
extension allow you to insert, delete, and erase characters and lines. VT52 is simply a subset
of the VT100 emulation standard and also is fully supported by APAX. With that said, all
that remains is a clear definition of the VT100 escape sequences to understand the terminal
emulation functionality supported by APAX. The following table serves this purpose:

Control
Sequence

Terminal
Mode

Description

ENQ ($05) VT100/52 Generate answerback message

BEL ($07) VT100/52 Sound bell

BS ($08) VT100/52 Backspace, i.e. cursor left

HT ($09) VT100/52 Move to next horizontal tab stop

LF ($0A) VT100/52 Line feed or new line

VT ($0B) VT100/52 Processed as LF

FF ($0C) VT100/52 Processed as LF

CR ($0D) VT100/52 Move to position 1 on current line

SO ($0E) VT100 Select G1 character set

SI ($0F) VT100 Select G0 character set

CAN ($18) VT100/52 Cancel current escape sequence

SUB ($1A) VT100/52 Cancel current escape sequence

Esc # 3 VT100 Line is double height, top half

Esc # 4 VT100 Line is double height, bottom half

Esc # 5 VT100 Line is single width, single height

TTY, VT100, and VT52 Emulations 139

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Esc # 6 VT100 Line is double width, single height

Esc # 8 VT100 Fill screen with E's

Esc (A VT100 Set G0 to UK charset

Esc (B VT100 Set G0 to US charset

Esc (0 VT100 Set G0 to special linedraw charset

Esc (1 VT100 Set G0 to alternate ROM charset

Esc (2 VT100 Set G0 to alternate ROM LD charset

Esc) A VT100 Set G1 to UK charset

Esc) B VT100 Set G1 to US charset

Esc) 0 VT100 Set G1 to special linedraw charset

Esc) 1 VT100 Set G1 to alternate ROM charset

Esc) 2 VT100 Set G1 to alternate ROM LD charset

Esc 7 VT100 Save cursor and attributes

Esc 8 VT100 Restore cursor and attributes

Esc < VT100 Enter ANSI mode (ignored)

Esc = VT100 Enter application keypad mode

Esc > VT100 Enter numeric keypad mode

Esc D VT100 Index

Esc E VT100 Next line

Esc H VT100 Set tab stop at cursor

Esc M VT100 Reverse index

Esc [Pn @ VT100 enh Insert characters at cursor

Esc [Pn A VT100 Cursor up

Esc [Pn B VT100 Cursor down

Esc [Pn C VT100 Cursor right

Control
Sequence

Terminal
Mode

Description

140 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Esc [Pn D VT100 Cursor left

Esc [Pr; Pc H VT100 Cursor position

Esc [Ps J VT100 Erase part of display to cursor

Esc [Ps K VT100 Erase part of display from cursor

Esc [Pn L VT100 enh Insert lines

Esc [Pn M VT100 enh Delete lines

Esc [Pn P VT100 enh Delete characters at cursor

Esc [Pn X VT100 enh Erase characters at cursor

Esc [Ps c VT100 What are you?

Esc [Pr; Pc f VT100 Cursor position

Esc [Ps g VT100 Clear tab stops

Esc [Ps h VT100 Set mode

Esc [Ps l VT100 Reset mode

Esc [Ps; …;Ps m VT100 Set attributes, including color

Esc [Ps n VT100 Request terminal report

Esc [Ps; …;Ps q VT100 Set LEDs

Esc [Pt; Pb r VT100 Set scrolling region (top, bottom
row)

Esc [2; Ps y VT100 Invoke confidence test

Esc c VT100 Reset

Esc A VT52 Cursor up

Esc B VT52 Cursor down

Esc C VT52 Cursor right

Esc D VT52 Cursor left

Esc F VT52 Set special character set

Esc G VT52 Set ASCII character set

Esc H VT52 Cursor to home

Esc I VT52 Reverse line feed

Control
Sequence

Terminal
Mode

Description

TTY, VT100, and VT52 Emulations 141

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Note: Use the escape sequence <Esc>[2l to switch into VT52 mode.

Esc J VT52 Erase to end of screen

Esc K VT52 Erase to end of line

Esc Y VT52 Direct cursor address

Esc Z VT52 Identify

Esc < VT52 Enter ANSI mode

Esc = VT52 Enter alternate keypad mode

Esc > VT52 Exit alternate keypad mode

Control
Sequence

Terminal
Mode

Description

142 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Terminal and Emulator References
Following is a list of the APAXPort control’s properties, methods, and events that pertain to
terminal and emulator facilities. This is only a subset of the functionality of the APAXPort
functionality. Additional properties, methods, and events are introduced in other chapters.

Properties
CaptureFile

CaptureMode

Color

Columns

Emulation

Font

Rows

ScrollbackEnabled

ScrollbackRows

TerminalActive

TerminalBlinkTime

TerminalHalfDuplex

TerminalLazyByteDelay

TerminalLazyTimeDelay

TerminalUseLazyDisplay

TerminalWantAllKeys

Visible

Methods
Clear

ClearAll

CopyToClipboard

GetAttributes

GetLine

SetAttributes

SetLine

TerminalSetFocus

TerminalWriteString

TerminalWriteStringCRLF

Events
OnCursorMoved

Terminal and Emulator References 143

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Reference Section

CaptureFile property

Description
Defines the name of the file where the terminal writes captured data. Read/write.

Data type
String

Syntax
expression.CaptureFile[= value]

expression must reference an APAXPort.

Remarks
Default: “APAX.CAP”

It is possible to change the name of the file where captured data is sent while data is being
captured. Internally, the terminal component sets the CaptureMode property to cmOff,
changes the value of the CaptureFile property to the new filename, and then sets the
CaptureMode property to cmOn again. This means that the file named by the new value of
CaptureFile is created afresh: the old file, if it exists, is overwritten. If you wish to append to
the file with the new name, you will need to manually set CaptureMode to cmOff, set the
value of CaptureFile to the new filename, and then set CaptureMode to cmAppend.

See also
CaptureMode

144 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

CaptureMode property

Description
Defines whether the data received by the terminal is captured to file. Read/write.

Data type
TApxCaptureMode

Syntax
expression.CaptureMode[= value]

expression must reference an APAXPort.

Settings
The following are valid settings for the CaptureMode property.

Remarks
Default: cmOff

The CaptureMode property has only two values on reading: whether the terminal is
capturing data (cmOn will be returned) or not (cmOff will be returned).

It has three possible values on writing: cmOn, cmOff, or cmAppend. If the value written is
cmAppend and the current value is cmOff, the capture file is opened in non-sharing mode
for appending data and the value of the Capture property is then set to cmOn. Note that if
the file doesn't exist at the time the property is set, it will be created. If the value written is
cmAppend and the current value is cmOn, the assignment is ignored and nothing happens.

If the value written is cmOn and the current value is cmOff, the file is created. If it existed
prior to the assignment, it will be overwritten.

The name of the file where captured data is written is designated by the CaptureFile
property.

Constant Description

cmOff No capturing of data

cmOn Capture new data to new file

cmAppend Capture data, appending to old file

Terminal and Emulator References 145

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

All data coming into the terminal is written to the file without any effort being made to parse
it or identify terminal control sequences. Thus for a complex terminal emulation the data in
the capture file will consist of intermingled text and terminal control sequences.

If the CaptureFile property has not been set to the name of a file (i.e., it is the empty string),
setting Capture to cmOn or cmAppend will have no effect. The attempt will be ignored and
no error will be raised. If the CaptureFile property has been set, an attempt is made to create
or open the file so named. This operation can of course fail for any of a number of different
reasons.

See also
CaptureFile

Clear method

Description
Clears the terminal display.

Syntax
expression.Clear()

expression must reference an APAXPort.

Remarks
When clear is called the terminal will internally scroll the window up by Rows lines. This
means that the current display will scroll into the non-visible portion of the internal buffer
and can still be viewed if ScrollbackEnabled is set to True.

See also
ClearAll

146 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

ClearAll method

Description
Clears the entire internal scrollback buffer including the terminal display window.

Syntax
expression.ClearAll()

expression must reference an APAXPort.

Remarks
When the internal scrollback buffer is cleared, the terminal sets all characters in the buffer to
the space character, and sets all attribute values so that they are equivalent to normal text.
Additionally, all background colors are set to the Color property setting, and all foreground
colors are set to the color of the terminal’s Font.Color property.

See also
Clear

Color property

Description
Defines the background color of the terminal window. Read/write.

Data type
TColor

Syntax
expression.Color[= value]

expression must reference an APAXPort.

Remarks
The Color property defines the default background color of the terminal window. Individual
row and column attributes take precedence over this property setting.

Terminal and Emulator References 147

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Example
The following example sets the background color of the terminal window to cyan.

Apax1.Color = ColorConstants.vbCyan

See also
SetAttributes

Columns property

Description
Defines the number of columns across the terminal screen. Read/write.

Data type
Integer

Syntax
expression.Columns[= value]

expression must reference an APAXPort.

Remarks
Default: 80

The Columns property is the number of columns displayed by the terminal screen. For the
VT100 terminal, for example, there are two possible values: 80 and 132.

If the Columns property is changed, it is checked to ensure that the value is at least 2,
otherwise an exception is raised.

Changing the Columns property for an existing terminal screen does not clear the data
being displayed by the screen; you will need to do this as a separate step. The positions of
any horizontal tab stops are maintained, except for those that lie outside the new value for
Columns. However, any scrolling region is discarded, and the cursor is reset to the home
position of the screen.

See also
Rows

148 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

CopyToClipboard method

Description
Copies the marked block to the clipboard.

Syntax
expression.CopyToClipboard()

expression must reference an APAXPort.

Remarks
This routine copies the currently marked block to the Window’s clipboard. The block is
copied in CF_TEXT format, where a carriage return/line feed follows each line.

To clear the internal scrollback buffer, the terminal sets all characters in the buffer to the
space character, and sets all attribute values so that they are equivalent to normal text.
Additionally, all background colors are set to the Color property setting, and all foreground
colors are set to the color of the terminal’s Font.Color property.

When the ScrollbackEnabled property is set to False, only the visible contents of the
terminal window can be marked. When the ScrollbackEnabled property is set to True, the
visible contents can be marked, and by moving the cursor above or below the terminal
window, the window can be scrolled to allow any part of the scrollback buffer to be marked.

Note: Although the CopyToClipboard method will copy the marked text to the clipboard,
you should be aware that what you see may not be what you get because APAX supports
different character sets. In other words, with certain emulations, the glyphs that are
displayed on the terminal display may seem to have no connection with the characters that
are actually there. For example, when using the USASCII character set, the character ‘m’ will
be displayed as a lower case ‘m’. However, when using the special graphics character set, the
character ‘m’ is rendered as the lower left corner of the line draw set. The problem is that
when you copy the marked text to the clipboard, you will lose the character set definition for
each character. Hence, you will just get the character ‘m’ in the clipboard and not know
whether it really was shown as an ‘m’ or some other glyph.

See also
Clear, ClearAll

Terminal and Emulator References 149

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Emulation property

Description
Determines the emulation to use (TTY or VT100). Read/write.

Data type
TApxTerminalEmulation

Syntax
expression.Emulation[= value]

expression must reference an APAXPort.

Settings
The following settings are valid for the Emulation property:

Remarks
When the Emulation property is set to teTTY, the terminal emulates a teletype terminal, one
that doesn’t support any terminal control sequences and one that merely displays every
character received. Similarly there is no conversion of keystrokes either: if a key for a
displayable character is pressed, that character is sent to the host without interpretation. If
Emulation is set to VT100, then the terminal encapsulates the knowledge of the standard
VT100 escape sequences and to which command they refer. VT52 is a subset of VT100. To
enable VT52 emulation, then, set Emulation to VT100.

Constant Description

teTTY TTY emulation

teVT100 VT100 emulation

150 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Font property

Description
Determines the font displayed by the terminal window. Read/write.

Data type
TFont

Syntax
expression.Font[= value]

expression must reference an APAXPort.

Remarks
The font assigned to this property is scaled to conform to the restrictions imposed by the
terminal window’s height and width, and the settings of the Rows and Columns properties.

See also
Color

GetAttributes method

Description
Returns an Integer that represents the attributes of the specified row and column.

Syntax
expression.GetAttributes(aRow, aCol(

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

aRow Specifies the terminal window row Integer

aCol Specifies the terminal window column Integer

Terminal and Emulator References 151

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Settings
The return value of GetAttributes should be masked with the global constant tcaxMask to
determine the actual attributes. The following table depicts all of the possible attribute
settings.

Remarks
GetAttributes enables you to determine the attributes for characters displayed by the
terminal at the specified row and column (aRow, aCol). Both aRow and aCol are one-based:
the home position of the terminal display is at row 1 column 1. Note, however, that if you
have a scrollback buffer that aRow can take on negative values, as well, to identify non-
visible rows in the scrollback buffer.

The result value is an integer that can be tested for various attribute settings as in the
following example.

Example
The following example determines whether the character at row 2, column 3 is bold:

Attr = GetAttributes(2,3)
If (Attr and tcaxMask) > 0 Then

'font is bold
Else

'font is not bold
End If

See also
SetAttributes

Constant Description

tcaxNone No special attributes defined

tcaxBold Bold font

tcaxUnderline Underline font

tcaxStrikethrough Strikethrough font

tcaxBlink Blinking font

tcaxReverse Foreground and background colors are
reversed

tcaxInvisible Foreground color equal background
color

152 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

GetLine property

Description
Returns the text data for a row in the display. Run-time only.

Syntax
expression.GetLine(Index)

Remarks
GetLine returns the characters that make up a row in the terminal. Index is one-based: the
home position of the terminal display is at row 1 column 1. Note, however, that if you have a
scrollback buffer that Index can take on negative values, as well, to identify non-visible rows
in the scrollback buffer.

Caution: GetLine returns the character values that make up a row. For some terminals, the
glyph you see on the terminal for a particular character value is not only based on the
character value itself, but also on the character set that is being used to display that character.
For example, on a VT100 terminal, if the character ‘m’ is displayed using the USASCII
character set, you will see the usual lower case ‘m’ glyph on the display. However, if the same
character ‘m’ is displayed using the Special Characters character set, you will see the lower
left corner linedraw glyph (the one that looks like an ‘L’). All the Line property will return is
the ‘m’ character value at that particular column position.

See also
GetAttributes, SetLine

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

Index Specifies the line number to return Integer

Terminal and Emulator References 153

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnCursorMoved event

Description
Defines an event that is fired when the cursor changes position.

Syntax
Private Sub expression_OnTerminalCursorMoved(

ByVal aRow As Long, ByVal aCol As Long)

Remarks
This event is triggered whenever the cursor’s position (column or row) changes. The
parameters aRow and aCol correspond to the cursor’s new row and column position within
the terminal window.

See also
Rows, Columns

Rows property

Description
Defines the number of rows down the terminal display. Read/write.

Data type
Integer

Syntax
expression.Rows[= value]

expression must reference an APAXPort.

Remarks
Default: 24

Part Description Data Type

expression References the APAXPort that
fired the event

APAXPort

aRow New row of the cursor Long

aCol New column of the cursor Long

154 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

The value of the Rows property is the number of standard-sized characters that can be
written vertically on the terminal display. In general, it is a value such as 24 or 25. If the
original terminal supports double-height characters then the value of Rows still reflects that
for standard-sized characters, not the double-height ones.

Notice that Rows is the number of rows on the original terminal, not the number of rows in
the scrollback buffer. The terminal display will consist of Rows lines, with Columns
characters in each.

Altering the value of Rows may cause the underlying buffer to be resized. The terminal will
attempt to save as much of the original data as possible during the resize operation. The data
will be preserved from the bottom of the terminal upwards. In other words, if you reduce the
number of rows from 20 to 15, say, you will see the bottom 15 rows of the original display
after the operation completes, not the top 15.

Setting the value of Rows to less than that supported by the original terminal itself is liable to
produce awkward looking displays, since the host computer will assume that the terminal is
the correct size and position text accordingly.

The rows in the terminal display are counted from 1, with the top row of the terminal being
row 1.

See also
Columns

ScrollbackEnabled property

Description
Defines whether the terminal is in scrollback mode. Read/write.

Data type
Boolean

Syntax
expression.ScrollbackEnabled[= value]

expression must reference an APAXPort.

Remarks
Default: False

Terminal and Emulator References 155

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

If ScrollbackEnabled is set to True, the terminal is placed into scrollback mode. In this
mode, keystrokes are no longer translated into their terminal equivalents and instead serve
to navigate through the scrollback buffer. Hence, in scrollback mode, the Page Up/Page
Down keys will move the user through the scrollback buffer, as will the standard arrow keys.

If scrollback mode is activated, the terminal will also no longer receive data from the serial
device. It is recommended that you impose flow control on the serial port when you switch
into scrollback mode (either send an XOFF character or drop a hardware flow control
signal), to help avoid the dispatcher’s input buffer overflowing. The terminal does not do
this itself. Imposing flow control helps keep the terminal data stable to allow the user to
navigate though the scrollback buffer in a profitable manner. Obviously, when you leave
scrollback mode, you would end the flow control condition to allow more data to come
through and be processed.

See also
ScrollbackRows

ScrollbackRows property

Description
Defines the number of rows in the scrollback buffer. Read/write.

Data type
Integer

Syntax
expression.ScrollbackRows[= value]

expression must reference an APAXPort.

Remarks
Default: 200

The scrollback buffer consists of the visible part of the terminal display, together with the
previous data that has scrolled off the top of the terminal display. In general you would set
ScrollbackRows such that you could hold four or five screens’ worth of previous data.

The value of the ScrollbackRows property must be greater than or equal to the value of
Rows. If you attempt to set ScrollbackRows to a value less than Rows, the new value is
adjusted to be equal to Rows. No error is generated in this situation. If the original terminal
supports double-height characters then the value of ScrollbackRows still reflects that for
standard-sized characters, not the double-height ones.

156 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Altering the value of ScrollbackRows may cause the underlying buffer to be resized. The
terminal will attempt to save as much of the original data as possible during the resize
operation. If the value of ScrollbackRows is reduced the data is removed from the top of the
buffer rather than the bottom.

The rows in the terminal display are counted from 1, with the top row of the terminal being
row 1. The rows above the actual terminal display in the scrollback area are counted
backwards from 1. Hence, the row above the top row of the actual terminal display is row 0,
the one above that row –1, and so on.

See also
ScrollbackEnabled

SetAttributes method

Description
Sets the font attributes at the specified row and column to the value specified by Value.

Syntax
expression.SetAttributes(aRow, aCol, Value)

Settings
Value can be set to any combination of the following.

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

Row Specifies the terminal window row Integer

Column Specifies the terminal window column Integer

Value Determines the actual font
attributes

Integer

Constant Value Description

tcaxNone 0 No special attributes defined

tcaxBold 1 Bold font

tcaxUnderline 2 Underline font

tcaxStrikethrough 4 Strikethrough font

Terminal and Emulator References 157

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Remarks
SetAttributes enables you to set the attributes for characters displayed by the terminal at the
specified row and column (aRow, aCol). Both aRow and aCol are one-based: the home
position of the terminal display is at row 1 column 1. Note, however, that if you have a
scrollback buffer that aRow can take on negative values, as well, to identify non-visible rows
in the scrollback buffer.

Example
The following example sets the character attributes of row 5, column 3 to reverse bold:

SetAttributes(5, 3, tcaxBold + tcaxReverse)

However, do notice that this direct manipulation is fairly inefficient.

See also
GetAttributes

SetLine method

Description
Sets the text data for a row in the display. Run-time only.

Syntax
expression.SetLine(Index, Value)

tcaxBlink 8 Blinking font

tcaxReverse 16 Foreground and background colors
are reversed

tcaxInvisible 32 Foreground color equal to
background color

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

Index Specifies the line number to return Integer

Value Specifies the string to write String

Constant Value Description

158 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Remarks
SetLine sets the string that makes up a row in the terminal. Index is one-based: the home
position of the terminal display is at row 1 column 1. Value determines the string that will be
displayed in the terminal window at line Index. Note, however, that if you have a scrollback
buffer that Index can take on negative values, as well, to identify non-visible rows in the
scrollback buffer.

Caution: SetLine sets the character values that make up a row. For some terminals, the glyph
you see on the terminal for a particular character value is not only based on the character
value itself, but also on the character set that is being used to display that character. For
example, on a VT100 terminal, if the character ‘m’ is displayed using the USASCII character
set, you will see the usual lower case ‘m’ glyph on the display. However, if the same character
‘m’ is displayed using the Special Characters character set, you will see the lower left corner
linedraw glyph (the one that looks like an ‘L’). All the Line property will return is the ‘m’
character value at that particular column position.

See also
GetAttributes, GetLine

TerminalActive property

Description
Determines whether the terminal is accepting serial and keyboard events. Read/write.

Data type
Boolean

Syntax
expression.TerminalActive[= value]

expression must reference an APAXPort.

Remarks
Setting TerminalActive to True causes the terminal to start processing serial and keyboard
data and to display this information in the terminal window.

See also
TerminalSetFocus

Terminal and Emulator References 159

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

TerminalBlinkTime property

Description
Defines the time in milliseconds between cycles for blinking text. Read/write.

Data type
Integer

Syntax
expression.TerminalBlinkTime[= value]

expression must reference an APAXPort.

Remarks
Default: 500

Some terminals allow blinking text to be displayed. The TerminalBlinkTime property
defines the elapsed time for a full cycle for the text being displayed, being invisible, and
being displayed again.

Note that, to provide this functionality, the terminal sets up a timer to tick at this rate. A
Windows timer is low-priority: if the PC is performing other work, it will seem as if the
blinking text has either stopped blinking or has disappeared completely. Also, if you set the
TerminalBlinkTime property too low, the terminal and emulator will spend most of their
time updating the window, especially if there’s a lot of blinking text.

TerminalHalfDuplex property

Description
Determines whether local data is echoed to the terminal display. Read/write.

Data type
Boolean

Syntax
expression.TerminalHalfDuplex[= value]

expression must reference an APAXPort.

160 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Remarks
Default: False

If TerminalHalfDuplex is False (the default), data entered at the local keyboard is displayed
only if the remote host computer echoes it back.

If TerminalHalfDuplex is True, data entered at the local keyboard is automatically displayed
in the terminal window. If the host computer is echoing the input data back as well, each
character is displayed twice.

TerminalLazyByteDelay property

Description
Determines the number of bytes received before the display is forcibly repainted.
Read/write.

Data type
Integer

Syntax
expression.TerminalLazyByteDelay[= value]

expression must reference an APAXPort.

Remarks
Default: 128

The APAXPort control supports a “lazy writing” mode. When this mode is active, rather
than update the display every time a new character appears from the serial device, the
terminal will only display new data after a certain amount of time, or after a certain number
of bytes have been received, or both. This gives the terminal a more efficient and smoother
“feel”. The value of TerminalLazyByteDelay defines how many bytes must be received
before the terminal window is updated. The default value is a compromise between
efficiently handling the display and providing timely visual feedback to the user.

See also
TerminalLazyTimeDelay, TerminalUseLazyDisplay

Terminal and Emulator References 161

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

TerminalLazyTimeDelay property

Description
Determines the number of elapsed milliseconds before the display is forcibly repainted.
Read/write.

Data type
Integer

Syntax
expression.TerminalLazyTimeDelay[= value]

expression must reference an APAXPort.

Remarks
Default: 250

The APAXPort control supports a “lazy writing” mode. When this mode is active, rather
than update the display every time a new character appears from the serial device, the
terminal will only display new data after a certain amount of time, or after a certain number
of bytes have been received, or both. This gives the terminal a more efficient and smoother
“feel”. The value of TerminalLazyTimeDelay defines how many milliseconds must pass
before the terminal window is updated. The default value is a compromise between
efficiently handling the display and providing timely visual feedback to the user.

See also
TerminalLazyByteDelay, TerminalUseLazyDisplay

162 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TerminalSetFocus method

Description
Sets the terminal window as the active control.

Syntax
expression.TerminalSetFocus()

expression must reference an APAXPort.

Remarks
This method is useful to transfer focus to the terminal window. After calling this method, all
keyboard strokes are sent directly to the terminal window, circumventing the need for the
user to click on the terminal window.

See also
TerminalActive

TerminalUseLazyDisplay property

Description
Defines whether the terminal immediately displays new incoming data or not. Read/write.

Data type
Boolean

Syntax
expression.TerminalUseLazyDisplay[= value]

expression must reference an APAXPort.

Remarks
Default: True

The APAXPort control supports a “lazy writing” mode. When this mode is active, rather
than update the display every time a new character appears from the serial device, the
terminal will only display new data after a certain amount of time, or after a certain number
of bytes have been received, or both. This gives the terminal a more efficient and smoother
“feel”.

Terminal and Emulator References 163

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

If TerminalUseLazyDisplay is False, the terminal will display every incoming character as
and when it arrives. If TerminalUseLazyDisplay is True, the terminal will display the new
data on the screen after TerminalLazyByteDelay bytes have been received since it last
updated the window, or after TerminalLazyTimeDelay milliseconds have elapsed.

The lazy writing mode only applies to data written to the terminal, either from the serial
device, or from the keyboard in half duplex mode, or from data explicitly written from
calling PutString (see page 111) or PutData (see page 110). If the terminal component’s
window is invalidated due to another window covering it and then being moved, or from the
application being minimized and then restored, the terminal display is immediately
repainted.

See also
TerminalLazyByteDelay, TerminalLazyTimeDelay

TerminalWantAllKeys property

Description
Defines whether the terminal hooks and retrieves all keystrokes. Read/write.

Data type
Boolean

Syntax
expression.TerminalWantAllKeys[= value]

expression must reference an APAXPort.

Remarks
Default: True

Part of the job of a terminal is the ability to map the PC keyboard onto a terminal keyboard.
This latter keyboard might be a completely different layout than the PC keyboard and, apart
from the alphabetic key section, have different keys for different host functions. The
keyboard mapping should attempt to match PC keys (whether they are alt-shifted, ctrl-
shifted, or whatever) onto appropriate terminal keys.

A problem that will occur is that keys like F1, F10, Enter, Tab, and so on, have a well-defined
meaning in the Windows world. Normally, controls on a form would ignore these keys since
they have dialog specific or application wide meanings. However, for a terminal it often
makes sense to have these keys perform a terminal related function and to suppress the
standard Windows meaning. If TerminalWantAllKeys is True, the terminal will attempt to

164 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

hook and trap all keystrokes generated while it has focus. Hence, for example, F1 will not
bring up the help system (it will not cause a WM_HELP message to be sent to the control),
F10 will not activate the main menu of the application, and so on.

If TerminalWantAllKeys is False, the terminal will not perform anything special with regard
to the keyboard. It will just trap WM_KEYDOWN and WM_SYSKEYDOWN messages and
pass them on to the emulator for processing. Standard Windows keys will perform their
usual functions.

TerminalWriteString method

Description
Writes a string to the terminal.

Syntax
expression.TerminalWriteString(aStr)

Remarks
The string written to the terminal will go through the same steps that characters that have
arrived from the serial device would go through. In other words, the characters in the string
are first passed to the internal keyboard emulator, which decides what to do with them. If the
emulator decides that certain characters are part of a terminal control sequence, it may
appear as if the string had not fully been accepted (it would not appear on the display) when
in reality it had. You can therefore use TerminalWriteString to send terminal control
sequences to the terminal to alter its behavior.

The terminal window will accept a string written with TerminalWriteString at any time,
even when it is actively receiving data from the serial device. Be aware that under these
circumstances, the characters written with TerminalWriteString will intermingle with data
from the serial device and may cause some bizarre behavior and displays.

See also
TerminalWriteStringCRLF

Part Description Data Type

expression An expression that returns
an APAXPort object.

APAXPort

aSt Defines the string to write String

Terminal and Emulator References 165

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

TerminalWriteStringCRLF method

Description
Writes a string followed with a carriage return/line feed pair to the terminal.

Syntax
expression.TerminalWriteStringCRLF(aStr)

Remarks
The string passed to this method will have a carriage return/line feed pair added internally.
The string will then be written to the terminal and will go through the same steps that
characters that have arrived from the serial device would go through. In other words, the
characters in the string are first passed to the internal keyboard emulator, which decides
what to do with them. If the emulator decides that certain characters are part of a terminal
control sequence, it may appear as if the string had not fully been accepted (it would not
appear on the display) when in reality it had. You can therefore use TerminalWriteString to
send terminal control sequences to the terminal to alter its behavior.

The terminal window will accept a string written with TerminalWriteStringCRLF at any
time, even when it is actively receiving data from the serial device. Be aware that under these
circumstances, the characters written with TerminalWriteStringCRLF will intermingle with
data from the serial device and may cause some bizarre behavior and displays.

See also
TerminalWriteString

Part Description Date Type

expression An expression that returns an APAXPort
object.

APAXPort

aSt Defines the string to write String

166 Chapter 7: Terminal Window and Emulations

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Visible property

Description
Determines whether the APAXPort control is visible. Read/write.

Data type
Boolean

Syntax
expression.Visible[= value]

expression must reference an APAXPort.

Remarks
The Visible property setting determines the visibility of the entire control including the tool
bar, status bar, and terminal window.

See also
ShowToolBar, ShowStatusBar

 167

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 8: TAPI Devices

The Telephony Application Programming Interface (TAPI) is a collection of DLLs and a
documented programming interface for centralizing and controlling telephony
communications services. TAPI was developed by Microsoft primarily for Computer
Telephony Integration (CTI) applications. TAPI provides the services that telephone
equipment and system providers need to integrate Windows programming and
telephone hardware.

TAPI also provides a smaller, though much more visible, service in managing modems as
system devices. This is a tremendous boon to communications programmers. No longer do
communications applications need to search serial ports for modems, try to identify
modems, burden the user with questions about their modem, or try any of the other
traditional approaches to supporting modems. Under TAPI, that task is handled by the
operating system. Programs make a few simple TAPI calls to determine what modems are
available.

Another advantage of TAPI is that applications can share serial ports. For example, assume
that an application opens a TAPI device to accept incoming fax or data calls. A second
application, if it also uses TAPI, can safely open the same TAPI device for an outgoing call.
When the outgoing call is over, TAPI resumes monitoring incoming calls without any
further action required by either application.

The major disadvantage of TAPI is that it doesn’t provide support for direct, modemless
connections. TAPI applications usually must still include logic for the direct opening of
serial ports.

The second major disadvantage of TAPI is the difficulty of assuring proper modem
configuration. TAPI modems are detected and installed by Windows during the installation
process. If a new modem is added later, the instructions provided with the modem usually
direct the user to run one of the Control Panel applets “Add New Hardware” or “Modems.”
The Add New Hardware applet found in Windows scans all available serial ports for
attached modems. When it finds a modem, it sends a variety of commands to the modem
and compares the responses against a large database of known modems, usually resulting in
an unambiguous choice. The Modems applet (or a setup program provided by the modem
vendor), can skip this detection process if the modem type is already known.

No matter how the modem is installed, the end result is that TAPI now knows everything it
needs to about that modem (serial port, baud rate, and the specific configuration
commands/responses). Property sheets are available to the user for changing the
configuration of the modem. For example, the user can turn the speaker on or off, change
the attached serial port, enable/disable flow control, and so on.

168 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

The default property values for the modem chosen by Microsoft or the modem vendor are
the values that provide the best results in the widest variety of situations. These properties,
however, are available to the user via the Modem applet’s modem property sheets. If the user
changes a critical value (say, the serial port number or perhaps flow control) it’s likely that
your application won’t operate properly when using that modem. Unfortunately, there isn’t
much you can do to protect against this. The responsibility for assuring the modem is
properly configured is in the user’s hands, not the application.

The final major disadvantage of TAPI is that resources often do not get properly released
following an abnormal termination of an application using TAPI. To counter this problem,
APAX includes a TAPI crash recovery mechanism which will automatically detect this
situation and release TAPI resources.

All of these issues are likely to improve over time, making TAPI the choice for current and
future communications programs. The best recommendation at this point is to use TAPI for
applications targeted for Windows, and make TAPI an option for all other operating system
targets.

The APAX Port control provides all the services necessary for selecting TAPI devices,
dialing and answering calls, and receiving status information about TAPI calls in progress.
The TAPI system itself provides even more services. For more information about TAPI, refer
to the following sources:

• Windows Telephony Programming: A Developer’s Guide to TAPI.(Addison-Wesley).
ISBN 0/201/63450-3.

• TAPI Reference Manual, included with the TAPI SDK and with the Windows 95/98
SDK.

• “Create Communications Programs for Windows 95 with the Win32 Comm API”,
Microsoft Systems Journal. 1994. #12. (Microsoft).

• Programming Windows 95 Unleashed (SAMS). ISBN 0-672-30474-0. Although only
one out of 37 chapters is devoted to TAPI, it provides a nicely condensed version of
much of the information in the TAPI Reference Manual, plus some helpful C++
example programs.

• The C++ sample program TAPICOMM, available on the Microsoft Developer
Network CD.

TAPI Device Control from an Application 169

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPI Device Control from an Application
Without TAPI, the APAXPort control opens the physical serial port directly using the
appropriate Windows API call, which returns a handle to that port. The APAXPort then uses
the handle to send and receive data and otherwise control the serial port. Configuring,
dialing, or answering the modem requires sending explicit ATXxx commands to the
modem, interpreting the responses, and dealing with the myriad of differences among
currently available modems.

With TAPI, an application calls the TAPIDial method to place an outgoing call or calls the
TAPIAnswer method to wait for an incoming call. TAPI sends the appropriate ATXxx
commands, interprets the responses, and establishes the modem connection.

Once the connection is established, TAPI’s role is essentially over. TAPI remains in charge of
the call until the modem connection is broken. From this point on the basic serial port
methods control the port and send/receive data, just as if TAPI is not involved. The serial
port is automatically opened by the APAXPort control when the modem connection is
established. Several APAXPort properties are updated with appropriate information from
the TAPI device, notably Baud and ComNumber.

When the modem connection is broken, the APAXPort control automatically closes the
associated serial port. The serial port cannot be used for input/output unless the modem
connection is re-established by the TAPI device or unless the program bypasses TAPI and
opens and uses the serial port directly.

The DeviceType property determines whether the port is in charge of the physical serial
port or whether TAPI is in charge of the port.

When DeviceType is xdDirect or xdWinsock, TAPI methods and properties have no effect.
Only when the DeviceType property is set to sdTAPI does TAPI take charge of configuring
and controlling the serial port.

170 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPI Events
TAPI dials outgoing calls and waits for incoming calls in the background. Applications are
informed of progress through a callback procedure. The APAXPort control installs a hidden
callback and translates these progress callbacks into the following events:

OnTAPIStatus
Generated at various intervals while dialing an outgoing call or answering an incoming call.
The parameters mirror the parameters passed directly to the TAPI callback. You will usually
need to reference only the Message and Param1 fields. The other fields are supplied for
applications that extend the services provided by APAXPort control.

OnTAPIPortOpen
Generated immediately after TAPI has established a connection and has the serial port
available for data communications.

OnTAPIPortClose
Generated immediately after TAPI closes the serial port due to a broken connection.

OnTAPIConnect
Generated immediately after TAPI establishes a modem connection.

OnTAPIFail
Generated immediately after TAPI tries but fails to establish a modem connection.

OnTAPICallerID
Generated after a connection is made and both a Caller ID string and a Caller ID Name
string are returned.

OnTAPIDTMF
Generated as soon as a DTMF tone is detected.

OnTAPIGetNumber
Generated prior to opening the port to obtain the phone number to dial.

OnTAPIWaveNotify
Generated whenever a the status of a wave file changes state.

OnTAPIWaveSilence
Generated whenever silence is detected while recording a wave file.

TAPI Status Processing 171

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPI Status Processing
TAPI handles the details of controlling, dialing, and answering the modem. The
OnTAPIStatus event is provided to let you know what’s happening as the connection
progresses.

TAPI actually uses a callback procedure to inform an application program of its progress.
The APAXPort control installs a hidden callback and translates all calls into OnTAPIStatus
events for easier processing. The format of the event handler is shown below and is identical
to the internal TAPI callback.

expression_OnTAPIStatus(ByVal First As Boolean,
ByVal Last As Boolean, ByVal Device As Long,
ByVal Message As Long, ByVal Param1 As Long,
ByVal Param2 As Long, ByVal Param3 As Long)

First is True for the first status event of the current call. Last is True for the last status event of
the current call. These parameters can be used to initialize and cleanup resources used when
displaying status information.

The remaining parameters mirror the parameters that TAPI sends to the hidden callback
procedure. Only Message and Param1 are used by APAX. The other parameters are
provided in case you extend APAX beyond making and answering calls. Only Message and
Param1 are described in detail; the rest are mentioned only briefly.

Part Description Data Type

expression References the APAXPort that fired the
event

APAXPort

First Indicates if this is the first TAPI
status event

Boolean

Last Indicates if this is the last TAPI
status event

Boolean

Device Additional parameter for extended use Long

Message Indicates the state of the current
call

Long

Param1 Used in conjunction with Message to
further define the state of the
current call

Long

Param2 Additional parameter for extended use Long

Param3 Additional parameter for extended use Long

172 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Message is a constant that describes the class of change since the previous OnTAPIStatus
event was generated. The possible values are:

The first three values are a subset of the possible TAPI messages. These are the only values
that dialing and answering generate. The final value, Line_APDSpecific isn’t really a TAPI
status message. It’s a pseudo state change that APAX generates to provide more information
about the progress of a call.

Line_CallState indicates that the progress of the call, what TAPI calls the “state” of the call,
changed. For example, the line was idle, but now it is dialing or the line was dialing but now
it is proceeding (the TAPI term for waiting for the connection).

Line_LineDevState indicates that the state of the device (modem, phone, or whatever)
changed. APAX dial/answer actions generate this message only to indicate that the modem
is ringing.

Line_Reply indicates that TAPI has accepted, but not necessarily completed, the requested
background. For example, it is generated just after a request to dial a number.

Line_APDSpecific is generated during periods when TAPI does not generate events, such as
after dialing and waiting for a connection, or when answering and waiting for a connection.
The primary purpose of Line_APDSpecific is to give the status event an opportunity to
update a timer.

Param1 provides additional information about Message. For example, when Message is
Line_CallState, Param1 contains a constant describing the change in state. Following are the
values of Param1 that are generated by APAX for each value of Message:

TAPI Message Value Explanation

Line_CallState 2 The state of the call changed

Line_LineDevState 8 The device state changed

Line_Reply 12 The previous request was accepted

Line_APDSpecific 32 APAX-specific status

Param1 Value Explanation

For Message = Line_CallState

LineCallState_Idle No call in progress

LineCallState_Offering Call starting

LineCallState_Accepted Incoming call accepted

LineCallState_DialTone Dialtone detected

TAPI Status Processing 173

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

These are only subsets of the possible values of Param1 for each of the Message states, but
they are the only values generated for the dial/answer actions performed by the APAXPort
control.

Other APAX properties can also be used in OnTAPIStatus event handler. Some examples are
TAPINumber, which contains the number just dialed, and TAPISelectedDevice, which
contains the name of the TAPI device.

LineCallState_Dialing Dialing the outgoing number

LineCallState_Proceeding Handshaking with the remote modem

LineCallState_RingBack Detected a remote ring

LineCallState_Busy Detected a busy signal

LineCallState_Connected Connected with the remote modem

LineCallState_Disconnected Disconnected from remote modem

For Message = Line_DevState

LineDevState_Ringing Ring detected for incoming call

For Message = Line_Reply

(Param1 not used for Line_Reply)

For Message = Line_APDSpecific

APDSpecific_DialFail Dial failed due to error

APDSpecific_RetryWait Waiting for next retry

APDSpecific_TAPIChange Unknown state change

Param1 Value Explanation

174 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Making Calls
The APAXPort control provides a dial method for placing outgoing calls. When TAPIDial is
called, TAPI sends the appropriate modem configuration commands to the modem, then
dials the number specified by TAPINumber.

The number passed to Dial should not contain any modem commands. It should contain
only the telephone number to dial, exactly as it would be dialed from a telephone handset.

The APAXPort control generates OnTAPIStatus events during the dialing process. If a
connection is not established, an OnTAPIFail event is generated. If a connection is
established, an OnTAPIConnect event is generated, the associated serial port is opened, and
the OnTAPIPortOpen event is generated.

Once the connection is established, all subsequent port control and input/output operations
use the basic serial port properties and methods. The connection can be closed by calling
the Close method. The APAXPort control then breaks the connection, closes the associated
serial port, and generates the OnTAPIPortClose event.

If a dial attempt fails due to a busy signal or other error, APAX can try the call again. This is
controlled by the MaxAttempts property, which determines how many times TAPIDial tries
the call, and TAPIRetryWait, which determines how long (in seconds) TAPIDial waits
before retrying a failed call.

Answering Calls
The process of answering the modem is very similar to dialing. The APAXPort control
generates the same events as it does when dialing.

Calling TAPIAnswer causes the APAXPort control to wait for incoming calls in the
background. No events are generated while waiting for calls. When an incoming call is
detected, APAX begins generating OnTAPIStatus events at regular intervals. If a connection
is not established, an OnTAPIFail event is generated. If a connection is established, an
OnTAPIConnect event is generated, the associated serial port is opened, and the
OnTAPIPortOpen event is generated.

Once the connection is established, all subsequent port control and input/output operations
use the basic serial port properties and methods. The exception to this occurs when the call
is terminated. The application should not simply close the APAXPort control because that
would not disconnect the modem connection. Instead, the application must direct TAPI to
close the connection by calling the Close method. The APAXPort control then breaks the
connection, closes the associated serial port, and generates the OnTAPIPortClose event.

TAPI Service Providers 175

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPI Service Providers
TAPI itself doesn’t implement any of the features necessary for controlling serial ports and
telephony devices. The TAPI architecture dictates that the low-level, physical services are
provided by a TAPI Service Provider (TSP).

Even if TAPI is properly installed, it will not function unless a service provider is also
installed. TSP modules are typically provided by telephony vendors along with their
telephony hardware. Windows installs a general purpose service provider named
UNIMDM.TSP, which provides basic dial and answer support for modems. It is this service
provider that makes TAPI available to communications programs in Windows. The lack of
this service provider is what makes TAPI less likely to be useful in other Windows
environments (which may have TAPI, but don’t have a general purpose modem service
provider).

Since UNIMDM.TSP is the service provider that your application is most likely to
encounter, it’s worth noting a few of its limitations here.

UNIMDM does not provide support for caller identification (caller ID). The CallerID
property of The APAXPort control always returns an empty string when using UNIMDM.

UNIMDM does not support “no dialtone” detection. TAPI will attempt to dial whether a
dialtone is detected or not.

See the TAPI Voice Support section on page 48 for an explanation of operating systems and
voice capability issues.

176 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Using TAPI for Configuration Only
Although UNIMDM.TSP provides basic dial and answer services it does not provide all of
the modem services an application might need. UNIMDM.TSP cannot be used to place a
faxmodem in fax answer mode or in adaptive answer mode (in which incoming calls are
accepted).

However, TAPI (along with UNIMDM and modem information files) contains a wealth of
configuration information and it is worthwhile to use TAPI to configure the modem and
control the call, even if TAPI doesn’t dial or answer the modem. This is provided by a feature
called passthrough mode. In passthrough mode, TAPI immediately enters the connected
state and opens the associated serial port.

Although, TAPI doesn’t send any modem initialization commands in passthrough mode,
APAX uses a two-step process to enter passthrough mode, which forces TAPI to send its
modem initialization commands. When the TAPIConfigAndOpen method is called, APAX
first initializes TAPI in answer mode, which forces TAPI to send its initialization commands.
APAX then immediately closes the port and reopens it in passthrough mode.

After calling TAPIConfigAndOpen, TAPI is in control of the call, just as though it had dialed
or answered the modem. No OnTAPIStatus events are generated, but OnTAPIPortOpen is
generated. To close the call, use the Close method. If TAPI ever aborts or closes the call itself,
the APAXPort control generates the OnTAPIPortClose event.

You should use TAPI passthrough mode if you need to support TAPI, but require modem
operations that UNIMDM.TSP doesn’t provide.

Wave File Support 177

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Wave File Support
The APAXPort control includes the ability to play and record wave files through a TAPI
device (over the phone line). This feature, along with the new DTMF feature, allows you to
created an automated voice answering system with APAX. To play and record wave files
through the TAPI device, you must have the following:

• UNIMODEM/V on Windows 95/98 and Windows ME or UNIMODEM/5 on
Windows 2000

• A voice modem with a wave driver

• A wave file

UNIMODEM/V is a set of DLLs that provides voice support for voice modems under
Windows 95/98 and Windows ME. Voice support includes DTMF tone detection and
generation, and wave file playback and recording. UNIMODEM/V is currently available
only for Windows 95/98 and Windows ME. You can get UNIMODEM/V for Windows 95/98
from the Microsoft web site.

To use the voice extensions provided by UNIMODEM/V, you must have a voice modem. For
wave support, it is important that you have the wave driver for the modem installed. Consult
your modem documentation to install the wave device properly.

The APAXPort control allows you to set the wave file format used for playback and
recording. The default wave format is PCM, 8KHz, 16 bit, mono. This format was chosen
because it is supported by the majority of voice modems. Some voice modems support other
wave file formats.

Wave files used for playback with APAX can be created with the Microsoft Sound Recorder
program. Wave files for use with TAPI which will be played over general telephone lines
(POTS) must be recorded in a PCM format compatible with your voice modem (here again,
the attributes 8,000 Hz (8Khz), 16 Bit, mono are a good choice). Sound Recorder also allows
for the conversion of existing wave files.

Recording options include the ability to detect silence on the line and take action when
silence is detected (such as hanging up the call). This is desirable because TAPI does not
have the ability to detect a hangup for a voice call. This option allows you to save disk space
by saving only the portion of the call which contains data.

178 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Dual Tone Multiple Frequency (DTMF)
Dual Tone Multiple Frequency (DTMF) tones are generated by a telephone touch pad over
telephone lines. With compatible drivers and modems, APAX can detect (receive) and
generate these tones. APAX notifies an application when it receives a tone by generating an
OnTAPIDTMF event. Tones are generated using the TAPISendTone method. See the TAPI
Voice Support section on page 48 for an explanation of operating systems and voice capabily
issues.

TAPI References 179

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPI References
Following is a list of the APAXPort control’s properties, methods, and events that pertain to
TAPI facilities. This is only a subset of the functionality of the APAXPort functionality.
Additional properties, methods, and events are introduced in other chapters.

Properties
AnswerOnRing

CallerID

Dialing

EnableVoice

InterruptWave

MaxAttempts

MaxMessageLength

SelectedDevice

SilenceThreshold

TAPIAttempt

TAPICancelled

TAPINumber

TAPIRetryWait

TAPIState

TrimSeconds

UseSoundCard

WaveFileName

WaveState

Methods
TAPIAnswer

TAPIConfigAndOpen

TAPIDial

TAPIPlayWaveFile

TAPIRecordWaveFile

TAPISelectDevice

TAPISendTone

TAPISetRecordingParams

TAPIShowConfigDialog

TAPIStopWaveFile

TAPITranslatePhoneNumber

Events
OnTAPICallerID

OnTAPIConnect

OnTAPIDTMF

OnTAPIFail

OnTAPIGetNumber

OnTAPIPortClose

OnTAPIPortOpen

OnTAPIStatus

OnTAPIWaveNotify

OnTAPIWaveSilence

180 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Reference section

AnswerOnRing property

Description
The number of times the TAPI device should allow the incoming call to ring before
answering it. Read/write.

Data type
Integer

Syntax
expression.AnswerOnRing[= value]

expression must reference an APAXPort.

Remarks
Default: 2

The default for AnswerOnRing is two rings because problems can occur with caller-ID
enabled modems if the call is answered after the first ring.

CallerID property

Description
Contains the caller identification string of the current incoming call. Read-only, run-time.

Data type
String

Syntax
expression.CallerID

expression must reference an APAXPort.

Remarks
Many telephony environments make a caller identification string available. This string
usually contains the phone number of the incoming call, but can contain other information
as well, if supplemented by an office telephony system.

TAPI References 181

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

If the telephony environment doesn’t supply caller identification information, CallerID is an
empty string.

Caller ID requires voice capabilities (i.e.: UnimodemV, voice modem).

Example
The following example shows an OnTAPIConnect event handler that updates a TLabel on
the current form with the caller ID information:

Private Sub Apax1_OnTAPIConnect()
Label1.Caption = Apax1.CallerID

End Sub

Dialing property

Description
Determines whether TAPI is placing an outgoing call or listening for an incoming call.
Read-only, run-time.

Data type
Boolean

Syntax
expression.Dialing

expression must reference an APAXPort.

Remarks
Dialing is True when TAPI is placing an outgoing call, False when TAPI is listening for or
answering incoming calls. Dialing is intended primarily for use in status routines to
distinguish between status events for incoming calls and status events for outgoing calls.

182 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example shows an OnTAPIStatus event handler that uses the Dialing property
to update a TLabel on the current form:

Private Sub Apax1_OnTAPIStatus(ByVal First As Boolean, ByVal Last
As Boolean, ByVal Device As Long, ByVal Message As Long, ByVal
Param1 As Long, ByVal Param2 As Long, ByVal Param3 As Long)

If Apax1.Dialing = True Then
Label1.Caption = "Dialing"

Else
Label1.Caption = "Idle"

End If
End Sub

See also
TAPINumber

EnableVoice property

Description
Determines whether the initial mode is DataModem or AutomatedVoice (Voice/DTMF).
Read/write.

Data type
Boolean

Syntax
expression.EnableVoice[= value]

expression must reference an APAXPort.

Remarks
Default: False

If EnableVoice is True and a TAPI device is selected, APAX first verifies that AutomatedVoice
capabilities exist for the selected device. If so, voice extensions such as DTMF and wave files
are supported. Otherwise, EnableVoice is set to False.

See also
OnTAPIDTMF, TAPIPlayWaveFile, TAPIRecordWaveFile, TAPISendTone

TAPI References 183

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

InterruptWave property

Description
Indicates whether the current wave file should stop when a DTMF tone is detected.
Read/write.

Data type
Boolean

Syntax
expression.InterruptWave[= value]

expression must reference an APAXPort.

Remarks
Default: True

If InterruptWave is True, the currently playing wave file will stop when a DTMF tone is
detected. This allows you to have an automated phone answering system in which user is
allowed to interrupt the currently playing wave file with a DTMF selection. If InterruptWave
is False, DTMF tones do not stop the currently playing wave file. If you want the caller to
hear a wave file in its entirety, set InterruptWave to False before you start playing it.

See also
OnTAPIDTMF, TAPIPlayWaveFile, TAPIStopWaveFile

184 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

MaxAttempts property

Description
Determines the number of times TAPIDial automatically dials a number. Read/write.

Data type
Integer

Syntax
expression.MaxAttempts[= value]

expression must reference an APAXPort.

Remarks
Default: 3

This is the number of times a phone number is dialed, it is not the number of retries. When
MaxAttempts is one, for example, the number is dialed only once. If the line is busy, it is not
tried again.

See also
TAPIAttempt, TAPIRetryWait

MaxMessageLength property

Description
The maximum allowed message length, in seconds, for messages recorded over the TAPI
waveform audio device. Read/write.

Data type
Integer

Syntax
expression.MaxMessageLength[= value]

expression must reference an APAXPort.

Remarks
Default: 60

TAPI References 185

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Use this parameter to specify the maximum length of recorded messages. A 60-second
message will require about 950K of disk space given the default recording parameters. When
the specified length of time passes, the OnTAPIWaveNotify event will be generated with a
Msg parameter of waDataReady. You could then save the wave file and terminate the call.

If the TrimSeconds property is set to a non-zero value, wave recording may terminate before
MaxMessageLength is reached.

OnTAPICallerID event

Description
Defines an event handler that is called after a connection is made and caller ID information
is available.

Syntax
Private Sub expression_OnTAPICallerID(

ByVal ID As String, ByVal IDName As String)

Remarks
The OnTAPICallerID event makes it easy to access Caller ID information without having to
know when it might be available on a call. Caller ID information is available only if it is
supported on the selected device and by the telephone service.

Part Description Data Type

expression References the APAXPort that
fired the event

APAXPort

ID The ID of the caller String

IDName The name of the caller String

186 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Example
The following example shows how to use the OnTAPICallerID event to get the Caller ID
information and display it in labels:

Private Sub Apax1_OnTAPICallerID(ByVal ID As String, ByVal IDName
As String)

Label1.Caption = ID
Label2.Caption = IDName

End Sub

See also
CallerID

OnTAPIConnect event

Description
Defines an event handler that is called when a connection is established.

Syntax
Private Sub expression_OnTAPIConnect()

expression must reference an APAXPort.

Remarks
TAPIDial and TAPIAnswer operations take place in the background. If a connection is
established after a call to TAPIDial or TAPIAnswer, the APAXPort generates the
OnTAPIConnect event.

No parameters are passed to OnTAPIConnect. It is a notification to the application that a
connection was successfully established. You can use this event to perform connection
start-up activities (e.g., activating and displaying a terminal window).

TAPI References 187

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnTAPIDTMF event

Description
Defines an event handler that is called when a DTMF tone is detected.

Syntax
Private Sub expression_OnTAPIDTMF(

ByVal Digit As Byte, ByVal ErrorCode As Long)

Remarks
Digit is a character that represents the phone button that was pressed on the remote phone
device. The possible values are ‘0’ through ‘9’, ‘*’, and ‘#’. ErrorCode is non-zero if an error
occurs when a TAPI connection is made (in this case the OnTAPIDTMF is generated just
before the OnTAPIConnect event).

Example
The following example builds a string of up to ten DTMF tones (characters) in the global
variable S:

Private Sub Apax1_OnTAPIDTMF(ByVal Digit As Byte, ByVal ErrorCode
As Long)
Dim s As String

If Length(s) < 11 Then
s = s + Digitm

End If
End Sub

See also
EnableVoice

Part Description Data Type

expression References the APAXPort that fired the
event

APAXPort

Digit The phone button that was pressed on
the remote phone device

Byte

ErrorCode Indicates the error or success status Long

188 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnTAPIFail event

Description
Defines an event handler that is called when a connection attempt fails.

Syntax
Private Sub expression_OnTAPIFail()

expression must reference an APAXPort.

Remarks
TAPIDial and TAPIAnswer operations take place in the background. If an attempt to
establish a connection fails, the APAXPort control generates the OnTAPIFail event.

No parameters are passed to OnTAPIFail. It is a notification to the application that a
connection attempt failed.

OnTAPIGetNumber event

Description
Defines an event handler that is fired prior to TAPI attempting to dial.

Syntax
Private Sub expression_OnTAPIGetNumber(PhoneNum as String)

Remarks
The PhoneNum parameter passed to this event will reflect the current TAPINumber
property. If TAPINumber is blank, you must assign a valid phone number to the PhoneNum
parameter passed to this event.

See also
TAPINumber

Part Description Data Type

expression References the APAXPort object that fired
the event

APAXPort

PhoneNum Defines the phone number to dial String

TAPI References 189

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnTAPIPortClose event

Description
Defines an event handler that is called immediately after the port is closed.

Syntax
Private Sub expression_OnTAPIPortClose()

expression must reference an APAXPort.

Remarks
The APAXPort control is responsible for opening and closing the associated serial port at
the appropriate times (when a connection is established or broken).

Applications can use this event to perform additional port cleanup activities.

See also
OnTAPIPortOpen

OnTAPIPortOpen event

Description
Defines an event handler that is called immediately after the port is opened.

Syntax
Private Sub expression_OnTAPIPortOpen()

expression must reference an APAXPort.

Remarks
The APAXPort control is responsible for opening and closing the associated serial port at
the appropriate times (when a connection is established or broken).

Applications can use this event to perform additional port setup activities.

See also
OnTAPIPortClose

190 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnTAPIStatus event

Description
Defines an event handler that is called regularly during a TAPI dial or answer attempt.

Syntax
Private Sub expression_OnTAPIStatus(

ByVal First As Boolean, ByVal Last As Boolean,
ByVal Device As Long, ByVal Message As Long,
ByVal Param1 As Long, ByVal Param2 As Long,
ByVal Param3 As Long)

Remarks
TAPI performs dial and answer activities in the background, calling a callback routine
whenever the state of the line or call changes. APAX installs a hidden callback routine and
translates all callback calls into OnTAPIStatus events.

First is True on the first OnTAPIStatus event to signal the status routine to perform its start-
up activities (e.g., make the status display visible). Last is True on the last OnTAPIStatus
event to signal the status routine to perform its cleanup activities (e.g., remove the status
display). First and Last are False on all other OnTAPIStatus events.

Part Description Data Type

expression References the APAXPort that fired the
event

APAXPort

First Indicates if this is the first TAPI
status event

Boolean

Last Indicates if this is the last TAPI
status event

Boolean

Device Additional parameter for extended use Long

Message Indicates the state of the current call Long

Param1 Used in conjunction with Message to
further define the state of the current
call

Long

Param2 Additional parameter for extended use Long

Param3 Additional parameter for extended use Long

TAPI References 191

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

The other parameters are passed by TAPI to the callback routine. The only parameters that
are of interest to most APAX programs are Message and Param1, which indicate the state of
the current call. See page 172 for an explanation of the values passed for the Message and
Param/ parameters.

The remaining parameters (Device, Param2, and Param3) are intended for use in
applications that extend the features provided by APAX.

TAPI generates callbacks only when it perceives a change in the state of the line or call. TAPI,
therefore, does not generate callbacks when the modem stays in a single state for an
extended period of time. For example, after dialing a number TAPI reports that the call is in
the “proceeding” phase. It generates no further status callbacks until the call succeeds or
fails. Since this can take many seconds, as much as 20 or even 30 seconds, the user might
become concerned about the lack of positive feedback (is it still working?).

To solve this problem, APAX generates additional OnTAPIStatus events, based on an
internal timer (once per second). These status calls give the status routine an opportunity to
update a timer.

192 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnTAPIWaveNotify event

Description
Defines an event handler that is called when a wave file status changes.

Syntax
Private Sub expression_OnTAPIWaveNotify(

ByVal Msg As TxWaveMessage)

Settings
Possible values for Msg are:

Example
The following example sets the Caption of a label after a wave file has finished playing:

Private Sub Apax1_OnTAPIWaveNotify(ByVal Msg As TxWaveMessage)
If Msg = waPlayDone Then

Label1.Caption = "Wave Device Idle..."
End If

End Sub

See also
TAPIPlayWaveFile, TAPIRecordWaveFile, TAPIStopWaveFile

Part Description Data Type

expression References the APAXPort that
fired the event

APAXPort

Msg Describes the status of the wave
file/device

TxWaveMessage

Constant Description

waPlayDone The wave file is finished playing

waPlayOpen The wave file is open

waPlayClose The wave file is closed

waRecordOpen The wave device is open for recording

waRecordClose The wave device is closed

waDataReady The wave device has recorded data

TAPI References 193

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnTAPIWaveSilence event

Description
Defines an event handler that is called when silence is detected while recording a wave file.

Syntax
Private Sub expression_OnTAPIWaveSilence(

StopRecording As Boolean, Hangup As Boolean)

Remarks
StopRecording is a Boolean parameter that determines whether wave recording should stop.
This parameter is True by default. Hangup is a Boolean parameter that determines whether
the call should be terminated. The parameter is also True by default.

This event works in conjunction with the TrimSeconds property. If TrimSeconds is 0 then
OnTAPIWaveSilence will not be generated. If you do not respond to this event, recording
will stop and the call will be terminated when silence is detected. This is probably the
desired behavior in most applications.

See also
TAPIRecordWaveFile

Part Description Data Type

expression References the APAXPort that fired
the event

APAXPort

StopRecording Determines whether wave recording
should stop

Boolean

HangUp Determines whether the call should
be terminated

Boolean

194 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

SelectedDevice property

Description
Determines the TAPI device to be used for dialing and answering. Read/write.

Data type
String

Syntax
expression.SelectedDevice[= value]

expression must reference an APAXPort.

Remarks
TAPI assigns names to each installed modem. APAX selects among those devices by setting
SelectedDevice to the name of the desired TAPI device. Since these names can sometimes be
rather lengthy and cumbersome to type, a property editor is provided for easier selection of
devices.

Because the name specified in SelectedDevice must exactly match a TAPI device name, you
should use this property editor in your application if you need to allow users to select a TAPI
device.

SelectedDevice must be set before calling TAPIDial, TAPIAnswer, or
TAPIShowConfigDialog.

See also
TAPISelectDevice

TAPI References 195

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

SilenceThreshold property

Description
Specifies a value that is used as a measure of silence. Read/write.

Data type
Boolean

Syntax
expression.SilenceThreshold[= value]

expression must reference an APAXPort.

Remarks
Default: 50

When the TrimSeconds property is set to a non-zero value, the wave data is examined as it is
recorded. Silence is determined by comparing the average of the wave data for one second to
a silence threshold as defined by SilenceThreshold. PCM data recorded by the TAPI wave
driver generally has an amplitude of 400 to 800 for normal speech. A silence threshold of 50
(the default) is conservative. True silence on the phone line is probably less than 20,
although anything under 200 could probably be considered silence. Modify the
SilenceThreshold property if your phone lines contain more or less noise.

See also
TAPIRecordWaveFile, TrimSeconds

196 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPIAnswer method

Description
Instructs TAPI to listen for and answer incoming calls.

Syntax
expression.TAPIAnswer

expression must reference an APAXPort.

Remarks
TAPIAnswer returns immediately after instructing TAPI to listen for calls. TAPI listens for
calls in the background. When an incoming call is detected, it answers the call, generating
appropriate events as it does.

Calling the Close method terminates the current call.

TAPIAttempt property

Description
Indicates the number of times the current number has been dialed. Read-only, run-time.

Data type
Integer

Syntax
expression.TAPIAttempt

expression must reference an APAXPort.

Remarks
If the dialed number is busy, TAPI waits briefly and calls the number again. It tries up to
MaxAttempts times. The TAPIAttempt property returns the number of the current attempt.
TAPIAttempt is incremented immediately upon encountering a busy line. TAPIAttempt is
primarily for use in OnTAPIStatus event handlers.

See also
MaxAttempts, OnTAPIStatus, TAPIRetryWait

TAPI References 197

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

TAPICancelled property

Description
Returns True if an OnTAPIFail event fires due to user action. Read-only, run-time.

Data type
Boolean

Syntax
expression.TAPICancelled

expression must reference an APAXPort.

Remarks
An OnTAPIFail event is generated any time a call is terminated before the final connection is
made—even if Close is used to terminate the call.

See also
Close, OnTAPIFail

TAPIConfigAndOpen method

Description
Configures the modem and leaves the port open in passthrough mode.

Syntax
expression.TAPIConfigAndOpen

expression must reference an APAXPort.

Remarks
TAPIConfigAndOpen takes advantage of the TAPI modem configuration facilities, even
though TAPI isn’t used for dialing or answering a call. TAPIConfigAndOpen does, however,
require a short period of background processing before the associated APAXPort control is
open. See page 176 for more information on passthrough mode.

198 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPIDial method

Description
Dials a phone number in the background.

Syntax
expression.TAPIDial()

Remarks
TAPIDial instructs TAPI to prepare the modem for dialing, then to dial the number
specified by the TAPINumber property. The OnTAPIGetNumber event is fired to obtain a
phone number if desired. All of these operations take place in the background. APAX
generates the OnTAPIStatus event to keep the program apprised of the dialing progress.

If a modem connection is established, the OnTAPIConnect and OnTAPIPortOpen events
are generated. If a modem connection is not established, the OnTAPIFail event is generated.

If a busy signal is detected and MaxAttempts is greater than one, TAPIDial redials the
number after waiting the number of seconds set in TAPIRetryWait. This continues until a
connection is established or MaxAttempts dial attempts fail.

Example
The following example shows how to dial the U.S. Robotics BBS, waiting 5 minutes after a
busy signal and retrying up to 10 times.

Apax1.TAPIRetryWait = 300
Apax1.MaxAttempts = 10
Apax1.TAPINumber = "1-847-262-2000"
Apax1.TAPIDial

See also
TAPIAnswer, MaxAttempts, TAPINumber, TAPIRetryWait

TAPI References 199

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

TAPINumber property

Description
Specifies the phone number used when dialing. Read-only, run-time.

Data type
String

Syntax
expression.TAPINumber

expression must reference an APAXPort.

Remarks
The value contained by TAPINumber is the phone number that is dialed by the TAPIDial
method.

TAPINumber should not contain any modem commands. It should contain the telephone
number exactly as it would be dialed from a telephone handset.

See also
TAPIDial, Dialing, OnTAPIGetNumber

TAPIPlayWaveFile method

Description
Plays a wave file.

Syntax
expression.TAPIPlayWaveFile(FileName)

Remarks
FileName is the name of the wave file. The wave file starts playing immediately if there is not
a wave file currently playing. If another wave file is currently playing and InterruptWave is
True, the current wave file is stopped and the new wave file is played. If another wave file is

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

FileName Specifies the wave file name String

200 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

playing and InterruptWave is False, TAPIPlayWaveFile returns without playing the new
wave file. The wave file is played through the TAPI device if the UseSoundCard property is
False (the default), or through the sound card if UseSoundCard is True.

Example
The following example plays a wave file through the TAPI device:

Apax1.TAPIPlayWaveFile("greeting.wav")

See also
InterruptWave, OnTAPIWaveNotify, TAPIStopWaveFile, UseSoundCard

TAPIRecordWaveFile method

Description
Starts the wave device recording.

Syntax
expression.TAPIRecordWaveFile(FileName, Overwrite)

Remarks
Use TAPIRecordWaveFile to begin recording a wave file using the TAPI waveform audio
device. Recording stops when the TAPIStopWaveFile method is called, when the wave input
buffer is full, or when silence is detected on the line. The size (in seconds) of the wave input
buffer is determined by MaxMessageLength. Silence detection is controlled through the
TrimSeconds property.

When recording stops, the OnTAPIWaveNotify event is generated.

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

FileName Specifies the wave file name String

Overwrite Determines whether or not to
overwrite an existing file

Boolean

TAPI References 201

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Example
The following example sets the maximum message length to 45 seconds and starts recording
the wave data on a button click:

Private Sub Command1_Click()
Apax1.MaxMessageLength = 45
Apax1.TAPIRecordWaveFile("call01.wav", True)

End Sub

Private Sub Apax1_OnTAPIWaveNotify(ByVal Msg As TxWaveMessage)
If Msg = waDataReady Then

Apax1.TAPIRecordWaveFile("Call01.wav",True)
End If

End Sub

See also
MaxMessageLength, TAPIPlayWaveFile, TAPIStopWaveFile, TrimSeconds

TAPIRetryWait property

Description
The number of seconds to wait after a busy signal before trying the number again.
Read/write.

Data type
Integer

Syntax
expression.TAPIRetryWait[= value]

expression must reference an APAXPort.

Remarks
Default: 60

After encountering a busy signal, APAXPort control checks to see if it should try this
number again by comparing Attempts to MaxAttempts. If more attempts are required, it first
waits the number of seconds set in TAPIRetryWait before dialing again to give the dialed
machine time to complete the current session.

See also
TAPIAttempt, MaxAttempts

202 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPISelectDevice method

Description
Displays a dialog box to select a TAPI device.

Syntax
expression.TAPISelectDevice

expression must reference an APAXPort.

Remarks
TAPISelectDevice is used to update SelectedDevice. You can call TAPISelectDevice to
prompt the user for a TAPI device to use for subsequent dial or answer operations.

TAPISendTone method

Description
Sends a DTMF tone to a remote telephone.

Syntax
expression.SendTone(Digits)

Remarks
TAPISendTone replicates the press of a telephone touch pad button from within an
application. Digits should consist of valid telephone touch pad buttons (i.e., ‘1’ through ‘9’,
‘*’, and ‘#’).

You can also use a comma (,) between characters for a short delay between the tones.
Multiple comma characters can be used to create a longer delay.

Example
The following example demonstrates how to use TAPISendTone to send multiple tones with
a delay:

TAPISendTone("123456789,,0")

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

Digits Specifies the digit(s) to send String

TAPI References 203

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

TAPISetRecordingParams method

Description
Sets the parameters used to record a wave file.

Syntax
expression.TAPISetRecordingParams(

NumChannels, NumSamplesPerSecond, NumBitsPerSample)

Remarks
NumChannels is the number of channels to use for recording. A value of 1 indicates mono,
and a value of 2 indicates stereo. Due to the nature of telephony, it is unlikely any TAPI
devices support stereo recording. NumSamplesPerSecond is the number of samples per
second to use for recording. NumBitsPerSample is the number of bits of data to record per
sample.

By default recording parameters are set to 1 channel (mono), 8000 samples per second, 16
bits per sample. If your TAPI device supports other recording formats you can use this
method to change the recording format. It is unlikely that you will need to change the
recording parameters.

See also
TAPIRecordWaveFile

Part Description Data Type

expression An expression that returns
an APAXPort object

APAXPort

NumChannels Determines mono or stereo
recording

Integer

NumSamplesPerSecond Determines number of samples
per second

Integer

NumBitsPerSample Determines the recording
resolution

Integer

204 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPIShowConfigDialog method

Description
Shows a TAPI configuration dialog for the selected device.

Syntax
expression.TAPIShowConfigDialog(AllowEdit)

Remarks
If AllowEdit is True, the resulting dialog displayed will allow users to modify the TAPI
settings for the selected device. If AllowEdit is False, the dialog will be read only.

See also
MaxMessageLength, TAPIPlayWaveFile, TAPIRecordWaveFile, TAPIStopWaveFile,
TrimSeconds

TAPIState property

Description
The state of the TAPI operation. Read-only, run-time.

Data type
TTAPIState

Syntax
expression.TAPIState

expression must reference an APAXPort.

Part Description Data Type

expression An expression that returns an APAXPort
object

APAXPort

AllowEdit Determines whether the dialog is
displayed read-only

Boolean

TAPI References 205

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Settings
Possible values of TAPIState are:

Remarks
Default: tsNone

When TAPIState is referenced, APAX retrieves state information from TAPI and returns the
result as TAPIState. For completeness, the TTAPIState constants contains all possible
returns from TAPI (which is a superset of values that you will likely see in an APAX
application).

Since APAX retrieves this value from TAPI every time you check it, you should avoid calling
it too often. In other words, sitting in a loop continuously polling TAPIState would not be a
good idea.

Constant Value Description

tsIdle 0 No TAPI operations in progress

tsOffering 1 TAPI is offering an incoming call

tsAccepted 2 APAX has accepted an incoming
call

tsDialTone 3 Dial tone detected

tsDialing 4 Waiting for dial to complete or
fail

tsRingback 5 Ringback detected

tsBusy 6 Line is busy

tsSpecialInfo 7 TAPI service provider specific

tsConnected 8 Call is connected

tsProceeding 9 Call is proceeding

tsOnHold 10 Call has been placed on hold

tsConferenced 11 Call is conferenced

tsOnHoldPendConf 12 Call is being conferenced

tsOnHoldPendTransfer 13 Call is being transferred

tsDisconnected 14 Call has been disconnected

tsUnknown 15 TAPI state unknown to APAX

206 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TAPIStopWaveFile method

Description
Stops the wave file that is currently playing or recording.

Syntax
expression.TAPIStopWaveFile

expression must reference an APAXPort.

Remarks
The wave file is halted regardless of the value of the InterruptWave property.
TAPIStopWaveFile generates two OnTAPIWaveNotify events. The first has a Code of
WOM_DONE and the second has a Code of WOM_CLOSE. If no wave file is currently
playing then TAPIStopWaveFile returns silently.

Example
The following example stops a wave file, if one is currently playing:

if Apax1.WaveState = wsPlaying then
Apax1.TAPIStopWaveFile

End If

See also
InterruptWave, OnTAPIWaveNotify, TAPIPlayWaveFile, WaveState

TAPITranslatePhoneNumber method

Description
Translates a canonical address into a dialable address. Returns a string representing the
dialable address.

Syntax
expression.TAPITranslatePhoneNumber(CanonicalAddr)

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

CanonicalAddr Specifies the canonical address String

TAPI References 207

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Remarks
A canonical address is an address that contains the country code as well as the phone
number. TAPI also takes into account any settings you have made to your modem properties
in the Control Panel. For example, if you have call waiting enabled and the code to disable
call waiting is *70, TAPI adda *70 to the beginning of the dialable address string when you
call TAPITranslatePhoneNumber.

See also
TAPIDial

TrimSeconds property

Description
Sets the number of seconds of silence to detect when recording wave files. Read/write.

Data type
Integer

Syntax
expression.TrimSeconds[= value]

expression must reference an APAXPort.

Remarks
Default: 2

Wave recording can be terminated in one of three ways. First, you can manually terminate
recording by calling TAPIStopWaveFile. Second, recording will automatically terminate
when the amount of time specified by MaxMessageLength has passed. Finally, wave
recording can terminate as a result of silence detected on the line.

When TrimSeconds is set to a non-zero value, the wave data is examined as it is recorded.
Silence is determined by comparing the average of the wave data for one second to a silence
threshold as defined by the SilenceThreshold property. If TrimSeconds seconds of silence is
detected, the OnTAPIWaveSilence event is generated. If no OnTAPIWaveSilence event is
defined then the recording is stopped and the call is terminated. Even after a hangup, a
telephone line contains a good deal of random noise so it is not guaranteed that silence will
be detected immediately after a hangup.

See also
OnTAPIWaveSilence, SilenceThreshold, TAPIRecordWaveFile

208 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

UseSoundCard property

Description
Determines where the output from TAPIPlayWaveFile is sent. Read/write.

Data type
Boolean

Syntax
expression.UseSoundCard[= value]

expression must reference an APAXPort.

Remarks
Default: False

UseSoundCard determines whether the output from TAPIPlayWaveFile goes to the TAPI
device or to the sound card. By default the output is sent to the TAPI waveform audio device
(through the phone). Set UseSoundCard to True to play the wave file through the sound
card.

Example
The following example plays a wave file through the sound card rather than over the phone
line and then resets the device so that subsequent sounds are played through the TAPI
device:

Apax1.UseSoundCard = True
Apax1.TAPIPlayWaveFile("Call01.wav")
Apax1.UseSoundCard = False

See also
TAPIPlayWaveFile

TAPI References 209

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

WaveFileName property

Description
The name of the current wave file. Read/write.

Data type
String

Syntax
expression.WaveFileName[= value]

expression must reference an APAXPort.

Remarks
If a wave file is currently playing, WaveFileName is the name of the file. If no wave file is
currently playing, WaveFileName is the name of the last wave file that was played.
WaveFileName is automatically set when you use TAPIPlayWaveFile to play a file.

Example
The following example sets a label’s caption to the name of the current wave file:

Label1.Caption = Apax1.WaveFileName

See also
TAPIPlayWaveFile

WaveState property

Description
The current state of the TAPI waveform device. Read/write.

Data type
TWaveState

Syntax
expression.WaveState[= value]

expression must reference an APAXPort.

210 Chapter 8: TAPI Devices

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Settings
Possible values for WaveState are:

Example
The following example stops a wave file if one is currently playing:

if Apax1.WaveState = wsPlaying then
Apax1.TAPIStopWaveFile

End If

See also
TAPIPlayWaveFile, TAPIRecordWaveFile, TAPIStopWaveFile, TAPIStopWaveFile

Constant Value Description

wsIdle 0 The wave device is not in use

wsPlaying 1 The wave device is playing a wave file

wsRecording 2 The wave device is recording a wave file

wsData 3 Data is available in the wave buffer

 213

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 9: File Transfer Protocols

Many communications applications need to transfer files or other large amounts of data
from one machine to another. This could be accomplished by having the sender call PutData
repeatedly and the receiver reading the data in an OnRXD event handler correspondingly.
However, the application would have a tremendous amount of detail work still to do. It
would need logic to transfer file name and size information, to check for and recover from
transmission errors, to handle file I/O, and so on.

That’s why APAX provides standard, tested, reliable, high performance file transfer
protocols. The term “protocol” means that both sides of the communication link behave in a
clear, well-defined manner following agreed-upon rules. The rules vary among the different
protocols and some protocols offer more control and features than others. At a minimum,
each protocol handles file I/O and serial port I/O and checks for errors. Some protocols also
include error correcting logic, multi-file transfers, and automatic recovery after partial file
transfers.

APAX offers the most widely used industry standard file transfer protocols, as shown in the
following table.

Protocol Description

Xmodem 128 byte blocks with checksum block checking

XmodemCRC 128 byte blocks with CRC block checking

Xmodem1K 1024 byte blocks with CRC block checking

Xmodem1KG Streaming Xmodem1K

Ymodem 1024 byte blocks, batch

YmodemG Streaming Ymodem

Zmodem 1024 byte blocks, batch, streaming, restartable

Kermit 80 byte blocks, batch, with long blocks and
windowing

ASCII ASCII stream with inter-character and inter-line
delays

214 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

General Issues
The APAX control encapsulates the protocol engine in a simple to use interface. The
protocol engine works in the background by using an internal APAX timer, and various data
triggers. Windows can continue with other tasks while a file transfer is in progress as long as
the other tasks yield properly for other events.

The following subsections document issues that arise for all types of file transfers that use
the APAX protocol engine.

Buffer sizes
When an APAXPort control is created, input and output buffers of sufficient size to handle
any protocol are allocated automatically. The following is a brief explanation of why APAX
requires relatively large buffers for file transfers.

Once a file transfer starts, it is likely that the user will work in another window until the file
transfer finishes. Because the transfer is running as a background application, it is at the
mercy of other Windows tasks. Many Windows applications and built-in Windows
operations can hog the CPU to an extent that prevents the background transfer from
succeeding.

To different degrees, all file transfer protocols are time-critical. They must respond to
incoming events in a timely fashion, usually within a few seconds. If they fail to respond in
the required time, the remote protocol software times out and repeats the failed operation.
Such time-outs and repetitions at best reduce the protocol transfer rate and at worst can
cause the protocol to fail.

In practice, it takes a very ill-behaved program or unusual user (e.g., someone who spends
30 seconds to move a window) to cause most protocols to fail. But this can happen and your
application should do whatever it can to minimize the chances.

One of the things that APAX does for you is to use a large input buffer. The Windows
communications driver continues to receive data and store it in the input buffer even if the
associated application program isn’t getting any time to run. With a 30K byte input buffer
and a data rate of 1600 characters per second, the buffer can hold 19 seconds worth of
incoming data before overflowing. When the application eventually regains control it
processes all received data before relinquishing control. The input buffer is then ready to
hold another 19 seconds worth of data.

General Issues 215

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

A large output buffer is also valuable when transmitting files. Streaming protocols such as
YmodemG and Zmodem, and Kermit to a lesser degree, typically transmit until they fill the
output buffer, then relinquish control. They don’t regain control until the buffer drains
enough to hold another data block and Windows can process the associated status trigger
message.

If the status update is delayed because another Windows application didn’t yield, the
Windows communications driver continues to transmit the data remaining in the output
buffer. Using the same numbers as the input buffer example, the driver can transmit
independently for up to 19 seconds before running out of data.

In summary, APAX automatically allocates buffer sizes large enough to transfer files using
any protocol. You need not concern yourself with buffer sizes.

Protocol events
The APAXPort control generates several events related to file transfers. General descriptions
of these events follow.

OnProtocolAccept
Generated as soon as the protocol window knows the name of an incoming file. This
provides an opportunity to accept or reject the file, or to change its name.

OnProtocolFinish
Generated after all files have been transferred or after the protocol terminates due to an
unrecoverable error. This event also sends the final result code of the protocol.

OnProtocolLog
Generated at the start and end of transferring each file. This provides an opportunity to log
the status of each file transfer.

OnProtocolStatus
Generated at regular intervals so that programs can display the progress of the protocol.

216 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Aborting a protocol
There will certainly be times when a protocol in progress must be canceled (e.g., when
something goes wrong at the remote computer or the user simply decides not to continue
the transfer). APAX protocols provide for this situation with the CancelProtocol method.

To cancel any protocol simply call the CancelProtocol method of the APAXPort control.
This method sends an appropriate cancel sequence to the remote computer and terminates.
The APAXPort control remains ready to handle additional protocol transfers.

When protocol transfers take place over a modem link it is a good idea to monitor the data
carrier detect (DCD) line and abort the protocol if carrier is lost. The DCD line goes high
when modems first connect and remains high until one of the modems hangs up.
Occasionally, line noise or other disturbances in the telephone network break the
connection between the modems, causing DCD to go low.

Some protocols quickly detect that the remote isn’t acknowledging after the connection is
broken. These protocols soon abort with an error code of ecTimeout or ecTooManyErrors.
By contrast, streaming protocols can take a very long time to notice that the connection is
broken because they don’t require acknowledgments.

The APAX protocol engine provides an option to handle dropped carrier automatically. Set
the AbortNoCarrier property to True before calling StartTransmit or StartReceive and the
protocol engine automatically aborts if the DCD line is not high at any point during the
protocol. The protocol cancels itself immediately and generates an OnProtocolFinish event
with an error code of ecAbortNoCarrier.

Using the AbortNoCarrier property is better than checking DCD and calling
CancelProtocol in your own code. When you do this, the protocol engine sends a cancel
sequence to the remote computer. If hardware flow control is enabled and the modem has
lowered the DSR or CTS signals as well as DCD, the protocol waits several seconds before
deciding it can’t send the cancel command, leading to an unnecessary delay for the
application. The AbortNoCarrier option prevents the protocol engine from sending the
cancel sequence, so the protocol stops immediately.

Error handling
All protocol transfers are subject to errors, including parity errors, files not found, and other
file I/O errors. Whenever possible the protocol window handles errors internally by retrying
an operation or requesting the remote computer to retry. At some point, however, it
determines that the situation is unrecoverable and terminates, generating an
OnProtocolFinish event. An application should include a handler for this event and check
the error code to determine success or failure of the protocol.

General Issues 217

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Protocol status
A protocol transfer can last a few seconds or several hours depending on the size and speed
of the transfer. Because the protocol component handles the details of the transfer from start
to finish, your application’s code is not executing during this entire time. You and your users
certainly want to know what’s happening as the transfer progresses, so APAX provides a
hook for your application to regularly regain control during this time.

During a protocol transfer the protocol window frequently generates an OnProtocolStatus
event. This gives your code the opportunity to monitor and display the progress of the
protocol. The following code fragment illustrates how.

If Options = apFirstCall
...do setup stuff

else
...do cleanup stuff

The Options parameter passed to this event handler routine can take on two special values:

apFirstCall = 1
apLastCall = 2

Options is set to apFirstCall the first time the protocol generates the event after being started
by StartTransmit or StartReceive. Options is set to apLastCall the last time it generates the
event, when the protocol is finished. Options equals zero for all other times.

The rest of the information about protocol progress is obtained by reading the values of
various APAXPort properties, including:

BlockCheckMethod: the type of block check calculation used by the protocol.

BlockErrors: the number of errors for the current block. This is the number of times the
protocol has unsuccessfully tried to transmit or receive the current block. It is reset to zero
when the block is finally accepted.

BlockLength: the current transfer block length. Although this value is usually static, some
protocols modify the length of the block on the fly. Zmodem in particular reduces the block
length after several block errors in a row and raises it again after several good blocks.

BlockNumber: the number of blocks transmitted so far. This is obtained by dividing the
number of bytes transferred by the current block length, so it will change if the block length
changes.

218 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

BytesRemaining: the size of the file minus BytesTransferred. When the file size isn’t known,
BytesRemaining returns zero.

BytesTransferred: the number of bytes transmitted or received so far. When transmitting,
this number is sometimes only an estimate. The uncertainty comes from the fact that the
protocol window doesn’t know when a particular byte has actually been transferred.
BytesTransferred is the number of bytes the protocol window has transferred to the output
buffer of the communications driver, minus the number of bytes that the driver reports are
currently in the buffer. Unfortunately, this calculation is still imperfect because it’s
impossible to know how much of the output buffer holds actual file data and how much
holds overhead characters needed by the protocol. Each protocol has a few simple rules it
uses to estimate this proportion, which in practice yield good estimates.

ElapsedTicks: the number of ticks elapsed since the protocol started. In order to provide
accurate CPS values, the protocol engine doesn’t start the timer until it receives the first
block from the remote computer.

FileDate: the date and time of the file being transmitted or received. If the protocol does not
support this feature, FileDate returns zero.

FileLength: the size of the file being transmitted or received. For transmitted files the file
size is always known. For received files the file size is known only if the protocol supports
this feature and the receiver has received this information. If the file size is not known,
FileLength returns zero.

FileName: the fully qualified name of the file that is being received or transmitted. When
receiving with a protocol that does not transfer the file name, FileName simply returns the
name previously assigned to it.

InitialPosition: used only for resumed file transfers using the Zmodem protocol. To display
an accurate transfer rate (CPS, or character per second, rate), status routines for these
protocols must subtract InitialPosition from BytesTransferred to obtain the actual number
of bytes transferred during this session. If this is not a resumed file transfer, InitialPosition
returns zero.

General Issues 219

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

ProtocolStatus: a code that indicates the current state of the protocol. The following table
shows all of the possible values. The usual status value is psOK, which means that the
protocol is operating normally. Other status values indicate recoverable error conditions,
protocol resume conditions, protocol start-up states, and internal protocol states. Fatal
protocol errors are not represented by protocol states.

Status Code Value Explanation

psOK 0 Protocol is OK

psProtocolHandshake 1 Protocol handshaking in progress

psInvalidDate 2 Bad date/time stamp received and
ignored

psFileRejected 3 Incoming file was rejected

psFileRenamed 4 Incoming file was renamed

psSkipFile 5 Incoming file was skipped

psFileDoesntExist 6 Incoming file was skipped; doesn't
exist on sender's hard disk

psCantWriteFile 7 Incoming file skipped due to Zmodem
options

psTimeout 8 Timed out waiting for something

psBlockCheckError 9 Bad checksum or CRC

psLongPacket 10 Block too long

psDuplicateBlock 11 Duplicate block received and ignored

psProtocolError 12 Error in protocol

psCancelRequested 13 Cancel requested

psEndFile 14 At end of file

psSequenceError 16 Block was out of sequence

psAbortNoCarrier 17 Aborting on carrier loss

psGotCrcE 18 Received Zmodem CrcE packet

psGotCrcG 19 Received Zmodem CrcG packet

psGotCrcW 20 Received Zmodem CrcW packet

psGotCrcQ 21 Received Zmodem CrcQ packet

220 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

ProtocolType: the protocol type, which is one of ptXmodem, ptXmodemCRC,
ptXmodem1K, ptXmodem1KG, ptYmodem, ptYmodemG, ptZmodem, ptKermit, and
ptAscii.

TotalErrors: the number of errors encountered since the current file was started. It is reset
only when a new file is started.

Various properties that describe the option settings for the protocol may also be used within
the status routine. These include HonorDirectory, IncludeDirectory, RTSLowForWrite,
AbortNoCarrier, and other options that are specific to particular protocols.

The StatusInterval property, which defaults to 18, is the maximum number of ticks between
OnProtocolStatus events. The protocol generates an OnProtocolStatus event after every
significant event (received a file name, received a complete block, etc.) or after at most
StatusInterval ticks.

APAX includes a mechanism for providing an automatic protocol status display without
programming, through the ProtocolStatusDisplay property. For each OnProtocolStatus
event the protocol checks whether ProtocolStatusDisplay is set to True. If it is, the protocol
automatically updates the display. It then calls the OnProtocolStatus event if one was
implemented.

Protocol logging
File transfer is often an automated process. For example, an application might send all of the
day’s transaction files to a remote computer during the night. In this case the application
would also keep a record of the files that were successfully transmitted and those that
weren’t.

The APAX protocol logging feature is ideal for this kind of application. It provides the
opportunity to log information about each received or transmitted file and whether the
transfer succeeded.

To support logging, the protocol component generates an OnProtocolLog event at the start
and end of each file transfer. The event passes a parameter that identifies the current logging
action.

The logging routine isn’t limited to just writing status information. It also can take care of
file-related start-up and cleanup activities. One example of this is to delete partially received
files. You would probably want to do this for all protocols except Zmodem, which can
resume failed transfers from the point of the error without having to retransmit the entire
file.

General Issues 221

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Multiple file processing
Several of the protocols provided by APAX can transmit and receive batches of files. The
protocol engine determines the next file to send with DOS filemask processing, using the
mask assigned to the SendFileName property.

For non-batch protocols like Xmodem the file mask should not contain wildcards. Such
protocols are capable of transmitting only a single file at a time, and if the mask matches
more than one file only the first matching file is transmitted.

Accept file processing
When receiving files, there may be times when you don’t want the incoming file. Consider,
for example, an open BBS where a first time caller is attempting to upload a 10MB file at
2400 baud. Since this would tie up the BBS for more than 11 hours you probably would want
to refuse it immediately. If the caller is using a protocol that transmits the file size in advance,
you can detect that it’s bigger than you want and refuse the upload.

As another example, suppose that a BBS has a well-publicized rule that it accepts only LZH
uploads and it detects that an incoming file has a ZIP extension. If a caller is using a protocol
that transmits the file name in advance, you can refuse an upload immediately. The
OnProtocolAccept event can be used to build such behavior into your application.

Note that Zmodem, alone among the APAX protocols, has built-in functionality for certain
kinds of accept file functions. For example, it can reject an upload that would overwrite an
existing file, or accept it only if the upload’s time stamp is newer than the existing file. These
options are described fully in the Zmodem section later in this chapter.

Once the protocol knows the name of an incoming file, but before it starts receiving data, it
generates an OnProtocolAccept event. An application can respond to the event by setting
the Accept parameter to True to accept the file, or False to refuse it. By default, all files are
accepted.

For all protocols except Zmodem, the first rejected file terminates the entire batch transfer.
Zmodem has provisions for skipping files, and the transmitter picks up again with the next
file after the rejected one.

The OnProtocolAccept event also provides an opportunity to rename an incoming file if its
current name isn’t acceptable. For example, if a file name conflicts with an existing file, you
can accept the file but change its name.

Note that all protocols have built-in options for handling incoming file name collisions. See
the “WriteFailAction property” on page 292 for a complete description. You don’t need to
write an OnProtocolAccept event handler if these constants provide the needed behavior.

222 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Internal logic
The protocol component has so far been described as a black box—you initialize it and call
StartTransmit or StartReceive to perform the protocol magic. Now it is time to look inside
the box, at how the protocol engine works. With this additional information, you will be
able to use the protocols more effectively and take better advantage of the events generated
by the protocol window.

Receiving Files
When receiving files, the protocol window employs the following logic. The following
diagram generally applies to all protocols.

handshake

get file name header

generate OnProtocolLog

generate OnProtocolAccept

apply WriteFail options
or

apply Zmodem rules

open file

receive data block
write data block

generate OnProtocolStatus
flush to disk every 8K

close file

generate OnProtocolLog

end protocol

No connect

No file

Fail

Fail

Fail

Fail

(batch only)

1

2

3

4

5

6

7

8

9

10

General Issues 223

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

The protocol first attempts to handshake with the remote machine. A handshake consists of
a valid response to an initial character sequence sent by the transmitter. If the handshake is
unsuccessful after a specified number of retries, the protocol ends.

If the handshake is successful, the transmitter is asked for the name of the next file to
transmit. It responds by sending a block containing the name.

The protocol generates the OnProtocolLog event to give the application an opportunity to
record the file name or take any other special action needed at the start of the transfer. Note
that the logging routine receives the file name before the OnProtocolAccept event handler
has had a chance to modify it.

Next the protocol generates the OnProtocolAccept event. If the message handler sets Accept
to False, the file is skipped and control is transferred to step 9. Otherwise, the built-in
WriteFail options or Zmodem’s built-in file management rules are applied. If the protocol
fails at this point, control is transferred to step 9.

The received file is created using the name from the file name header, perhaps as modified
by the OnProtocolAccept event handler. Step 6 also allocates work buffers and initializes
several internal variables used to manage the receive buffer. If the open fails, control is
transferred to step 8, which disposes of buffers and closes the file.

The actual transfer of data comes next in step 7. The internal operations of this step vary
tremendously among the protocols, so it is condensed in this diagram. The
OnProtocolStatus event is generated at least once for each block received. If unrecoverable
errors occur for any reason (user abort, broken connection, disk full, etc.), control is
transferred to step 8.

After the file transfer is complete, the file is closed in step 8. Then the OnProtocolLog event
is generated with information regarding whether the file was received OK, rejected, or failed.

In a batch protocol, control returns to the top of the loop to get another file header. If one is
received, the whole process is repeated. Otherwise, the protocol is ended by coordinating
with the transmitter and cleaning up.

224 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Transmitting Files
When transmitting files, the protocol window employs the following logic. This diagram
generally applies to all protocols.

The protocol first attempts to handshake with the remote machine. A handshake consists of
sending an initial character sequence and waiting for a valid response. If the handshake is
unsuccessful after a specified number of retries, the protocol ends.

If the handshake is successful, the component returns the next file based on the
SendFileName property.

The protocol generates the OnProtocolLog event to give the application an opportunity to
record the outgoing file name or take any other special action needed at the start of the
transfer.

handshake

“Return the next file based on
SendFileName”

generate OnProtocolLog

open file

read data block
send data block

generate OnProtocolStatus
reload buffer every 8K

close file

generate OnProtocolLog

end protocol

No connect

No file

(batch only)

Fail

Fail

1

2

3

4

5

6

7

8

General Issues 225

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

The outgoing file is opened in step 4. This step also allocates work buffers and initializes
variables used to manage the send buffer. If any of these steps fail, control is transferred to
step 6 to clean up.

The actual transfer of data comes next in step 5. The file is read in 8K byte blocks and sent
using the block size native to the protocol. The OnProtocolStatus event is generated at least
once for every block sent. If unrecoverable errors occur, control is immediately transferred
to step 6.

After the file transfer is complete, the file is closed and buffers are disposed in step 6. Then
the OnProtocolLog event is generated with information regarding whether the file was
transferred OK, rejected, or failed.

In a batch protocol, control returns to the top of the loop to get another file to send. If one is
available, the whole process is repeated. Otherwise, the protocol is ended by coordinating
with the receiver and cleaning up.

226 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Xmodem
Xmodem is the oldest protocol supported by APAX. It was developed and first implemented
by Ward Christensen in 1977 and placed in the public domain. Since then, it has become an
extremely popular protocol and continues in use today (although at a diminished
frequency).

Xmodem is also the simplest, and perhaps the slowest, protocol supported by APAX.
Xmodem uses blocks of only 128 bytes and requires an acknowledgment of each block. It
uses only a simple checksum for data integrity.

What follows is a simplified description of the Xmodem protocol, although it describes far
more than is required to actually use the protocol in APAX.

Xmodem blocks have the following format:

The <SOH> character marks the start of the block. Next comes a one byte block number
followed by a ones complement of the block number. The block number starts at one and
goes up to 255 where it rolls over to zero and starts the cycle again. Following the block
numbers are 128 bytes of data and a one-byte checksum. The checksum is calculated by
adding together all the data bytes and ignoring any carries that result.

A typical Xmodem protocol transfer looks something like this:

Transmitter Receiver

<--- <NAK>

<SOH><1><254><128 data bytes><chk> --->

<--- <ACK>

<SOH><2><253><128 data bytes><chk> --->

<--- <ACK>

<EOT> --->

<--- <ACK>

<SOH> <block#> not
<block#>

<128 bytes of data> <checksum>

Xmodem 227

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

The receiver always starts the protocol by issuing a <NAK>, also called the handshake
character. It waits 10 seconds for the transmitter to send a block of data. If it doesn’t get a
block within 10 seconds, it sends another <NAK>. This continues for 10 retries, after which
the receiver gives up.

If the receiver does get a block, it compares the checksum it calculates to the received
checksum. If the checksums differ, the receiver sends a <NAK> and the transmitter resends
the block. If the checksums match, the receiver accepts the block by sending an <ACK>.
This continues until the complete file is transmitted. The transmitter signifies this by
sending an <EOT>, which the receiver acknowledges with an <ACK>.

Either side can cancel the protocol at any time by sending three <CAN> characters (^X).
However, during an Xmodem receive the receiver cannot tell whether the <CAN>
characters are real data or a cancel request. The sequence is recognized as a cancel request
only when it comes between blocks. Hence, more than three <CAN> characters are
sometimes required to cancel the receiver. Sufficient characters are required to complete the
current block, then three more <CAN> characters to cancel the protocol.

From this description several things become clear. First, this protocol does not transfer any
information about the file being transmitted. Hence, the receiver must assign a name to the
incoming file.

The receiver also doesn’t know the exact size of the file, even after it is completely received.
The received file size is always a multiple of the block size. This Xmodem implementation
fills the last partial block of a transfer with characters of value BlockFillChar, whose default
is ^Z.

Xmodem often exhibits a start-up delay. The transmitter always waits for a <NAK> from the
receiver as its start signal. If the receiving program was started first, the transmitter probably
missed the first <NAK> and must wait for the receiver to time out and send another
<NAK>.

Xmodem offers no escaping of binary control characters. Escaping means that characters
can be transformed before being transmitted to prevent certain binary data characters, such
as <XON>, from being interpreted as data link control characters. As a result, you can’t use
software flow control in an Xmodem transfer (since the flow control software would
misinterpret <XON> or <XOFF> characters in the data stream as flow control requests) and
Xmodem itself can’t tell the difference between <CAN> characters used for protocol
cancellation and for data.

The only merit of the basic Xmodem protocol is that it is so widespread that it’s probably
supported by any communications program you can find, thus providing a lowest common
denominator between systems.

228 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Xmodem extensions
Xmodem has been tweaked and improved through the years. Some of these variations have
become standards of their own and are supported by APAX. These Xmodem extensions are
treated as separate protocols enabled by assigning a different value to the Protocol property.

The first of these improvements is called Xmodem CRC, which substitutes a 16 bit CRC
(cyclic redundancy check) for the original checksum. This offers a much higher level of data
integrity. When given the opportunity, you should always choose Xmodem CRC over plain
Xmodem.

The receiver indicates that it wants to use Xmodem CRC by sending the character ‘C’ instead
of <NAK> to start the protocol. If the transmitter doesn’t respond to the ‘C’ within three
attempts, the receiver assumes the transmitter isn’t capable of using Xmodem CRC. The
receiver automatically drops back to using checksums by sending a <NAK>.

Another popular extension is called Xmodem 1K. This derivative builds on Xmodem CRC
by using 1024 byte blocks instead of 128 byte blocks. When Xmodem 1K is active, each
block starts with an <STX> character instead of an <SOH>. Xmodem 1K also uses a 16 bit
CRC as the block check.

A larger block size can greatly speed up the protocol because it reduces the number of times
the transmitter must wait for an acknowledgment. However, it can actually reduce
throughput over noisy lines because more data must be retransmitted when errors are
encountered. The implementation of Xmodem 1K in APAX drops back to 128 byte blocks
whenever it receives more than 5 <NAK> characters in a row. Once it drops back to 128 byte
blocks, it never tries to step back up to 1024 byte blocks.

The final Xmodem extension supported by APAX is Xmodem 1KG. This streaming protocol
is requested when the receiver sends ‘G’ as the initial handshake character instead of
<NAK>. Streaming in this context means that the transmitter continuously transmits blocks
without waiting for acknowledgments. In fact, all blocks are assumed to be correct and the
receiver never sends acknowledgments. If the receiver does encounter a bad block, it aborts
the entire transfer by sending a <NAK>.

You shouldn’t even consider using this streaming protocol unless you are using error
correcting modems with their error control features turned on. In fact, you might want to
have your application refuse to use Xmodem 1KG if error correcting modems aren’t
detected. The advantage of a streaming protocol like Xmodem 1KG is its very high
throughput. There is no acknowledgment delay, so the protocol is extremely efficient.
Zmodem has this same property, but can also retry and recover from errors.

Ymodem 229

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Ymodem
Ymodem is a derivative of Xmodem that is different enough to be called a unique protocol.
What follows is a simplified explanation of Ymodem that provides more than enough
information to use it with APAX.

Ymodem is essentially Xmodem 1K with batch facilities added, which means that a single
protocol session can transfer as many files as you care to transmit. Another important
enhancement is that the transmitter can provide the receiver with the incoming file name,
size, and timestamp.

Ymodem achieves this by adding block zero to the Xmodem 1K protocol. Block zero is
transferred first and contains file information in the following format:

The <name> field is the only required field. It supplies the name of the file in lower case
letters. Path information can be included but the protocol requires that all ‘\’ characters be
converted to ‘/’.

The <len> field specifies the file length as an ASCII string. This field allows the receiver to
truncate the received file to discard the filler characters at the end of the last block.

The <date> field is the date and time stamp of the file. It is transmitted as the number of
seconds since January 1, 1970 GMT, expressed in ASCII octal digits (a Unix convention).

APAX takes care of properly formatting this block. You don’t need to do anything but
specify the name of the file to transmit. When receiving Ymodem files, APAX uses the
information in this block, if present, to adjust the size of the received file and its
modification date.

Here’s a sample Ymodem session:

Transmitter Receiver

<--- 'C'

<SOH><0><255><file info><crc> --->

<--- <ACK>

<--- 'C'

<STX><1><254><1024 data bytes><crc> --->

<SOH> <0> <name> <0> <len> <0> <date> <0>...<0> <CRChi> <CRClo><255>

230 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

As with the Xmodem protocols, the Ymodem protocol starts when the receiver sends a
handshake character (‘C’) to the transmitter. The transmitter responds with a properly
formatted block zero. The receiver acknowledges this with an <ACK> and then starts a
normal Xmodem CRC protocol by issuing another ‘C’ handshake character.

Ymodem extensions
The Ymodem specification permits Ymodem to use a combination of 128 and 1024 byte
blocks. Most Ymodem protocols start with 1024 byte blocks and drop back to 128 byte
blocks only if repeated errors are detected. Once the block size is reduced to 128 bytes, it is
never stepped back up to 1024.

Like Xmodem, Ymodem also offers a streaming extension called Ymodem G. This is similar
in performance (and drawbacks) to Xmodem 1KG, but like Ymodem itself offers the
advantages of batch transfers and file information.

<--- <ACK>

<STX><2><253><1024 data bytes><crc> --->

<--- <ACK>

<EOT> --->

<--- 'C'

<SOH><0><255><file info><crc> --->

<--- <ACK>

<--- 'C'

<STX><1><254><1024 data bytes><crc> --->

<--- <ACK>

<EOT> --->

<SOH><0><255><128 zeros><crc> --->

<--- <ACK>

Transmitter Receiver

Zmodem 231

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Zmodem
Of all the protocols supported by APAX, Zmodem offers the best overall mix of speed,
features, and tolerance for errors. The Zmodem protocol has many options and clearly was
meant to have lots of room for growth. The APAX implementation of Zmodem does not
cover the entire protocol specification but it does implement the features most likely to be
required by your application. It should generally be your protocol of choice.

Zmodem was developed for the public domain by Chuck Forsberg under contract to
Telenet. The original purpose was to provide a durable protocol with strong error recovery
features and good performance over a variety of network types (switched, satellite, etc.). It
has generally achieved these design goals.

What follows is a simplified explanation of Zmodem that provides more than enough
information to use it with APAX.

Zmodem borrows some concepts from Xmodem, Ymodem, and Kermit but is really a
completely new protocol. Instead of adopting the simple block structure of Xmodem and
Ymodem, Zmodem employs headers, data subpackets, and frames. A header contains a
header identifier, a type byte, four information bytes, and some block check bytes. A data
subpacket contains up to 1024 data bytes, a data subpacket type identifier, and some block
check bytes. A frame consists of one header and zero or more data subpackets.

Due to the complexity and variety of the Zmodem header and data subpacket formats, they
are not all detailed here. Instead, here is a high level look at a sample Zmodem file transfer:

Sender Receiver Explanation

'rz'<cr> ---> Start marker for automated
transfers

ZrQinit ---> Request for receiver's information

<--- ZrInit Receiver answers with its options

ZFile ---> Transmitter sends file information

<--- ZrPos Receiver sets the starting filepos

ZData ---> Transmitter says file data to
follow

data subpacket ---> Transmitter sends a data subpacket

... Continues until all data sent

ZEof ---> Transmitter indicates end-of-file

<--- ZrInit Receiver says ready for next file

232 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

The ZXxx tags are the header types that the two computers trade back and forth as they
decide what is to be done. In most cases all data in the file is sent in one ZData frame (the
ZData header followed by as many data subpackets as required). The receiver doesn’t have to
acknowledge any of the blocks unless the transmitter specifically asks for it. The Zmodem
protocol as implemented by APAX never asks for an acknowledgment; however, it respects
such requests from the transmitter.

Typically, once a file transfer is underway, the receiver interrupts the transmitter only if it
receives a bad block as determined by comparing block check values. An error is reported
by sending a ZrPos header, telling the transmitter where in the file to start retransmitting.

The protocol can be canceled at any time if either side sends five <CAN> characters (^X).

Control character escaping
Zmodem escapes certain control characters. Escaping means that characters are
transformed before being transmitted to prevent certain binary data characters, such as
<XON> and <CAN>, from being interpreted as data link control characters.

Escaping isn’t something you need to enable or disable because it’s always on. It is mentioned
here because escaping is what permits you to use software flow control with Zmodem. That
isn’t possible with the Xmodem/Ymodem family.

Zmodem always escapes the following characters:

<DLE> Data link escape character (10h, ^P)
<XON> XOn character (11h, ^Q)
<XOFF> XOff character (13h, ^S)
<CAN> Zmodem escape character (18h, ^X)
<DLE*> Data link escape character with high bit set (90h)
<XON*> XOn character with high bit set (91h)
<XOFF*> XOff character with high bit set (93h)

Zmodem escapes all control characters when requested to by the remote protocol.

ZFin ---> Transmitter indicates no more
files

<--- ZFin Receiver acknowledges

'OO' ---> Transmitter signs off

Sender Receiver Explanation

Zmodem 233

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Protocol options
While the Zmodem specification describes all sorts of features, not all Zmodem
implementations are expected to support all of the features. One of the first things that
happens in a Zmodem protocol is that the receiver tells the transmitter what features it
supports. The transmitter might modify its standard behavior to accommodate the
receiver’s support (or lack of support) for a particular option.

Since this process is handled automatically, you generally don’t need to worry about it. For
your information, the protocol options that APAX Zmodem protocol engine provides and
doesn’t provide are listed here.

APAX supports the following Zmodem protocol options:

• True full duplex for data and control channels

• Receiving data during disk I/O

• Sending a break signal

• Using 32 bit CRCs

• Escaping all control characters

APAX does not support the following protocol options:

• Encryption

• LZ data compression

• Escaping the 8th bit

• End-of-line conversion for Unix newline characters

• Sparse files

234 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Transfer resume
The Zmodem specification describes an option called “recover/resume.” This option is
requested by the transmitter when it wants to resume a previously interrupted file transfer.
When the receiver sees the request for this option, it compares the incoming file name with
the files in its destination directory. If the incoming file already exists and is smaller than the
one being transmitted, the receiver assumes that the transmitter wants to transfer only the
remaining portion of the file.

When this condition exists, the receiver opens the existing file and moves the file pointer to
the end of the file. It then tells the transmitter to move its file pointer to the same point in its
copy of the file. The transmitter starts sending data from that point, which resumes the
transfer from where it was interrupted.

This option can also be used to append new data to a remote copy of a file.

In either case, you use this option as follows:

APAXPort1.SendFileName = "BIGFILE"
APAXPort1.ZmodemRecover = True
APAXPort1.StartTransmit

File management options
Zmodem has a variety of file management options built into it. These are simple rules that
tell Zmodem whether or not to accept a file. Here are the possible options:

The zfoWriteCrc option, which requests that a file be transferred only if its CRC is different
from the remote copy’s, is not supported. When this option is requested, it is treated the
same as the zfoWriteNewer option.

Option Code Explanation

zfoWriteNewerLonger Transfer if new, newer, or longer

zfoWriteCrc Not supported, interpreted same as zfWriteNewer

zfoWriteAppend Transfer if new, append if existing

zfoWriteClobber Transfer always

zfoWriteNewer Transfer if new or newer

zfoWriteDifferent Transfer if new or different dates or sizes

zfoWriteProtect Transfer only if new

Zmodem 235

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

The file management options are always requested by the transmitter. To use them, assign a
value to the ZmodemFileOptions property before calling StartTransmit. The default
behavior is zfoWriteNewer. For example, to transmit all files regardless of whether such files
already exist on the remote machine, make the following assignment:

APAXPort1.ZmodemFileOptions = zfoWriteClobber

Even though the transmitter sets the file management options, APAX allows the receiver to
change them. For example, suppose the transmitter has requested zfoWriteClobber but you
want to accept only newer files. In this case you would set the ZmodemOptionOverride
property to True before calling StartReceive:

APAXPort1.ZmodemOptionOverride = True
APAXPort1.ZmodemFileOptions = zfoWriteNewer

Setting this property to True tells Zmodem to ignore the file management options requested
by the transmitter and to use zfoWriteNewer instead.

Another file management property called ZmodemSkipNoFile is available. Set this property
to True to force the receiver to skip any incoming file that doesn’t already exist in the
destination directory.

Whatever file management rules are in effect, the receiver applies them and either accepts
each file or rejects it. If the file is accepted, the file transfer proceeds normally. If the file is
rejected, the receiver sends a ZSkip frame to the transmitter, which stops sending the
current file and moves on to the next one in its list.

Don’t forget that you can implement your own file management rules with an
OnProtocolAccept event handler.

Automatic block size control
The Zmodem protocol decreases or increases the number of bytes transmitted per block in
response to retransmission requests, usually due to poor line conditions or random line
errors. The rationale is that small blocks can transmit more frequently without errors, since
there’s less time for a small block to be hit by line noise. And, even if a small block is
corrupted by noise, it is faster to retransmit than a large block.

If the transmitter receives an unsolicited request from the receiver to resend data, it reduces
the block size from 1024 to 512. If the transmitter receives another request to resend, it
reduces the block size from 512 to 256. It never reduces the block size below 256 bytes.
Conversely, the transmitter raises the block size immediately back to 1024 bytes when it
sends four blocks in a row without receiving any requests to resend.

236 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Similar logic is employed with 8K Zmodem, which uses 8192 byte blocks by default. The
block size is halved for each retransmission request received, down to a minimum of 256
bytes. The block size is increased to 8K bytes in a single step after four blocks are
transmitted without any requests to resend.

Block size control is automatic and cannot be disabled. While this behavior is not
documented in the public domain Zmodem specification, it is the process followed by the
popular DSZ program and is acceptable to any common Zmodem implementation.

Large block support
The APAXPort’s implementation of Zmodem also includes support for 8K byte blocks. This
behavior is outside the public domain specification and was added largely for programmers
who need to transfer files to or from several popular BBS and FIDONet mailer programs.
Since large blocks are not supported by all common Zmodem implementations, their use is
not automatic—you must specifically enable them before starting a file transfer by setting
the Zmodem8K property to True.

Kermit 237

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Kermit
The Kermit protocol was developed to allow file transfers in environments that other
protocols can’t handle. Such environments include links that only pass 7 data bits, links that
can’t handle control characters, computer systems that can’t handle large blocks, and diverse
other links such as those between a PC and a mainframe.

Kermit is a public domain protocol that was developed at Columbia University. (The name
refers to Kermit the Frog, from The Muppet Show.) What follows is a simplified explanation
of Kermit that provides more than enough information to use it with APAX. For additional
details, get the Kermit protocol specification from Columbia University, Kermit
Distribution, Department OP, 612 West 115th Street, New York, NY 10025.

Character quoting
Character quoting means pretty much the same thing that escaping means in Zmodem. The
character is replaced by a quote character and a modified form of the original character. The
quote character tells the receiver how to convert the modified character back to its original
value. Quoting ensures that certain binary characters are never put into the data stream
where they could be misinterpreted by a modem or another part of the serial link.

Although Zmodem transforms only a few critical characters such as <XON> and <XOFF>,
Kermit quotes nearly all characters. This is one of the features that permits Kermit to run in
nearly any environment. When quoting is finished, a Kermit data packet consists almost
entirely of printable ASCII characters. The only exceptions are an <SOH> character at the
start of each packet and a <CR> at the end.

Kermit quotes control characters by replacing them with a quote character and a modified
version of the control character. For example, ^A becomes ‘#A’ where ‘#’ is the quote
character. The process of converting ^A to ‘A’ is called “Ctl” and it works like this:

Ctl(x) = x xor 40h

This operation is its own inverse, that is, Ctl(Ctl(x)) = x.

Kermit also quotes characters with their eighth bit set, which allows it to transmit 8 bit data
over 7 bit data links. The quote character in this case is ‘&’ and the quoted data character is
obtained simply by stripping the high bit. For example, the quoted version of character $C1
(‘A’ with its high bit set) is ‘&A’.

238 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Binary numbers in Kermit packet headers and in repeated character strings are also
transformed to assure that they are printable characters. This is achieved by adding 32 to
each number before it is transmitted and subtracting 32 after it is received. In Kermit
parlance, these operations are known as “ToChar” and “UnChar.”

Kermit has a simple built-in data compression mechanism called run length encoding.
When it sees a long string of repeated characters, it compresses the string into a quote
character, a length byte, and the repeated character. Obviously, there must be at least 4
repeated characters before there is any compression. The quote character for run length
encoding is ‘~’. Hence, the string ‘AAAAA’ becomes ‘~%A’, where ‘%’ is equivalent to a
binary 5 after the “ToChar” operation.

Kermit packets
The following diagram shows the general format of a Kermit packet:

The <SOH> character, also called the mark field, indicates the start of a Kermit packet.

The length byte specifies the number of bytes that follow. Since it must be transmitted as a
printable 7 bit character the binary maximum value is 94, which means that the maximum
length of a normal Kermit packet is 96 bytes including the <SOH> and the <length> field.

The <seq> byte is a packet sequence number in the range of 0 to 63. After 63 it cycles
back to 0.

The <type> byte describes the various Kermit packet types, which are analogous to the
Zmodem frame types.

The data field contains up to 91 bytes including all quote characters. The number of actual
data bytes could be considerably less, particularly if binary data is being transmitted.

The standard Kermit <check> field is a single-byte checksum. Kermit offers two optional
block check methods called two-byte checksum and three-byte CRC.

The <term> character is the packet terminator which equals carriage return (ASCII 13) by
default. You will probably never need to change the terminator.

<SOH> <len> <seq> <type> <up to 91 data bytes> <check> <term>

Kermit 239

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

A typical Kermit protocol transfer looks like this:

The KXxx tags are the packet types that the two computers exchange as they decide what is
to be done.

Kermit options
Like Zmodem, Kermit offers a variety of options. An implementation of Kermit is not
required to support all options. Hence, one of the first things that happens in a Kermit
protocol is that the two sides exchange their desired options and use the lowest common
denominator of the two sets.

Transmitter Receiver Explanation

KSendInit ---> Transmitter sends its options

<--- KAck Receiver answers with its options

KFile ---> Transmitter sends filename

<--- KAck Receiver acknowledges filename

KData ---> Transmitter sends data packet

<--- KAck Receiver acknowledges data packet

KData ---> Transmitter sends data packet

<--- KAck Receiver acknowledges data packet

... Continues until all data sent

KEndoffile ---> Transmitter says end of file

<--- KAck Receiver acknowledges and closes
file

KBreak ---> Transmitter says end of protocol

<--- KAck Receiver acknowledges end of
protocol

240 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Here are the Kermit options that APAX supports and the default values it uses. The entries in
the first column are APAX property names that can be used to adjust each option.

KermitMaxLen is the maximum number of bytes you want Kermit to include in one packet.
The normal maximum value is 94; the default value is 80 as suggested by the Kermit
Protocol Manual. If KermitMaxLen exceeds 94, the Kermit “long packets” feature is enabled.
(see page 241.) The absolute maximum value is 1024.

KermitTimeoutSecs is the amount of time, in seconds, that a Kermit transmitter will wait for
an acknowledgment or a Kermit receiver will wait for the next byte to be received. If more
than KermitTimeoutSecs seconds elapse without receiving anything, Kermit assumes an
error occurred and resends.

KermitPadCount and KermitPadCharacter describe padding that can be added at the front
of all Kermit packets. The only reason for padding is if the remote machine needs a delay
between sending a packet and receiving a response. In this case, you can specify enough
padding characters to generate the required delay. Generally, though, padding is
unnecessary. The Kermit protocol as implemented by APAX automatically honors a remote’s
request for padding.

KermitTerminator is the character that follows the check field in a packet. Although all
Kermit packets have a terminator, it is used only by systems that need an end-of-line
character before they can start processing input.

Property Default Explanation

KermitMaxLen 80 bytes Maximum length of the data field

KermitTimeoutSecs 5 seconds Maximum time-out between
characters

KermitPadCount 0 bytes No pad characters before packets

KermitPadCharacter ' ' Space character used for padding

KermitTerminator <CR> Terminator is a carriage return

KermitCtlPrefix '#' Control character prefix is '#'

KermitHighbitPrefix 'Y' 8-bit quoting honored, not
required

BlockCheckMethod '1' Use a 1 byte checksum

KermitRepeatPrefix '~' Repeat prefix is '~'

KermitMaxWindows 0 No sliding windows

Kermit 241

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

KermitCtlPrefix is the control character prefix that Kermit uses when performing “Ctl”
quoting to transform control characters into printable ASCII characters. Generally you
won’t need to change this prefix.

KermitHighbitPrefix specifies how Kermit transforms high-bit characters into characters
without the high-bit set. Generally you won’t need to change this setting. See the property
description for more information.

BlockCheckMethod specifies the type of block checking Kermit should perform. ‘1’
corresponds to the bcmChecksum value of the BlockCheckMethod type, and it means that
Kermit should use a single-byte checksum. All Kermit implementations are guaranteed to
support this form of block checking. bcmChecksum2 means that Kermit should use a two-
byte checksum, which offers only slightly more protection than the single-byte checksum.
bcmCrcK means that Kermit should use a three-byte CRC. This is the preferred block check
method because it offers the highest level of error detection. Unfortunately, not all Kermit
implementations support the non-default block check methods. If the remote computer
doesn’t support the block check method you request, both sides drop back to the single-byte
checksum.

KermitRepeatPrefix is the repeated-character prefix that Kermit uses when compressing
long strings of repeated characters. Generally you won’t need to change this prefix.

KermitMaxWindows is the number of sliding windows requested. Setting this to a value
between 1 and 27 (the maximum allowed) enables sliding windows support.

The two sides of a Kermit protocol automatically negotiate which options to use, so no
intervention is required by your program. If you wish to change the default options, use
these properties.

APAX does not provide Kermit server functions and does not support file attribute packets.

Long packets
APAX includes support for long packets, which is an extension to standard Kermit that
permits data packets of up to 1024 bytes. Long packets can substantially improve protocol
throughput on clean connections that have small turnaround delays. Long packet support is
turned off by default and must be enabled by setting KermitMaxLen to a value between 95
and 1024. Most other Kermit implementations also disable this option by default.

Although the specification allows for packets up to 9024 bytes, APAX limits long packets to
1024 bytes. Packets longer than 1024 bytes do not appreciably increase throughput, but they
dramatically increase retransmission time when a line error occurs.

242 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

The specification also recommends the use of the higher-order checksums with long
packets, but does not require it. APAX defaults to 2 byte checksums when long packet
support is enabled, but drops back to 1 byte checksums if requested to do so by the remote
Kermit.

Sliding windows control
APAX includes supports for the Kermit extension known as Sliding Windows Control
(SWC), also called “SuperKermit.” SWC provides a “send ahead” facility that dramatically
improves throughput when turnaround delays tend to be large, as when using satellite links.

Send ahead means that the transmitter sends many blocks without waiting for an
acknowledgment for each block. The transmitter collects acknowledgments when they
eventually arrive and marks the previously transmitted blocks as acknowledged. This
reduces turnaround delay (the time it takes the receiver to send an acknowledgment) to
zero.

SWC operates by keeping a circular table of transmitted packets. The maximum number of
packets in this table is called the window size, which is a number between 0 (no sliding
window support) and 31. If the transmitter and receiver specify different window sizes, the
smaller of the two is used. APAX’s Kermit actually limits the maximum number of windows
to 27 to avoid encountering a bug in the popular program MSKERMIT.

Sliding window support is off by default. It is enabled by setting the KermitMaxWindows
property to a non-zero value.

On the sender’s side, each transmitted packet is added to the table. When an
acknowledgment is eventually received for a packet, its entry in the table is freed. If the table
fills, the transmitter does not send more packets until it receives acknowledgments for one
or more existing packets.

On the receiver’s side, each received packet is added to the table and remains there until the
table is full. Then the oldest packet is written to disk. When errors are detected, the receiver
sends a <NAK> for each missed packet, starting past the last known good packet and
continuing up to the most recently received packet.

It is possible to enable long packets and SWC simultaneously, but memory consumption
rises dramatically from the single 80 byte buffer normally used by Kermit. In the worst case
you could have 27 windows of 1024 bytes each, adding up to 27648 bytes.

ASCII 243

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

ASCII
The term “ASCII protocol” is a bit of a misnomer, because in an ASCII transfer neither side
of the link is following well documented rules. An ASCII protocol is really just a convenient
way of transmitting a text file.

A typical use for the ASCII protocol is when you need to transfer a text file to a remote
machine that doesn’t have any protocols available. One way of accomplishing this is to run
an APAX program that supports a terminal window and the ASCII protocol. You connect to
the remote machine, navigate to the it’s editor, and open up a new text file. Then you start an
ASCII protocol transmit of the file you need to transfer. The remote machine’s editor sees
this as keystroke input to the editor. You finish the transfer by saving the editor’s file.

The ASCII protocol provides options for tailoring such transfers to the remote machine’s
speed, which might necessitate delays between transmitted characters and lines. For
example, when transmitting a file into a remote computer’s editor, you might need to use
delays to avoid overflowing the editor’s keystroke buffer.

It is difficult for the receiver to know when an ASCII transfer is over because there is no
agreed upon method for indicating termination. The ASCII protocol terminates on any of
three conditions: when it receives a ^Z character, when it times out waiting for more data, or
when the user aborts the protocol and the application calls CancelProtocol. When any of
these conditions is detected, the file is saved and the protocol ends.

End-of-line translations
Computer systems sometimes use different character sequences to terminate each line of a
text file. Most PC software stores both a carriage return <CR> and a line feed <LF> at the
end of each line. Other systems store only <LF> or only <CR> at the end of each line.

244 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

The ASCII protocol provides a number of options for translating from one end-of-line
sequence to another, both when transmitting and when receiving. When performing these
translations, the <CR> and <LF> characters are treated separately, based on the values
assigned to the AsciiCRTranslation and AsciiLFTranslation properties. The following
enumerated values are used to control the behavior:

Value Explanation

aetNone The character is not to be modified (the
default).

aetStrip The character is to be stripped from the data
stream.

aetAddCRBefore A <CR> is to be inserted before each <LF>. This
can be specified only for the AsciiLFTranslation
property.

aetAddLFAfter An <LF> is to be added after each <CR>. This can
be specified only for the AsciiCRTranslation
property.

Protocol References 245

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Protocol References
Following is a list of the APAXPort control’s properties, methods, and events that pertain to
file transfer protocols. This is only a subset of the functionality of the APAXPort
functionality. Additional properties, methods, and events are introduced in other chapters.

Properties
AbortNoCarrier

AsciiCharDelay

AsciiCRTranslation

AsciiEOFTimeout

AsciiEOLChar

AsciiLFTranslation

AsciiLineDelay

AsciiSuppressCtrlZ

Batch

BlockCheckMethod

BlockErrors

BlockLength

BlockNumber

BytesRemaining

BytesTransferred

ElapsedTicks

FileDate

FileLength

FinishWait

HandshakeRetry

HandshakeWait

HonorDirectory

IncludeDirectory

InitialPosition

InProgress

KermitCtlPrefix

KermitHighbitPrefix

KermitLongBlocks

KermitMaxLen

KermitMaxWindows

KermitPadCharacter

KermitPadCount

KermitRepeatPrefix

KermitSWCTurnDelay

KermitTerminator

KermitTimeoutSecs

KermitWindowsTotal

KermitWindowsUsed

Protocol

ProtocolStatus

ProtocolStatusDisplay

ReceiveDirectory

ReceiveFileName

RTSLowForWrite

SendFileName

StatusInterval

TotalErrors

TransmitTimeout

UpcaseFileNames

WriteFailAction

XYmodemBlockWait

Zmodem8K

ZmodemFileOptions

ZmodemFinishRetry

ZmodemOptionOverride

ZmodemRecover

ZmodemSkipNoFile

Methods
CancelProtocol

EstimateTransferSecs

StartReceive

StartTransmit

Events
OnProtocolAccept

OnProtocolFinish

OnProtocolLog

OnProtocolStatus

246 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Reference Section

AbortNoCarrier property

Description
Determines whether the protocol is canceled automatically when the DCD modem signal
drops. Read/write.

Data type
Boolean

Syntax
expression.AbortNoCarrier[= value]

expression must reference an APAXPort.

Remarks
Default: False

Using the AbortNoCarrier property is better than checking DCD and calling
CancelProtocol in your own code. When you do this, the protocol engine sends a cancel
sequence to the remote computer. If hardware flow control is enabled and the modem has
lowered the DSR or CTS signals as well as DCD, the protocol waits several seconds before
deciding it can’t send the cancel command, leading to an unnecessary delay for the
application. The AbortNoCarrier property prevents the protocol engine from sending the
cancel sequence, so the protocol stops immediately.

See also
CancelProtocol

Protocol References 247

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

AsciiCharDelay property

Description
Determines the number of milliseconds to delay between characters during an ASCII file
transfer. Read/write.

Data type
Integer

Syntax
expression.AsciiCharDelay[= value]

expression must reference an APAXPort.

Remarks
Default: 0

The default delay of zero should be retained whenever possible to maximize performance.
However, if ASCII data is being fed directly into an application such as a text editor, it might
be necessary to insert delays to allow the application time to process the data.

Example
The following example sets the inter-character delay to 2 milliseconds and the inter-line
delay to 50 milliseconds:

MyPort.AsciiCharDelay = 2
MyPort.AsciiLineDelay = 50

See also
AsciiLineDelay

248 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

AsciiCRTranslation property

Description
Determines the end-of-line translation mode for carriage returns. Read/write.

Data type
TAsciiEOLTranslation

Syntax
expression.AsciiCRTranslation[= value]

expression must reference an APAXPort.

Settings
Valid settings for AsciiCRTranslation are:

Remarks
Default: aetNone

Setting AsciiCRTranslation to aetAddCRBefore does not apply to AsciiCRTranslation, so it
is treated as aetNone.

Example
The following example causes all <LF> characters to be stripped while <CR> characters are
transmitted:

MyPort.Protocol = ptAscii
MyPort.AsciiCRTranslation = aetNone
MyPort.AsciiLFTranslation = aetStrip
MyPort.StartTransmit()

See also
AsciiEOLChar, AsciiLFTranslation

Constant Description

aetNone The default, do not modify the character

aetStrip Strip the character from the data stream

aetAddLFAfter Add a <LF> after each <CR>

Protocol References 249

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

AsciiEOFTimeout property

Description
Determines the number of ticks before an ASCII transfer is automatically terminated.
Read/write.

Data type
Integer

Syntax
expression.AsciiEOFTimeout[= value]

expression must reference an APAXPort.

Remarks
Default: 364 (20 seconds)

Because most text files are terminated by a ^Z character (ASCII 26), the ASCII protocol
closes the file and ends the protocol when it finds a ^Z. If the received file isn’t terminated by
a ^Z, the ASCII protocol determines the file was completely received after a specified
number of ticks elapse without receiving any new data. The default of 20 seconds can be
changed by assigning a new tick value to this property.

250 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

AsciiEOLChar property

Description
Determines the character that triggers an inter-line delay. Read/write.

Data type
Integer

Syntax
expression.AsciiEOLChar[= value]

expression must reference an APAXPort.

Remarks
Default: 13 (<CR> or ^M)

After an ASCII file transmit sends the character specified by this property, it pauses for the
number of milliseconds specified by the AsciiLineDelay property.

Note that this character is not involved in on-the-fly translation of end-of-line characters
read from or written to an ASCII file; that translation is controlled by the
AsciiCRTranslation and AsciiLFTranslation properties.

The default end-of-line character is <CR> or ^M. If you are transmitting Unix files, which
use <LF> or ^J for the end-of-line marker, you should set AsciiEOLChar to 10 (<LF> or
^J).

See also
AsciiLineDelay

Protocol References 251

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

AsciiLFTranslation property

Description
Determines the end-of-line translation mode for line feeds. Read/write.

Data type
TAsciiEOLTranslation

Syntax
expression.AsciiLFTranslation[= value]

expression must reference an APAXPort.

Settings
Valid settings for AsciiLFTranslation are:

Remarks
Default: aetNone

Setting AsciiLFTranslation to aetAddLFAfter does not apply to AsciiLFTranslation, so it is
treated as aetNone.

See also
AsciiCRTranslation, AsciiEOLChar

Constant Description

aetNone The default, do not modify the character

aetStrip Strip the character from the data stream

aetAddCRBefore Insert a <CR> before each <LF>

aetAddLFAfter Not applicable to AsciiLFTranslation

252 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

AsciiLineDelay property

Description
Determines the number of milliseconds to delay between lines during an ASCII file transfer.
Read/write.

Data type
Integer

Syntax
expression.AsciiLineDelay[= value]

expression must reference an APAXPort.

Remarks
Default: 0

The default delay of zero should be retained whenever possible to maximize performance.
However, if ASCII data is being fed directly into an application such as a text editor, it might
be necessary to insert delays to allow the application time to process the data.

See also
AsciiCharDelay

Protocol References 253

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

AsciiSuppressCtrlZ property

Description
Determines whether an ASCII protocol stops transmitting when it encounters the first ^Z in
the file. Read/write.

Data type
Boolean

Syntax
expression.AsciiSuppressCtrlZ[= value]

expression must reference an APAXPort.

Remarks
Default: False

If this property is False, the ASCII protocol transmits all characters in the file, including ^Z
characters. If it is True, it stops before transmitting the first ^Z that it encounters. Generally
you should leave this property set to False because the receiver might use ^Z as an end-of-
protocol indicator, as APAX does.

Batch property

Description
Determines whether the current protocol supports batch transfers. Read-only.

Data type
Boolean

Syntax
expression.Batch

expression must reference an APAXPort.

Remarks
Batch transfers allow sending more than one file in the same protocol session.

This property is most useful within an OnProtocolStatus event handler.

254 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

BlockCheckMethod property

Description
Determines the error checking method used by the protocol. Read/write.

Data type
TBlockCheckMethod

Syntax
expression.BlockCheckMethod[= value]

expression must reference an APAXPort.

Settings
Valid settings for BlockCheckMethod are:

Remarks
The default error checking method depends on the protocol. The Xmodem1K,
Xmodem1KG, Ymodem, YmodemG, and ASCII protocols provide either no error checking
or a single error checking mode, so they ignore assignments to BlockCheckMethod.
Assigning bcmCrc16 to BlockCheckMethod converts an Xmodem protocol into an
XmodemCrc protocol. Conversely, assigning bcmCheckSum to BlockCheckMethod
converts an XmodemCrc protocol to an Xmodem protocol.

The Zmodem protocol accepts only the bcmCrc16 and bcmCrc32 types. The Kermit
protocol accepts only the bcmChecksum, bcmCheckSum2, and bcmCrcK types.

No error is generated if an unaccepted type is assigned, but the assignment is ignored. You
should be sure to set the desired protocol before setting a non-default BlockCheckMethod.

See also
Protocol

Constant Description

bcmNone No error checking

bcmChecksum Single byte checksum

bcmChecksum2 Two byte checksum used by Kermit

bcmCRC16 16-bit CRC

bcmCRC32 32-bit CRC

bcmCRCK Three byte CRC used by Kermit

Protocol References 255

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

BlockErrors property

Description
The number of errors that have occurred while transferring the current block. Read-only.

Data type
Integer

Syntax
expression.BlockErrors

expression must reference an APAXPort.

Remarks
This property is most useful within an OnProtocolStatus event handler.

See also
TotalErrors

BlockLength property

Description
The number of bytes currently being transferred per block. Read-only.

Integer

Syntax
expression.BlockLength

expression must reference an APAXPort.

Remarks
For some protocols this value remains fixed (e.g., Xmodem always uses 128 byte blocks); for
others it can vary during the transfer process (e.g., Zmodem can vary between 8192 bytes
and 256 bytes depending on options and line conditions).

This property is most useful within an OnProtocolStatus event handler.

256 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

BlockNumber property

Description
The number of blocks transferred so far. Read-only.

Data type
Integer.

Syntax
expression.BlockNumber

expression must reference an APAXPort.

Remarks
This is obtained by dividing the number of bytes transferred by the current block length, so
it will change if the block length changes.

This property is most useful within an OnProtocolStatus event handler.

BytesRemaining property

Description
The number of bytes still to be transferred in the current file. Read-only.

Data type
Integer

Syntax
expression.BytesRemaining

expression must reference an APAXPort.

Remarks
This is computed as the FileLength minus the value of BytesTransferred. When the file size
isn’t known, BytesRemaining returns zero.

This property is most useful within an OnProtocolStatus event handler.

See also
BytesTransferred, FileLength

Protocol References 257

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

BytesTransferred property

Description
The number of bytes transferred so far in the current file. Read-only.

Data type
Integer

Syntax
expression.BytesTransferred

expression must reference an APAXPort.

Remarks
When transmitting, this number is sometimes only an estimate. The uncertainty comes
from the fact that the protocol window doesn’t know when a particular byte has actually
been transferred. BytesTransferred is the number of bytes the protocol window has
transferred to the output buffer of the communications driver, minus the number of bytes
that the driver reports are currently in the buffer.

Unfortunately, this calculation is still imperfect because it’s impossible to know how much of
the output buffer holds actual file data and how much holds overhead characters needed by
the protocol. Each protocol has a few simple rules it uses to estimate this proportion, which
in practice yield good estimates.

This property is most useful within an OnProtocolStatus event handler.

See also
BytesRemaining

258 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

CancelProtocol method

Description
Cancels the protocol currently in progress.

Syntax
expression.CancelProtocol()

expression must reference an APAXPort.

Remarks
CancelProtocol cancels the protocol regardless of its current state. If appropriate, a cancel
string is sent to the remote computer. The protocol generates an OnProtocolFinish event
with the error code ecCancelRequested, then cleans up and terminates.

Example
The following example shows how to cancel a protocol from within a protocol status dialog:

MyPort.CancelProtocol

See also
InProgress

ElapsedTicks property

Description
The time elapsed since the protocol started. Read-only.

Data type
Integer

Syntax
expression.ElapsedTicks

expression must reference an APAXPort.

Remarks
In order to provide accurate character per second transfer rates, the protocol engine doesn’t
start the timer until it receives the first block from the remote computer, or until it sends the
first data block. ElapsedTicks is measured in ticks, which occur at roughly 18.2 per second.

This property is most useful within an OnProtocolStatus event handler.

Protocol References 259

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

EstimateTransferSecs method

Description
Returns the amount of time to transfer a file. Returns an integer that corresponds to the
transfer duration estimation in seconds.

Syntax
expression.EstimateTransferSecs(Size)

Remarks
You can call EstimateTransferSecs in a status event handler to obtain the approximate
number of seconds required to transfer Size bytes of data. Typically, a status routine calls it
in two places. In the first place, which should generally be executed only one time when the
status routine is first called, it passes the total size of the file to get the total transfer time. In
the second place, which should be executed every time the status routine is called, it passes
the number of bytes remaining to get the transfer time remaining.

EstimateTransferSecs automatically accounts for the baud rate of the port’s connection and
various internal details of the active protocol. The estimated transfer time is also affected by
two approximate overhead factors that are specific to the type of protocol. See the Overhead
and KermitSWCTurnDelay properties for more information about these factors.

To compute the transfer time, EstimateTransferSecs first computes an effective transfer rate
using the following formulas:

ActualCPS = ActualBPS/10

Efficiency = ratio of data bytes to highest possible number of
bytes, calculated as follows:

BlockLength

BlockLength + Overhead + ((TurnDelay * ActualCPS)
div 1000)

EffectiveCPS = ActualCPS * Efficiency

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

Size Size of file to be transferred
(in bytes)

Integer

260 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Then the estimated transfer time is Size divided by EffectiveCPS.

Example
The following example calls EstimateTransferSecs in a status routine to get the total and
remaining transfer times:

Private Sub AxTerminal1_OnProtocolStatus(ByVal Options As Long)
Dim TotalTime as Integer
Dim RemainingTime as Integer

TotalTime = MyPort.EstimateTransferSecs(FileLength)
RemainingTime = MyPort.EstimateTransferSecs(BytesRemaining)

End Sub

See also
OnProtocolStatus, KermitSWCTurnDelay

FileDate property

Description
Returns the date and time of the file being transferred. Read-only.

Data type
Integer

Syntax
expression.FileDate

expression must reference an APAXPort.

Remarks
For transmitted files the file timestamp is always known. For received files the timestamp is
known only if the protocol supports this feature and the receiver has received this
information. FileDate is accurate after FileName returns a non-empty string.

If the timestamp is not known, FileDate returns zero.

This property is most useful within an OnProtocolStatus event handler.

See also
FileLength, ReceiveFileName

Protocol References 261

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

FileLength property

Description
Returns the size of the file being transferred. Read-only.

Data type
Integer

Syntax
expression.FileLength

expression must reference an APAXPort.

Remarks
For transmitted files the file size is always known. For received files the file size is known
only if the protocol supports this feature and the receiver has received this information.
FileLength is known after FileName returns a non-empty string. If the file size is not known,
FileLength returns zero.

This property is most useful within an OnProtocolStatus event handler.

See also
FileDate

FinishWait property

Description
Determines how long the receiver waits for an end-of-transmission signal before timing out.
Read/write.

Data type
Integer

Syntax
expression.FinishWait[= value]

expression must reference an APAXPort.

Remarks
Default: 364 (20 seconds)

This property applies only to Xmodem, Ymodem, and Zmodem protocols.

262 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

At the end of an Xmodem or Ymodem file transfer the transmitter sends an <EOT> to the
receiver to signal the end of the file and then waits FinishWait ticks (20 seconds by default)
for a response. Normally this provides ample time. However, when Xmodem1KG and
YmodemG are used over links with long propagation times or slow receivers, the default
value might not be enough. Use FinishWait to extend the amount of time that the
transmitter waits before timing out and reporting an error. Note that FinishWait is specified
in ticks.

Similarly, in a Zmodem transfer the transmitter sends a ZFin packet to the receiver to signal
the end of the file and then waits FinishWait ticks to receive an acknowledgment before
timing out.

See also
ZmodemFinishRetry

HandshakeRetry property

Description
Determines the retry count for protocol handshaking. Read/write.

Data type
Integer

Syntax
expression.HandshakeRetry[= value]

expression must reference an APAXPort.

Remarks
Default: 10

This property controls how many times each protocol attempts to detect the initial
handshake from its remote partner. HandshakeRetry applies to all protocols but ASCII,
which does not perform handshaking.

See also
HandshakeWait

Protocol References 263

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

HandshakeWait property

Description
Determines the wait between retries for protocol handshaking. Read/write.

Data type
Integer

Syntax
expression.HandshakeWait[= value]

expression must reference an APAXPort.

Remarks
Default: 182

This property is the number of ticks a protocol waits when a handshake attempt fails before
it tries again. HandshakeWait applies to all protocols but ASCII, which does not perform
handshaking.

See also
HandshakeRetry

HonorDirectory property

Description
Determines whether a protocol honors the directory name of a file being received.
Read/write.

Data type
Boolean

Syntax
expression.HonorDirectory[= value]

expression must reference an APAXPort.

Remarks
Default: False

264 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

If HonorDirectory is set to True, a received file is stored in the directory specified by the
transmitter, unless that directory does not already exist, in which case it is stored in the
current directory or the ReceiveDirectory. If HonorDirectory is set to False, the transmitter’s
directory is ignored.

See also
IncludeDirectory

IncludeDirectory property

Description
Determines whether the complete path name is transmitted. Read/write.

Data type
Boolean

Syntax
expression.IncludeDirectory[= value]

expression must reference an APAXPort.

Remarks
Default: False

If IncludeDirectory is set to True, the protocol sends the drive and directory along with the
file name of each file it transmits. The receiver might use or ignore this information. If
IncludeDirectory is False, only the file name is transmitted, even if the file is not found in the
current directory.

See also
HonorDirectory

Protocol References 265

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

InitialPosition property

Description
The initial file offset for a resumed transfer. Read-only.

Data type
Integer

Syntax
expression.InitialPosition

expression must reference an APAXPort.

Remarks
This property applies only to the Zmodem protocol, which support resumed file transfers.
For a transfer from scratch, InitialPosition returns zero. For a resumed transfer,
InitialPosition returns the offset where the transfer was resumed. This offset should be
subtracted from BytesTransferred to obtain the actual number of bytes transferred during
the resumed session.

This property is most useful within an OnProtocolStatus event handler.

Example
The following example shows how to compute the character per second transfer rate in a
protocol status routine. The constant values are used to convert ticks to seconds. Note that
the same expression is valid whether or not the transfer has been resumed:

CPS =
(91*(MyPort.BytesTransferred-MyPort.InitialPosition))
div (5 * MyPort.ElapsedTicks)

See also
BytesTransferred

266 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

InProgress property

Description
Returns True if a file transfer is currently in progress. Read-only.

Data type
Boolean

Syntax
expression.InProgress

expression must reference an APAXPort.

Remarks
This property is important because APAX protocols run in the background. A call to
StartTransmit or StartReceive returns immediately to your code. You can use either a polling
loop that checks InProgress or an OnProtocolFinish event handler to detect when the
protocol has finished.

See also
OnProtocolFinish

KermitCtlPrefix property

Description
Determines the character Kermit uses to quote control characters. Read/write.

Data type
Integer

Syntax
expression.KermitCtlPrefix[= value]

expression must reference an APAXPort.

Remarks
Default: 35 (‘#’)

Protocol References 267

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Character quoting is similar to escaping in Zmodem. The character is replaced by a quote
character and a modified form of the original character. The quote character tells the
receiver how to convert the modified character back to its original value. Quoting ensures
that certain binary characters are never put into the data stream where they could be
misinterpreted by a modem or another part of the serial link.

Although Zmodem transforms only a few critical characters such as <XON> and <XOFF>,
Kermit quotes nearly all characters. This is one of the features that permits Kermit to run in
nearly any environment. When quoting is finished, a Kermit data packet consists almost
entirely of printable ASCII characters. The only exceptions are an <SOH> character at the
start of each packet and a <CR> at the end.

Kermit quotes control characters by replacing them with a quote character and a modified
version of the control character. For example, ^A becomes ‘#A’ where ‘#’ is the quote
character. The process of converting ^A to ‘A’ is called “Ctl” and it works like this:

Ctl(x) = x xor 40h

This operation is its own inverse, that is, Ctl(Ctl(x)) = x.

Kermit also quotes characters with their eighth bit set, which allows it to transmit 8 bit data
over 7 bit data links. The quote character in this case is ‘&’ and the quoted data character is
obtained simply by stripping the high bit. For example, the quoted version of character $C1
(‘A’ with its high bit set) is ‘&A’.

Binary numbers in Kermit packet headers and in repeated character strings are also
transformed to assure that they are printable characters. This is achieved by adding 32 to
each number before it is transmitted and subtracting 32 after it is received. In Kermit
parlance, these operations are known as “ToChar” and “UnChar.”

Kermit has a simple built-in data compression mechanism called run length encoding.
When it sees a long string of repeated characters, it compresses the string into a quote
character, a length byte, and the repeated character. Obviously, there must be at least 4
repeated characters before there is any compression. The quote character for run length
encoding is ‘~’. Hence, the string ‘AAAAA’ becomes ‘~%A’, where ‘%’ is equivalent to a
binary 5 after the “ToChar” operation.

See also
KermitHighbitPrefix, KermitRepeatPrefix

268 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

KermitHighbitPrefix property

Description
Determines the technique Kermit uses to quote characters that have their eighth bit set.
Read/write.

Data type
Integer

Syntax
expression.KermitHighBitPrefix[= value]

expression must reference an APAXPort.

Remarks
Default: 89 (‘Y’)

The value specified by this property is not always transmitted literally as a quote character. If
it equals ‘Y’, the default, it means that the protocol won’t use high bit quoting unless the
remote requires it, in which case it uses the prefix character requested by the remote.

If KermitHighbitPrefix equals 38 (‘&’) or is in the ASCII range 33-62 or 96-126, it indicates
that the protocol requires high bit quoting and that its value is the character used for the
prefix.

If KermitHighbitPrefix equals 78 (‘N’) or any other value not listed here, the protocol won’t
use high bit quoting at all, even if the remote requests it.

See also
KermitCtlPrefix, KermitRepeatPrefix

Protocol References 269

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

KermitLongBlocks property

Description
Returns True if Kermit long packets are in use. Read-only.

Data type
Boolean

Syntax
expression.KermitLongBlocks

expression must reference an APAXPort.

See also
KermitMaxLen

KermitMaxLen property

Description
Determines the maximum number of bytes in one Kermit packet. Read/write.

Data type
Integer

Syntax
expression.KermitMaxLen[= value]

expression must reference an APAXPort.

Remarks
Default: 80

The normal maximum value is 94, but the default value of 80 is suggested by the Kermit
Protocol Manual. If KermitMaxLen is set to a value in the range of 95 to 1024, long packets
are enabled with the specified packet size. As with other Kermit settings, however, long
packets will be used only if the remote partner also supports it.

See also
KermitMaxWindows

270 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

KermitMaxWindows property

Description
Determines whether Kermit sliding windows control is enabled. Read/write.

Data type
Integer

Syntax
expression.KermitMaxWindows[= value]

expression must reference an APAXPort.

Remarks
Default: 0

If KermitMaxWindows is set to a value between 1 and 27, sliding windows are enabled with
the specified window count. This allows a Kermit transmitter to send additional packets
without waiting for an acknowledgment from the receiver, thus improving throughput. As
with other Kermit settings, however, sliding windows control will be used only if the remote
partner also supports it.

See also
KermitWindowsTotal, KermitWindowsUsed

Protocol References 271

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

KermitPadCharacter property

Description
Determines the character that Kermit uses to pad the beginning of each packet. Read/write.

Data type
Integer

Syntax
expression.KermitPadCharacter[= value]

expression must reference an APAXPort.

Remarks
Default: 32 (<Space>)

See also
KermitTerminator

KermitPadCount property

Description
Determines the number of pad characters that Kermit transmits at the beginning of each
packet. Read/write.

Data type
Integer

Syntax
expression.KermitPadCount[= value]

expression must reference an APAXPort.

Remarks
Default: 0

See also
KermitPadCharacter

272 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

KermitRepeatPrefix property

Description
Determines the prefix that Kermit uses when compressing strings of repeated characters.
Read/write.

Data type
Integer

Syntax
expression.KermitRepeatPrefix[= value]

expression must reference an APAXPort.

Remarks
Default: 126 (‘~’)

When Kermit sees four or more equal and adjacent characters, it compresses the sequence
into a quote character (KermitRepeatPrefix), a length byte, and the repeated character. The
default quote character rarely needs to be changed.

See also
KermitCtlPrefix, KermitHighbitPrefix

KermitSWCTurnDelay property

Description
Determines the turnaround delay used by EstimateTransferSecs when a Kermit sliding
windows protocol is in use. Read/write.

Data type
Integer

Syntax
expression.KermitSWCTurnDelay[= value]

expression must reference an APAXPort.

Remarks
Default: 0

Protocol References 273

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

This property is the time in milliseconds for a data block to transit from the sender to the
receiver, for the receiver to send an acknowledgment, and for the acknowledgment to arrive
back at the sender. It is used by the EstimateTransferSecs method to estimate the time to
transfer a given amount of data.

When Kermit sliding windows control is enabled, the transmitter does not generally wait for
acknowledgment of a packet before sending the next one. Hence, an appropriate default is
zero milliseconds.

EstimateTransferSecs uses the value of the TurnDelay property for Kermit transfers when
sliding windows control is not enabled, and the KermitSWCTurnDelay property when it is
enabled.

KermitTerminator property

Description
Determines the character used to terminate a Kermit data packet. Read/write.

Data type
Integer

Syntax
expression.KermitTerminator[= value]

expression must reference an APAXPort.

Remarks
Default: 13 (<CR> or ^M)

This character is used only by Kermit hosts that cannot start processing a data line until a
terminating character is received.

See also
KermitPadCharacter

274 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

KermitTimeoutSecs property

Description
Determines how long Kermit waits for the next expected byte. Read/write.

Data type
Integer

Syntax
expression.KermitTimeoutSecs[= value]

expression must reference an APAXPort.

Remarks
Default: 5

If a Kermit transmitter waits more than KermitTimeoutSecs for an acknowledgment, it
resends the last packet. If a Kermit receiver waits more than KermitTimeoutSecs for the next
byte, it sends an error packet to the transmitter.

See also
TransmitTimeout

KermitWindowsTotal property

Description
Returns the total number of Kermit sliding windows negotiated for the current transfer.
Read-only.

Data type
Integer

Syntax
expression.KermitWindowsTotal

expression must reference an APAXPort.

Remarks
If sliding windows control is disabled, KermitWindowsTotal returns 0.

See also
KermitMaxWindows, KermitWindowsUsed

Protocol References 275

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

KermitWindowsUsed property

Description
Returns the number of Kermit sliding windows that currently contain data. Read-only.

Data type
Integer

Syntax
expression.KermitWindowsUsed

expression must reference an APAXPort.

Remarks
If sliding windows control is disabled, KermitWindowsUsed returns 0.

See also
KermitMaxWindows, KermitWindowsTotal

276 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnProtocolAccept event

Description
Defines an event handler that is called as soon as the name of an incoming file is known.

Syntax
Private Sub expression_OnProtocolAccept(

Accept As Boolean, FName As String)

Remarks
This event handler provides an opportunity for the receiver to reject or rename the
incoming file. If an OnProtocolAccept handler is not installed, all files are accepted (subject
to the setting of the WriteFailAction property).

The event handler should set Accept to True to accept the file, False to reject it. FName is the
name of the file to be received. The event handler can change the name if, for example, it
would overwrite an existing file.

See also
OnProtocolFinish, OnProtocolLog, OnProtocolStatus, WriteFailAction

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

Accept Allows for acceptance or rejection
of the file transfer

Boolean

FName Defines the name of the file to
be received

String

Protocol References 277

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnProtocolFinish event

Description
Defines an event handler that is called when a protocol transfer ends.

Syntax
Private Sub Expression_OnProtocolFinish(ByVal ErrorCode As Long)

Remarks
This event is generated whether the protocol ends successfully or not. If it ends successfully,
ErrorCode is zero. Otherwise, ErrorCode is a number indicating the type of error.

An application could use this handler to display a completion dialog box (needed only if a
protocol status event handler is not also in use) or to enable the scheduling of another file
transfer.

See also
InProgress, OnProtocolAccept, OnProtocolLog, OnProtocolStatus

Part Description Data Type

Expression References the APAXPort object that
fired the event

APAXPort

ErrorCode Indicates success or failure of
the protocol

Long

278 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnProtocolLog event

Description
Defines an event handler that is called at well defined points during a protocol transfer.

Syntax
Private Sub Expression_OnProtocolLog(ByVal Log As Long)

Settings
The possible values for Log are:

Remarks
The primary purpose of this event is to give applications a chance to log statistical
information about file transfers such as the transfer time and whether they succeeded or
failed. Applications can also use this event for start-up and cleanup activities such as
deleting partial files after unsuccessful downloads.

No other information is passed along with the event. Use protocol status properties such as
SendFileName and ElapsedTicks to get additional information about the state of the
transfer.

Part Description Data Type

Expression References the APAXPort object that
fired the event

APAXPort

Log Indicates the current state of
the protocol

Long

Constant Description

lfReceiveStart File receive is starting

lfReceiveOK File was received successfully

lfReceiveFail File receive failed

lfReceiveSkip File was skipped (rejected by receiver)

lfTransmitStart File transmit is starting

lfTransmitOK File was transmitted successfully

lfTransmitFail File transmit failed

lfTransmitSkip File not found on the sender

Protocol References 279

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnProtocolStatus event

Description
Defines an event handler that is called regularly during a file transfer.

Syntax
Private Sub Expression_OnProtocolStatus(ByVal Options As Long)

Remarks
This event is generated for each block transmitted or received, after the completion of each
major operation (e.g., renaming a file, detecting an error, ending the transfer), and at
intervals of StatusInterval ticks (by default 18 ticks, or about 1 second). The program can
use it to update a status display that informs the user about the protocol progress.

A number of the properties of this component can be read to establish the status of the
transfer. Options is set to apFirstCall (1) on the first call to the handler, apLastCall (2) on the
last call to the handler, and zero on all other calls.

A predefined status window is supplied with APAX. For a standard protocol status window
you can simply set the ProtocolStatusDisplay to True. If you do so, there is no need to supply
your own OnProtocolStatus event handler.

See also
ProtocolStatus, ProtocolStatusDisplay, StatusInterval

Part Description Data Type

Expression References the APAXPort object that
fired the event

APAXPort

Options Indicates the current state of
the protocol

Long

280 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Protocol property

Description
Determines the type of file transfer protocol. Read/write.

Data type
TProtocolType

Syntax
expression.Protocol[= value]

expression must reference an APAXPort.

Settings
Valid settings for Protocol are:

Remarks
Default: ptZmodem

APAX encapsulates all of the file transfer protocols that it supports into a single component.
To select a particular type of protocol, you must assign the desired type to the Protocol
property. You should generally assign to Protocol before assigning other properties, since
various defaults are assigned whenever you change Protocol, and some properties are valid
only when Protocol has a particular value.

Constant Description

ptNoProtocol No protocol

ptXmodem Xmodem protocol

ptXmodemCRC XmodemCRC protocol

ptXmodem1K Xmodem1K protocol

ptXmodem1KG Xmodem1KG protocol

ptYmodem Ymodem protocol

ptYmodemG YmodemG protocol

ptZmodem Zmodem protocol

ptKermit Kermit protocol

ptAscii Ascii protocol

Protocol References 281

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Assigning a new value to Protocol first deallocates any protocol-specific memory used by
the prior protocol, then allocates and initializes any structures required by the current
protocol.

You should generally not assign ptNoProtocol to Protocol, but it can be used to de-allocate
previous protocol memory while temporarily not allocating new protocol memory.

See also
BlockCheckMethod

ProtocolStatus property

Description
Returns a code that indicates the current state of the protocol. Read-only.

Data type
Integer

Syntax
expression.ProtocolStatus

expression must reference an APAXPort.

Remarks
This property is most useful within an OnProtocolStatus event handler.

ProtocolStatus returns a code that indicates the current state of the protocol. The following
table shows all of the possible values. The usual status value is psOK, which means that the
protocol is operating normally. Other status values indicate recoverable error conditions,
protocol resume conditions, protocol start-up states, and internal protocol states. Fatal
protocol errors are not represented by protocol states. However, it is possible that a final
status message might be sent after a fatal error occurs.

282 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Settings

See also
TotalErrors

Status Code Value Explanation

psOK 0 Protocol is ok

psProtocolHandshake 1 Protocol handshaking in progress

psInvalidDate 2 Bad date/time stamp received and
ignored

psFileRejected 3 Incoming file was rejected

psFileRenamed 4 Incoming file was renamed

psSkipFile 5 Incoming file was skipped

psFileDoesntExist 6 Incoming file doesn't exist
locally, skipped

psCantWriteFile 7 Incoming file skipped due to
Zmodem options

psTimeout 8 Timed out waiting for something

psBlockCheckError 9 Bad checksum or CRC

psLongPacket 10 Block too long

psDuplicateBlock 11 Duplicate block received and
ignored

psProtocolError 12 Error in protocol

psCancelRequested 13 Cancel requested

psEndFile 14 At end of file

psSequenceError 16 Block was out of sequence

psAbortNoCarrier 17 Aborting on carrier loss

psGotCrcE 18 Received Zmodem CrcE packet

psGotCrcG 19 Received Zmodem CrcG packet

psGotCrcW 20 Received Zmodem CrcW packet

psGotCrcQ 21 Received Zmodem CrcQ packet

Protocol References 283

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

ProtocolStatusDisplay property

Description
An instance of a protocol status window. Read/write.

Data type
Boolean

Syntax
expression.ProtocolStatusDisplay[= value]

expression must reference an APAXPort.

Remarks
If ProtocolStatusDisplay is False, as it is by default, the protocol does not provide an
automatic status window. You can install an OnProtocolStatus event handler to display a
custom status dialog in this case.

If you set this property to True, the status window will be displayed and updated
automatically.

ReceiveDirectory property

Description
Determines the directory where received files are stored. Read/write.

Data type
String

Syntax
expression.ReceiveDirectory[= value]

expression must reference an APAXPort.

Remarks
If the value specifies only a drive (e.g., ‘D:’), files are stored in the current directory on that
drive. If the property is set to an empty string, as it is by default, received files are stored in
the current directory.

See also
ReceiveFileName

284 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

ReceiveFileName property

Description
Determines the name of the file currently being received. Read/write.

Data type
String

Syntax
expression.ReceiveFileName[= value]

expression must reference an APAXPort.

Remarks
This should be considered a read-only property for all protocols except Xmodem and
ASCII, which do not transfer a filename along with the file data. For these two protocols you
must assign a value to FileName before calling StartReceive. For the remaining protocols
supported by APAX, you can read the value of SendFileName within a protocol status
routine to obtain the file name transferred by the protocol.

If FileName does not include drive or path information, the incoming file is stored in the
current directory or the directory specified by ReceiveDirectory. If FileName includes drive
and/or path information and HonorDirectory is True, the incoming file is stored in that
directory regardless of whether a value was assigned to ReceiveDirectory.

Example
The following example stores a file received via Xmodem to
C:\DOWNLOAD\RECEIVE.TMP:

MyPort.Protocol = ptXmodem
MyPort.FileName = "C:\DOWNLOAD\RECEIVE.TMP"
MyPort.StartReceive()

See also
ReceiveDirectory, HonorDirectory

Protocol References 285

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

RTSLowForWrite property

Description
Determines whether protocols force RTS low while writing received data to disk.
Read/write.

Data type
Boolean

Syntax
expression.RTSLowForWrite[= value]

expression must reference an APAXPort.

Remarks
Default: False

When RTSLowForWrite is set to True, hardware flow control is used to prevent the
transmitter from sending additional data while the receiver writes data to disk. As soon as
the disk write is finished, RTS is raised again. This feature might be required if other
Windows applications are being run at the same time as a protocol transfer or if the disk
driver leaves interrupts disabled for an excessive time.

In order for this option to be effective, disk write caching must be disabled.

If the protocol is transferring files using a modem, it might also be necessary to configure
the modem to react correctly to the RTS signal.

286 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

SendFileName property

Description
Determines the file mask to use when transmitting files. Read/write.

Data type
String

Syntax
expression.SendFileName[= value]

expression must reference an APAXPort.

Remarks
SendFileName can specify a single file or can contain DOS wildcards to transmit multiple
files using a batch protocol such as Zmodem. If it does not specify a drive and directory, files
are read from the current directory.

Only a single mask can be used for each transfer.

Example
The following example transmits all files with a ZIP extension in the C:\UPLOAD directory:

MyPort.FileMask = "C:\UPLOAD*.ZIP"
MyPort.StartTransmit()

Protocol References 287

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

StartReceive method

Description
Tells the protocol to start receiving files.

Syntax
expression.StartReceive()

expression must reference an APAXPort.

Remarks
The steps leading up to calling StartReceive look something like this:

1. Set the Protocol property.

2. Set other properties to customize the protocol.

3. Write suitable handlers for protocol events.

4. Call the StartReceive method.

StartReceive returns immediately and receives files in the background, occasionally
generating events to keep the application apprised of progress. When the protocol is
finished, either successfully or with a fatal error, it generates an OnProtocolFinish event and
its InProgress property is set to False.

See also
Protocol, StartTransmit

288 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

StartTransmit method

Description
Tells the protocol to start transmitting files.

Syntax
expression.StartTransmit()

expression must reference an APAXPort.

Remarks
The steps leading up to calling StartTransmit look something like this:

1. Set the Protocol property.

2. Set other properties to customize the protocol.

3. Write suitable handlers for protocol events.

4. Set the FileMask property to return a list of files to transmit.

5. Call the StartTransmit method.

StartTransmit returns immediately and transmits files in the background, occasionally
generating events to keep the application apprised of progress. When the protocol is
finished, either successfully or with a fatal error, it generates an OnProtocolFinish event and
its InProgress property is set to False.

See also
FileMask, Protocol, StartReceive

Protocol References 289

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

StatusInterval property

Description
The maximum number of clock ticks between OnProtocolStatus events. Read/write.

Data type
Integer

Syntax
expression.StatusInterval[= value]

expression must reference an APAXPort.

Remarks
Default: 18

The OnProtocolStatus event is generated for each block transmitted or received, after the
completion of each major operation (e.g., renaming a file, detecting an error, ending the
transfer), and at intervals of StatusInterval ticks.

This property also determines how frequently the status display window is updated.

See also
OnProtocolStatus, ProtocolStatusDisplay

TotalErrors property

Description
The number of errors encountered since the current file transfer was started. Read-only.

Data type
Integer

Syntax
expression.TotalErrors

expression must reference an APAXPort.

Remarks
This error count is reset whenever a new file is started. This property is most useful within
an OnProtocolStatus event handler. See “Protocol Status” on page 388 for more
information.

290 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

TransmitTimeout property

Description
Determines the maximum time a sender will wait for the receiver to release flow control.
Read/write.

Data type
Integer

Syntax
expression.TransmitTimeout[= value]

expression must reference an APAXPort.

Remarks
Default: 1092

If the receiver blocks flow control for longer than TransmitTimeout ticks (60 seconds by
default), the protocol is aborted.

UpcaseFileNames property

Description
Determines whether the protocol converts file names to upper case. Read/write.

Data type
Boolean

Syntax
expression.UpcaseFileNames[= value]

expression must reference an APAXPort.

Remarks
Default: True

Applications provide file names to protocols by setting the SendFileName property. File
names can also be received as part of the protocol transfer. Because the DOS/16-bit
Windows file system stores all file names in upper case, the protocol component converts file
and path names to uppercase.

Protocol References 291

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Windows preserves the specified case in file names, although they don’t normally use case to
distinguish between file names. For example, the file name “MixCase.Txt” is stored by the
file system with the upper and lower case characters preserved, however, it can be accessed
by any combination of upper and lower case (e.g., “MIXCASE.TXT” or “mIXCAse.tXt”). If
you want to display the preserved case in status and log routines, set UpcaseFileNames to
False.

WriteFailAction property

Description
Determines the receiver’s behavior when the destination file already exists. Read/write.

Data type
TWriteFailAction

Syntax
expression.WriteFailAction[= value]

expression must reference an APAXPort.

Settings
The valid settings for WriteFailAction are:

Remarks
Default: wfWriteRename

When wfWriteRename is selected and the destination file already exists, the first character in
the incoming file name is replaced with ‘$’ (e.g., ‘SAMPLE.DOC’ becomes
‘$AMPLE.DOC’). If that renamed file already exists, it is overwritten without warning.

The logic that handles these overwrite options is executed after the OnProtocolAccept event
has been generated. If you write an event handler that deals with possible overwrites, be sure
to set WriteFailAction to wfWriteAnyway before starting a transfer.

Constant Description

wfWriteFail Fail the receive attempt

wfWriteRename Rename the incoming file

wfWriteAnyway Overwrite the existing file

292 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

XYmodemBlockWait property

Description
Determines the number of ticks Xmodem and Ymodem wait between blocks for a response
from the remote machine. Read/write.

Data type
Integer

Syntax
expression.XYmodemBlockWait[= value]

expression must reference an APAXPort.

Remarks
Default: 91

If the wait exceeds XYmodemBlockWait ticks, a sending protocol retransmits the block and
a receiving protocol aborts the transfer. The default wait is about 5 seconds.

See also
TransmitTimeout

Zmodem8K property

Description
Determines whether 8K blocks are enabled. Read/write.

Data type
Boolean

Syntax
expression.Zmodem8K[= value]

expression must reference an APAXPort.

Remarks
Default: False

See “Large Block Support” on page 411 for more information.

Protocol References 293

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

ZmodemFileOptions property

Description
Determines the Zmodem file management options to use. Read/write.

Data type
TZmodemFileOptions

Syntax
expression.ZmodemFileOptions[= value]

expression must reference an APAXPort.

Settings
Valid settings for ZmodemFileOptions are:

Remarks
Default: zfoWriteNewer

Regardless of the value of this property, new incoming files are accepted unless the
ZmodemSkipNoFile property is set to False.

The logic that handles these file management options is executed after the
OnProtocolAccept event has been generated. If you write an event handler that deals with
possible overwrites, be sure to set ZmodemFileOptions to zfoWriteClobber before starting
to receive.

Constant Description

zfoNoOption No option

zfoWriteNewerLonger Transfer if new, newer or longer

zfoWriteCRC Not supported, treated same as WriteNewer

zfoWriteAppend Transfer if new, append if exists

zfoWriteClobber Transfer regardless

zfoWriteNewer Transfer if new or newer

zfoWriteDifferent Transfer if new or different dates or
lengths

zfoWriteProtect Transfer only if new

294 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

See also
ZmodemOptionOverride, ZmodemSkipNoFile

ZmodemFinishRetry property

Description
Specifies the number of times to retry the final handshake of a Zmodem protocol session.
Read/write.

Data type
Integer

Syntax
expression.ZmodemFinishRetry[= value]

expression must reference an APAXPort.

Remarks
Default: 0

A Zmodem transmitter signals that it has no more files to transmit by sending a ZFin frame.
The receiver acknowledges this by sending its own ZFin frame. The transmitter then sends
‘OO’ as the final frame of the transfer.

The Zmodem specification indicates that this portion of the protocol isn’t critical (since all
files have already been completely received) and that a time-out while waiting for the
response should be ignored. However, this strategy doesn’t work well with DSZ, a Zmodem
implementation by Omen Technology, Inc.

DSZ retries after a ZFin time-out, which can sometimes cause unneeded packet transfers
when the handshake time-out is 10 seconds or less. To handle this situation, APAX mimics
DSZ when ZmodemFinishRetry is set a non-zero value. It waits the number of ticks set in
the FinishWait property for a response.

ZmodemFinishRetry is the number of times to resend the ZFin in response to a time-out.
When ZmodemFinishRetry is zero the ZFin is sent only once. If no response is received the
protocol finishes without an error.

See also
FinishWait

Protocol References 295

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

ZmodemOptionOverride property

Description
Determines whether a remote sender’s options are ignored. Read/write.

Data type
Boolean

Syntax
expression.ZmodemOptionOverride[= value]

expression must reference an APAXPort.

Remarks
Default: False

If ZmodemOptionOverride is set to True, a receiving protocol component ignores the
sender’s options and uses its own settings for ZmodemFileOptions and
ZmodemSkipNoFile. Otherwise, it uses the sender’s options.

See also
ZmodemFileOptions

ZmodemRecover property

Description
Determines whether Zmodem performs file recovery. Read/write.

Data type
Boolean

Syntax
expression.ZmodemRecover[= value]

expression must reference an APAXPort.

Remarks
Default: False

Zmodem is capable of resuming interrupted file transfers if the receiver kept the partial file
when a previous transfer was interrupted. The transmitter requests this action by setting
ZmodemRecover to True. The request is transmitted to the receiver along with the file name

296 Chapter 9: File Transfer Protocols

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

to be recovered. If the receiver has this file, it sends back the current file size. The transmitter
then adjusts its file offset and starts sending data from that point. If the receiver doesn’t
already have this file, a normal file transfer takes place.

See “Transfer Resume” on page 408 for more information.

See also
InitialPosition

ZmodemSkipNoFile property

Description
Determines whether a Zmodem receiver should skip all files that don’t already exist.
Read/write.

Data type
Boolean

Syntax
expression.ZmodemSkipNoFile[= value]

expression must reference an APAXPort.

Remarks
Default: False

See also
ZmodemFileOptions

 297

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 10: Data Trigger Management

The purpose of the data trigger mechanism is to provide a simple solution to the common
task of looking for a particular sequence of bytes in the incoming data. Data triggers collect
data that has certain properties and pass the data as a complete unit to the client application.

298 Chapter 10: Data Trigger Management

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

The Data Trigger Mechanism
The data trigger mechanism provides automatic data delivery and notification from the
incoming data stream, based on simple properties set in the APAXPort control.

Data triggers automatically collect data from the incoming data stream based on the value
specified in the DataTriggerString property, and deliver the data when a match is found.
Data triggers also do their own buffering. This means that data will always be available for
processing when the OnDataTrigger event fires.

Data triggers are typically used when the data you are looking for has a fixed length or starts
and/or ends with a known string of data. These conditions can be set for each individual
data trigger as they are added at run time.

Data ownership
There is no limit on the number of data triggers for a serial port. However, any incoming
character can be part of only one data trigger. The first enabled data trigger that has its start
condition met takes ownership of all incoming data until the trigger is complete. If a data
trigger times out, the data it has collected up to that point is made available to any other
enabled data triggers associated with the serial port.

Start and end conditions
The data trigger mechanism employed by the APAXPort control allows for the use of
traditional DOS wildcard characters (‘?’ and ‘*’). If a question mark (‘?’) appears in a data
trigger string, this instructs APAX to accept any single character in place of the question
mark. If an asterisk (‘*’) appears in a data trigger string, this instructs APAX to accept any
number of characters until the character immediately following the asterisk is received. In
the event that you need to look for either of these two characters, they can be escaped by
preceding the character with a ‘\’. Any character following a ‘\’ character is treated as a
literal. For example, the following string instructs APAX to search for a string beginning
with “A” followed by any number of characters until the letter ‘C’ is found:

"A*C"

The next example string instructs APAX to search for an ‘A’ followed by a ‘*’ followed by a
‘C’:

"A*C"

With that said, we can discuss data trigger start conditions and end conditions. If a string
contains no wildcard characters, the start condition is equal to the entire string and the end
condition is also equal to the entire string. However, a data trigger string that contains
wildcards has different start and end conditions. In this case, the start condition is equal to

The Data Trigger Mechanism 299

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

all of the characters in the string preceding the first occurrence of a wildcard character. The
end condition is defined by all of the characters in the string that follow the last occurrence
of a wildcard character.

You can also specify a packet size that simply defines how many characters to look for,
and/or a time-out parameter that terminates the data trigger if the end condition is not
satisfied within the specified time frame. If multiple end conditions are defined (end string
match, specified number or characters, or time-out value), the first condition met will cause
the OnDataTrigger event to fire.

Data trigger persistence
Once a data trigger is matched, an OnDataTrigger event will be fired. One of the parameters
passed to an OnDataTrigger event handler, ReEnable, is a Boolean passed by reference.
Within your event handler, you can set this value to True to re-enable the trigger, or you can
set this value to False to disable the trigger.

300 Chapter 10: Data Trigger Management

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Data Trigger References
Following is a list of the APAXPort control’s properties, methods, and events that pertain to
data triggers. This is only a subset of the functionality of the APAXPort functionality.
Additional properties, methods, and events are introduced in other chapters.

Properties
DataTriggerString

Methods
AddDataTrigger

DisableDataTrigger

EnableDataTrigger

RemoveDataTrigger

Events
OnDataTrigger

Data Trigger References 301

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Reference Section

AddDataTrigger method

Description
Adds a data trigger and returns the index of the new data trigger. Returns an Integer.

Syntax
expression.AddDataTrigger(

TriggerString, PacketSize, Timeout, IncludeStrings, IgnoreCase)

Remarks
Use this property to add and enable a data trigger. The TriggerString parameter should
contain the string to search for and may or may not include wildcards (‘?’ and ‘*’). The
PacketSize parameter can be used to specify a particular count of bytes received. If
PacketSize is zero, no counting of bytes occurs. Similarly, a non-zero value for Timeout
instructs APAX to set an internal timer. This value is specified in clock ticks. There are
approximately 18 milliseconds per clock tick. If this amount of time elapses before a valid
end condition is met, the data trigger will time out and an OnDataTrigger event will fire
with the Timeout parameter set to True. To bypass any time restrictions on a data trigger, set
the Timeout parameter to zero.

IncludeStrings is a Boolean parameter that instructs APAX whether or not to include the
start and end strings in the Data parameter passed to the OnDataTrigger event. This
parameter only pertains to strings that have wildcards (‘?’,‘*’). Refer to the discussion at the

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

TriggerString Defines the string to match String

PacketSize Defines the size of the packet Integer

Timeout Specifies how long to wait for
the string

Integer

IncludeStrings Determines whether or not to
include the start and stop
strings in the trigger string

Boolean

IgnoreCase Determines whether case is
considered in the match

Boolean

302 Chapter 10: Data Trigger Management

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

beginning of this chapter for further information regarding start and end conditions. Set
IncludeStrings to True to include the start and end strings in the Data parameter of the
OnDataTrigger event, or set IncludeStrings to False to exclude the start and end strings in
the Data parameter of the OnDataTrigger event.

The IgnoreCase parameter simply instructs APAX whether or not to respect case sensitivity
when looking for a match. If IgnoreCase is True, the data trigger will only find a match when
the strings match exactly.

The return value of this method contains the index of the data trigger just added. This value
should be retained so that you can enable, disable, or remove the data trigger based on the
index value.

See also
DisableDataTrigger, EnableDataTrigger, RemoveDataTrigger, DataTriggerString,
OnDataTrigger

DataTriggerString property

Description
Contains a delimited list of all defined data triggers. Read/write.

Data type
String

Syntax
expression.DataTriggerString[= value]

expression must reference an APAXPort.

Remarks
Use this property to read or define multiple strings to match. This stream is delimited by the
pipe character (‘|’).

Example
The following example defines 3 distinct strings to search for, specifically Login, Logout,
and Error:

APAX1.DataTriggerString = "Login|Logout|Error"

See also
AddDataTrigger, DisableDataTrigger, EnableDataTrigger, RemoveDataTrigger,
OnDataTrigger

Data Trigger References 303

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

DisableDataTrigger method

Description
Disables the data trigger specified by the Index parameter.

Syntax
expression.DisableDataTrigger(Index)

Remarks
Each data trigger is uniquely identified by an index. This index is returned to you from the
AddDataTrigger method. Calling this method disables the data trigger corresponding to the
index value. Triggers that are disabled will not search for strings or fire OnDataTrigger
events.

See also
AddDataTrigger, EnableDataTrigger, RemoveDataTrigger, DataTriggerString,
OnDataTrigger

Part Description Data Type

expression An expression that returns an
APAXPort object

APAXPort

Index Defines the index of the data
trigger

Integer

304 Chapter 10: Data Trigger Management

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

EnableDataTrigger method

Description
Enables the data trigger specified by the Index parameter.

Syntax
expression.EnableDataTrigger(Index)

Remarks
Each data trigger is uniquely identified by an index. This index is returned to you from the
AddDataTrigger method. Calling this method enables the data trigger corresponding to the
index value. A data trigger must be enabled to search for strings and fire OnDataTrigger
events.

See also
AddDataTrigger, DisableDataTrigger, RemoveDataTrigger, DataTriggerString,
OnDataTrigger

Part Description Data Type

expression An expression that returns an APAXPort
object

APAXPort

Index Defines the index of the data trigger Integer

Data Trigger References 305

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnDataTrigger event

Description
Defines an event that is fired when one of the defined data triggers finds a match.

Syntax
Private Sub expression_OnDataTrigger(ByVal Index As Long,

ByVal Timeout As Boolean, ByVal Data As Variant,
ByVal Size As Long, ReEnable As Boolean)

Remarks
This event is fired automatically when a data trigger has found a match or timed out. The
Index parameter defines the index of the data trigger that found a match. Timeout will be
True for any data trigger that timed out prior to finding a match and False otherwise. The
Data parameter refers to the actual data acquired from the data trigger and the Size indicates
the length (in bytes) of the Data parameter.

Within your event handler, you can set the ReEnable property to True to once again enable
the data trigger, or set it to False to disable the data trigger.

See also
AddDataTrigger, DisableDataTrigger, EnableDataTrigger, RemoveDataTrigger,
DataTriggerString

Part Description Data Type

expression References the APAXPort object
that fired the event

APAXPort

Index Specifies the index of the matched
data trigger

Long

Timeout Indicates whether the data
trigger timed out

Boolean

Data Contains the matched data Variant

Size Specifies the length or size of
the Data parameter

Long

ReEnable Allows you to re-enable the data
trigger

Boolean

306 Chapter 10: Data Trigger Management

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

RemoveDataTrigger method

Description
Deletes the data trigger specified by the Index parameter.

Syntax
expression.RemoveDataTrigger(Index)

Remarks
Each data trigger is uniquely identified by an index. This index is returned to you from the
AddDataTrigger method. Calling this method permanently removes the data trigger
corresponding to the index value.

See also
AddDataTrigger, DisableDataTrigger, EnableDataTrigger, DataTriggerString,
OnDataTrigger

Part Description Data Type

expression An expression that returns an APAXPort
object

APAXPort

Index Defines the index of the data trigger Integer

 307

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Chapter 11: Visual Elements

The APAXPort control has two customizable visual elements: the toolbar and the status bar.
The toolbar is located at the top of the control and the status bar is located at the bottom of
the control. Both of these elements can be hidden or made visible to the user. These elements
are discussed in detail in this chapter.

The toolbar consists of a series of buttons which can be hidden or displayed on an individual
basis. Each of the buttons on the toolbar has default functionality built in to the OnClick
event handler. This default functionality can be used as is without writing a single line of
code, or you can completely override this functionality by supplying your own
OnXxxButtonClick event handler in which you set the Default parameter to False.
Additionally, you can supply your own OnXxxButtonClick event handler and set the Default
parameter to True. When the Default parameter is set to True, any code that is supplied in
your event handler will be executed prior to the default code execution. The reference
section that describes the toolbar immediately follows the reference section on the status
bar.

The status bar is comprised of three panels. The first panel simply displays the
current version of APAX. The second panel contains the status lights and is
discussed in more detail later in this chapter. The third and final panel of the status
bar simply displays the selected communications device. The selected

308 Chapter 11: Visual Elements

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

communications device will either be a serial port (COM1), a TAPI device, or
Winsock.The APAXPort control allows you to add a status light display, similar to the LEDs
found on external modems, to your communications programs. APAX monitors the status
of the associated serial port and changes the state of the display lights correspondingly. The
goal of the component is to give communications programs a status light display similar to
the LEDs found on external modems.

APAX is capable of monitoring the serial port’s line signals (DCD, DTR, CTS, and RI), line
breaks and errors, and whether data is currently being received or transmitted.

Following is a list of all status lights and the port condition they monitor:

The mechanism employed by APAX for displaying status lights is very simple to use, and
only requires two steps. First, the panel on which the lights reside must be made visible by
setting the ShowStatusBar property to True. Second, the ShowLights property must be set to
True.

 The status light functionality of the APAXPort control simply displays two bitmaps, or two
different colors, depending on whether the light is “lit” or “unlit.” The corresponding
modem status signal determines which of the two states is displayed.

Status Light Line condition

BRKLight Lit for BreakOffTimeout ticks when a line break
occurs

CTSLight Lit when CTS signal high

DCDLight Lit when DCD signal high

DSRLight Lit when DSR signal high

ERRLight Lit for ErrorOffTimeout ticks when a line error
occurs

RNGLight Lit for RingOffTimeout ticks after RI signal goes
high

RXDLight Lit when data is being received

TXDLight Lit when data is being transmitted

Status Bar References 309

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Status Bar References
The status bar is displayed by setting the ShowStatusBar property to True. The status bar
consists of a Caption panel, status light panels (BRK, CTS, DCD, ERR, RNG, RXD, and
TXD) and an end panel that displays the current DeviceType. The status lights are displayed
by setting the ShowLights property to True.

Properties
Caption

CaptionAlignment

CaptionWidth

LightsLitColor

LightsNotLitColor

LightWidth

ShowLightCaptions

ShowLights

ShowStatusBar

Version

310 Chapter 11: Visual Elements

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Reference Section

Caption property

Description
Determines the caption displayed in the lower left section of the status bar. Read/write.

Data type
String

Syntax
expression.Caption[= value]

expression must reference an APAXPort.

Remarks
The caption is displayed only if the ShowStatusBar property is set to True.

See also
CaptionAlignment, CaptionWidth, ShowStatusBar

CaptionAlignment property

Description
Determines the horizontal alignment of the status bar caption. Read/write.

Data type
TAlignment

Syntax
expression.CaptionAlignment[= value]

expression must reference an APAXPort.

Status Bar References 311

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Settings

Remarks
The caption is displayed and aligned only if the ShowStatusBar property is set to True.

See also
Caption, CaptionWidth

CaptionWidth property

Description
Determines the width of the status bar caption area. Read/write.

Data type
Integer

Syntax
expression.CaptionWidth[= value]

expression must reference an APAXPort.

Remarks
The status lights and the selected device panels are not automatically resized when the
CaptionWidth property is changed. If the CaptionWidth is increased, the status lights and
selected device panels are shifted to the right. If the CaptionWidth is decreased, the status
lights and selected device panels are shifted to the left.

See also
Caption, CaptionAlignment

Constant Description

taLeftJustify Caption is left justified

taRightJustify Caption is right justified

taCenter Caption is centered

312 Chapter 11: Visual Elements

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

LightsLitColor property

Description
Determines the color of the status lights when they are in the set (asserted or True) state.
Read/write.

Data type
TColor

Syntax
expression.LightsLitColor[= value]

expression must reference an APAXPort.

Remarks
The actual state (lit or unlit) of the individual lights (BRK, CTS, DCD, DSR, ERR, RNG,
RXD, and TXD) is determined automatically by the modem state. The LightsLitColor
property merely defines the color of the light when the corresponding modem state signal is
asserted.

See also
LightsNotLitColor

LightsNotLitColor property

Description
Determines the color of the status lights when they are in the cleared (False) state.
Read/write.

Data type
TColor

Syntax
expression.LightsNotLitColor[= value]

expression must reference an APAXPort.

Status Bar References 313

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Remarks
The actual state (lit or unlit) of the individual lights (BRK, CTS, DCD, DSR, ERR, RNG,
RXD, and TXD) is determined automatically by the modem state. The LightsNotLitColor
property merely defines the color of the light when the corresponding modem state signal is
lowered.

See also
LightsLitColor

LightWidth property

Description
Determines the width of the status light displays. Read/write.

Data type
Integer

Syntax
expression.LightWidth[= value]

expression must reference an APAXPort.

Remarks
The width of individual status lights cannot be set directly. Instead, this property setting
applies to all status lights.

Status lights are displayed only if the ShowStatusBar property is set to True.

See also
ShowLightCaptions, ShowLights

314 Chapter 11: Visual Elements

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

ShowLightCaptions property

Description
Determines whether captions are superimposed on the status light displays. Read/write.

Data type
Boolean

Syntax
expression.ShowLightCaptions[= value]

expression must reference an APAXPort.

Remarks
By default, the status lights have their corresponding caption superimposed on the
individual lights (for example, “TXD”, “RXD”, “RNG”, etc.) Set the ShowLightCaptions
property to False to override this default behavior.

See also
ShowLights, LightWidth

ShowLights property

Description
Determines whether or not the status light indicators are visible. Read/write.

Data type
Boolean

Syntax
expression.ShowLights[= value]

expression must reference an APAXPort.

Remarks
Individual status lights cannot be singled out and hidden or made visible. Setting the
ShowLights property displays all status lights and conversely, setting ShowLights to True
displays all status lights.

See also
LightWidth, ShowLightCaptions

Status Bar References 315

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

ShowStatusBar property

Description
Determines whether the status bar is visible. Read/write.

Data type
Boolean

Syntax
expression.ShowStatusBar[= value]

expression must reference an APAXPort.

Remarks
The status bar is comprised of the caption panel, status light indicators, and the selected
device panel. Setting the ShowStatusBar property to False will hide all of these constituent
components.

See also
ShowToolBar, Visible

Version property

Description
Indicates the current version of APAX. Read-only.

Data type
String

Syntax
expression.Version

expression must reference an APAXPort.

Remarks
This property is particularly useful when dealing with technical support.

316 Chapter 11: Visual Elements

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Toolbar References
The toolbar is displayed by setting the ShowToolBar property to True. Buttons are arranged
on the toolbar in groups according to their functionality, and each group can be displayed or
not. Each button generates an event that can be used to override or enhance the default
functionality.

Properties
ShowConnectButtons

ShowDeviceSelButton

ShowProtocolButtons

ShowTerminalButtons

ShowToolBar

Events
OnCloseButtonClick

OnConnectButtonClick

OnDeviceButtonClick

OnFontButtonClick

OnListenButtonClick

OnReceiveButtonClick

OnSendButtonClick

Toolbar References 317

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

Reference Section

OnCloseButtonClick event

Description
Defines an event that is fired when the user clicks the Close button on the toolbar.

Syntax
Private Sub expression_OnCloseButtonClick(Default as Boolean)

Remarks
This event provides you the opportunity to override the default APAX Close button
behavior. The Default parameter can be set to False in your event handler to completely
circumvent the default APAX behavior. Setting the Default value to True in your event
handler allows the code in your event handler to execute, followed by the execution of the
default APAX code.

See also
OnCloseButtonClick, OnDeviceButtonClick, OnFontButtonClick, OnListenButtonClick,
OnReceiveButtonClick, OnSendButtonClick

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

Default Determines whether APAX implements
default handling

Boolean

318 Chapter 11: Visual Elements

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnConnectButtonClick event

Description
Defines an event that is fired when the user clicks the Connect button on the toolbar.

Syntax
Private Sub expression_OnConnectButtonClick(Default as Boolean)

Remarks
This event provides you the opportunity to override the default APAX Connect button
behavior. The Default parameter can be set to False in your event handler to completely
circumvent the default APAX behavior. Setting the Default value to True in your event
handler allows the code in your event handler to execute, followed by the execution of the
default APAX code.

See also
OnCloseButtonClick, OnDeviceButtonClick, OnFontButtonClick, OnListenButtonClick,
OnReceiveButtonClick, OnSendButtonClick

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

Default Determines whether APAX implements
default handling

Boolean

Toolbar References 319

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnDeviceButtonClick event

Description
Defines an event that is fired when the user clicks the Device Select button on the toolbar.

Syntax
Private Sub expression_OnDeviceButtonClick(Default as Boolean)

Remarks
This event provides you the opportunity to override the default APAX Device Select button
behavior. The Default parameter can be set to False in your event handler to completely
circumvent the default APAX behavior. Setting the Default value to True in your event
handler allows the code in your event handler to execute, followed by the execution of the
default APAX code.

See also
OnCloseButtonClick, OnConnectButtonClick, OnFontButtonClick, OnListenButtonClick,
OnReceiveButtonClick, OnSendButtonClick

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

Default Determines whether APAX implements
default handling

Boolean

320 Chapter 11: Visual Elements

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnFontButtonClick event

Description
Defines an event that is fired when the user clicks the Font button on the toolbar.

Syntax
Private Sub expression_OnFontButtonClick(Default as Boolean)

Remarks

This event provides you the opportunity to override the default APAX Font button behavior.
The Default parameter can be set to False in your event handler to completely circumvent
the default APAX behavior. Setting the Default value to True in your event handler allows the
code in your event handler to execute, followed by the execution of the default APAX code.

See also
OnCloseButtonClick, OnConnectButtonClick, OnDeviceButtonClick,
OnListenButtonClick, OnReceiveButtonClick, OnSendButtonClick

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

Default Determines whether APAX implements
default handling

Boolean

Toolbar References 321

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnListenButtonClick event

Description
Defines an event that is fired when the user clicks the Listen button on the toolbar.

Syntax
Private Sub expression_OnListenButtonClick(Default as Boolean)

Remarks
This event provides you the opportunity to override the default APAX Listen button
behavior. The Default parameter can be set to False in your event handler to completely
circumvent the default APAX behavior. Setting the Default value to True in your event
handler allows the code in your event handler to execute, followed by the execution of the
default APAX code.

See also
OnCloseButtonClick, OnConnectButtonClick, OnDeviceButtonClick, OnFontButtonClick,
OnReceiveButtonClick, OnSendButtonClick

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

Default Determines whether APAX implements
default handling

Boolean

322 Chapter 11: Visual Elements

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

OnReceiveButtonClick event

Description
Defines an event that is fired when the user clicks the Receive File button on the toolbar.

Syntax
Private Sub expression_OnReceiveButtonClick(Default as Boolean)

Remarks
This event provides you the opportunity to override the default APAX Receive File button
behavior. The Default parameter can be set to False in your event handler to completely
circumvent the default APAX behavior. Setting the Default value to True in your event
handler allows the code in your event handler to execute, followed by the execution of the
default APAX code.

See also
OnCloseButtonClick, OnConnectButtonClick, OnDeviceButtonClick, OnFontButtonClick,
OnListenButtonClick, OnSendButtonClick

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

Default Determines whether APAX implements
default handling

Boolean

Toolbar References 323

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

OnSendButtonClick event

Description
Defines an event that is fired when the user clicks the Send File button on the toolbar.

Syntax
Private Sub expression_OnSendButtonClick(Default as Boolean)

Remarks
This event provides you the opportunity to override the default APAX Send File button
behavior. The Default parameter can be set to False in your event handler to completely
circumvent the default APAX behavior. Setting the Default value to True in your event
handler allows the code in your event handler to execute, followed by the execution of the
default APAX code.

See also
OnCloseButtonClick, OnConnectButtonClick, OnDeviceButtonClick, OnFontButtonClick,
OnListenButtonClick, OnReceiveButtonClick

ShowConnectButtons property

Description
Determines whether the Close, Listen, and Connect buttons are visible on the toolbar.
Read/write.

Data type
Boolean

Syntax
expression.ShowConnectButtons[= value]

expression must reference an APAXPort.

Part Description Data Type

expression References the APAXPort object that
fired the event

APAXPort

Default Determines whether APAX implements
default handling

Boolean

324 Chapter 11: Visual Elements

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Remarks
The Close, Listen, and Connect buttons are treated as an individual unit due to the fact that
their functionality is tightly coupled. Individual buttons from this set cannot be singled out
and hidden or made visible. Setting the ShowConnectButtons to False hides all three buttons
and conversely, setting ShowConnectButtons to True will force all three buttons to their
visible state.

This property setting has no effect unless the ShowToolBar property is set to True.

See also
ShowToolBar, ShowDeviceSelButton, ShowProtocolButtons, ShowTerminalButtons

ShowDeviceSelButton property

Description
Determines whether the Device Select button is visible on the toolbar. Read/write.

Data type
Boolean

Syntax
expression.ShowDeviceSelButton[= value]

expression must reference an APAXPort.

Remarks
Setting the ShowDeviceSelButton property to False hides the Device Select button and
conversely, setting the ShowDeviceSelButton property to True forces the Device Select
button to its visible state.

This property setting has no effect unless the ShowToolBar property is set to True.

See also
ShowToolBar, ShowConnectButtons, ShowProtocolButtons, ShowTerminalButtons

Toolbar References 325

13

11

10

12

1

9

3

2

8

4

7

6

1

15

14

17

16

ShowProtocolButtons property

Description
Determines whether the Send File and Receive File buttons are visible on the toolbar.
Read/write.

Data type
Boolean

Syntax
expression.ShowProtocolButtons[= value]

expression must reference an APAXPort.

Remarks
The Send File and Receive File buttons are treated as an individual unit due to the fact that
their functionality is tightly coupled. Individual buttons from this set cannot be singled out
and hidden or made visible. Setting the ShowProtocolButtons to False hides both buttons
and conversely, setting ShowProtocolButtons to True will force both buttons to their visible
state.

This property setting has no effect unless the ShowToolBar property is set to True.

See also
ShowToolBar, ShowConnectButtons, ShowDeviceSelButton, ShowTerminalButtons

ShowTerminalButtons property

Description
Determines whether the Font button is visible on the toolbar. Read/write.

Data type
Boolean

Syntax
expression.ShowTerminalButtons[= value]

expression must reference an APAXPort.

326 Chapter 11: Visual Elements

13

11

10

12

1

9

3

2

8

4

5

7

6

1

15

14

17

16

Remarks
Setting the ShowTerminalButtons property to False hides the Terminal Font Select button
and conversely, setting the ShowTerminalButtons property to True forces the Terminal Font
Select button to its visible state.

This property setting has no effect unless the ShowToolBar property is set to True.

See also
ShowToolBar, ShowConnectButtons, ShowDeviceSelButton, ShowProtocolButtons

ShowToolBar property

Description
Determines whether the toolbar is visible. Read/write.

Data type
Boolean

Syntax
expression.ShowToolBar[= value]

expression must reference an APAXPort.

Remarks
Setting the ShowToolBar property to False hides the toolbar and all of its buttons.
Conversely, setting the ShowToolBar property to True shows the toolbar and also shows any
constituent tool buttons whose corresponding ShowXxx property is set to True.

See also
ShowStatusBar, Visible

 327

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Id
en

tifier In
d

ex
A

p
p

en
d

ix

Appendix

The following properties, methods, and events are included in the APAX type library for
backwards compatibility with MSCom™ and PDQCom™.

Properties
About

AnswerBack

Appearance

AreaCode

AutoProcess

AutoScroll

AutoSize

AutoZModem

BackColor

BackSpace

Break

CallHandle

CaptureFilename

CDHolding

ColorFilter

CommEvent

CommID

CommPort

CountryCode

CTSHolding

CurrentDevice

CursorColumn

CursorRow

CursorType

DeviceName

Devices

Disp

Download

DSRHolding

Echo

Emulation

FontBold

FontItalic

FontName

FontSize

FontUnderline

ForeColor

Handshaking

hWnd

InBufferCount

InBufferSize

Input

InputLen

Interval

InTimeout

KeyTranslation

LineHandle

LineInput

Location

NullDiscard

OutBufferCount

OutBufferSize

Output

ParityReplace

PortOpen

RThreshold

RTSEnable

ScrollRows

Settings

SmoothScroll

SThreshold

TapiName

TapiVersion

Text

Upload

XferCarrierAbort

XferDestFilename

XferDialogHeight

XferDialogLeft

XferDialogTop

XferDialogWidth

XferFileDate

XferFileSize

XferFileTime

XferMessage

XferProtocol

XferSourceFilename

XferStatus

XferStatusDialog

XferTransferred

328 Appendix

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

A
p

p
en

d
ix

Methods
CloseCommHandle

CRC16

CRC32

EnumTapiDevices

EnumTapiLocations

HangUp

PlaceCall

SetCallSettings

SetDeviceByName

SetModemSettings

SuspendComm

TranslateNumber

WaitForCall

Events
CallState

LocationChange

OnComm

OnTapi

Constants
The following constants are included in the APAX type library for backwards compatibility
with MSCom and PDQCom.

AutoProcess constants

AutoScroll constants

Constant Value

PDQ_AUTOPROCESS_NONE 0

PDQ_AUTOPROCESS_SERIAL 1

PDQ_AUTOPROCESS_KEY 2

PDQ_AUTOPROCESS_BOTH 3

Constant Value

PDQ_AUTOSCROLL_NONE 0

PDQ_AUTOSCROLL_VERTICAL 1

PDQ_AUTOSCROLL_HORIZONTAL 2

PDQ_AUTOSCROLL_BOTH 3

PDQ_AUTOSCROLL_VERTKEY 4

Appendix 329

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Id
en

tifier In
d

ex
A

p
p

en
d

ix

Backspace constants

Capture constants

ColorFilter constants

Cursor Type constants

Emulation constants

Constant Value

PDQ_BACKSPACE_DESTRUCTIVE 0

PDQ_BACKSPACE_NON_DESTRUCTIVE 1

Constant Value

PDQ_CAPTURE_STANDARD 0

PDQ_CAPTURE_BINARY 1

PDQ_CAPTURE_VISIBLE 2

Constant Value

PDQ_COLOR_FULL 0

PDQ_COLOR_GREY 1

PDQ_COLOR_MONO 2

Constant Value

PDQ_CURSOR_VBAR 0

PDQ_CURSOR_BLOCK 1

Constant Value

PDQ_EMULATION_NONE 0

PDQ_EMULATION_TTY 1

PDQ_EMULATION_ANSI 2

PDQ_EMULATION_VT52 3

PDQ_EMULATION_VT100 4

330 Appendix

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

A
p

p
en

d
ix

Errors constants

Events constants

Constant Value

PDQ_ER_BREAK 1001

PDQ_ER_CTSTO 1002

PDQ_ER_DSRTO 1003

PDQ_ER_FRAME 1004

PDQ_ER_INTO 1005

PDQ_ER_OVERRUN 1006

PDQ_ER_CDTO 1007

PDQ_ER_RXOVER 1008

PDQ_ER_RXPARITY 1009

PDQ_ER_TXFULL 1010

Constant Value

PDQ_EV_SEND 1

PDQ_EV_RECEIVE 2

PDQ_EV_CTS 3

PDQ_EV_DSR 4

PDQ_EV_CD 5

PDQ_EV_RING 6

PDQ_EV_EOF 7

PDQ_EV_ZMODEM 8

PDQ_EV_XFER 100

Appendix 331

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Id
en

tifier In
d

ex
A

p
p

en
d

ix

Handshake constants

Key Translation constants

PDQColorConstants constants

Constant Value

PDQ_HANDSHAKING_NONE 0

PDQ_HANDSHAKING_XON 1

PDQ_HANDSHAKING_RTS 2

PDQ_HANDSHAKING_BOTH 3

Constant Value

PDQ_KEY_NONE 0

PDQ_KEY_MANUAL 1

PDQ_KEY_ANSI 2

PDQ_KEY_VT52 3

PDQ_KEY_VT100 4

Color Value RGB Value (Hex)

PDQ_COLOR_BLACK 0 &H000000

PDQ_COLOR_BLUE 1 &H800000

PDQ_COLOR_GREEN 2 &H008000

PDQ_COLOR_CYAN 3 &H808000

PDQ_COLOR_RED 4 &H000080

PDQ_COLOR_MAGENTA 5 &H800080

PDQ_COLOR_YELLOW 6 &H008080

PDQ_COLOR_WHITE 7 &HC0C0C0

332 Appendix

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

A
p

p
en

d
ix

XferProtocol constants

PDQ_COLOR_GRAY 8 &H808080

PDQ_COLOR_LIGHTBLUE 9 &HFF0000

PDQ_COLOR_LIGHTGREEN 10 &H00FF00

PDQ_COLOR_LIGHTCYAN 11 &HFFFF00

PDQ_COLOR_LIGHTRED 12 &H0000FF

PDQ_COLOR_LIGHTMAGENTA 13 &HFF00FF

PDQ_COLOR_LIGHTYELLOW 14 &H00FFFF

PDQ_COLOR_BRIGHTWHITE 15 &HFFFFFF

Constant Value Protocol

PDQ_XMODEM_CHECKSUM 0 XModem-Checksum

PDQ_XMODEM_CRC 1 XModem-CRC

PDQ_XMODEM_1K 2 XModem-1K

PDQ_YMODEM_BATCH 3 YModem-Batch

PDQ_YMODEM_G 4 YModem-G

PDQ_ZMODEM 5 ZModem

PDQ_KERMIT 7 Kermit

Color Value RGB Value (Hex)

Appendix 333

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Id
en

tifier In
d

ex
A

p
p

en
d

ix

XferStatus constants

XferStatusDialog constants

Constant Value

PDQ_XFER_TERM_OK 0

PDQ_XFER_WAITING 1

PDQ_XFER_FILE_READY 2

PDQ_XFER_FILE_START 3

PDQ_XFER_XFERING 4

PDQ_XFER_SKIP 5

PDQ_XFER_ABORT 6

PDQ_XFER_FINISHED 7

PDQ_XFER_LOSTCARRIER 8

PDQ_XFER_TIMEOUT 9

PDQ_XFER_TERM_ERROR -1

Constant Value

PDQ_XFERDIALOG_NONE 0

PDQ_XFERDIALOG_MODELESS 1

PDQ_XFERDIALOG_MODAL 2

334 Appendix

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

A
p

p
en

d
ix

TAPI constants

Constant Value

PDQ_CALLSTATE_ACCEPTED 4

PDQ_CALLSTATE_BUSY 64

PDQ_CALLSTATE_CONFERENCED 2048

PDQ_CALLSTATE_CONNECTED 256

PDQ_CALLSTATE_DIALING 16

PDQ_CALLSTATE_DIALTONE 8

PDQ_CALLSTATE_DISCONNECTED 16384

PDQ_CALLSTATE_IDLE 1

PDQ_CALLSTATE_OFFERING 2

PDQ_CALLSTATE_ONHOLD 1024

PDQ_CALLSTATE_ONHOLDPENCONF 4096

PDQ_CALLSTATE_ONHOLDPENDTRANSFER 8192

PDQ_CALLSTATE_PROCEEDING 512

PDQ_CALLSTATE_RINGBACK 32

PDQ_CALLSTATE_SPECIALINFO 128

PDQ_CALLSTATE_UNKNOWN 32768

 i

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Id
en

tifier In
d

ex

Identifier Index

A

AbortNoCarrier 246
AddDataTrigger 301
AddStringToLog 78
aetXxx 248
AnswerOnRing 180
AsciiCharDelay 247
AsciiCRTranslation 248
AsciiEOFTimeout 249
AsciiEOLChar 250
AsciiLFTranslation 251
AsciiLineDelay 252
AsciiSuppressCtrlZ 253

B

Batch 253
Baud 79
bcmXxx 254
BlockCheckMethod 254
BlockErrors 255
BlockLength 255
BlockNumber 256
BytesRemaining 256
BytesTransferred 257

C

CallerID 180
CancelProtocol 258
Caption 310
CaptionAlignment 310
CaptionWidth 311
CaptureFile 143
CaptureMode 144
Clear 145

ClearAll 146
Close 80
cmXxx 144
Color 146
Columns 147
ComNumber 80
CopyToClipboard 148
CTS 81

D

DataBits 82
DataTriggerString 302
DCD 82
DeviceType 83
Dialing 181
DisableDataTrigger 303
DSR 84
DTR 84

E

ElapsedTicks 258
Emulation 149
EnableDataTrigger 304
EnableVoice 182
EstimateTransferSecs 259

F

fcXxx 85
FileDate 260
FileLength 261
FinishWait 261

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

ii Identifier Index

FlowState 85
FlushInBuffer 86
FlushOutBuffer 87
Font 150

G

GetAttributes 150
GetLine 152

H

HandshakeRetry 262
HandshakeWait 263
HonorDirectory 263
HWFlowRequireCTS 88
HWFlowRequireDSR 89
HWFlowUseDTR 90
HWFlowUseRTS 92

I

InBuffFree 93
InBuffUsed 94
IncludeDirectory 264
InitialPosition 265
InProgress 266
InterruptWave 183

K

KermitCtlPrefix 266
KermitHighbitPrefix 268
KermitLongBlocks 269
KermitMaxLen 269
KermitMaxWindows 270
KermitPadCharacter 271
KermitPadCount 271
KermitRepeatPrefix 272
KermitSWCTurnDelay 272

KermitTerminator 273
KermitTimeoutSecs 274
KermitWindowsTotal 274
KermitWindowsUsed 275
KXxx 239

L

leXxx 95
lfXxx 278
LightsLitColor 312
LightsNotLitColor 312
LightWidth 313
Line_APDSpecific 172
Line_CallState 172
Line_LineDevState 172
Line_Reply 172
LineError 95
LogAllHex 96
Logging 97
LogHex 98
LogName 99
LogSize 99

M

MaxAttempts 184
MaxMessageLength 184

O

OnBuffFree 106
OnCloseButtonClick 317
OnConnectButtonClick 318
OnCTSChanged 100
OnCursorMoved 153
OnDataTrigger 305
OnDCDChanged 101
OnDeviceButtonClick 319
OnDSRChanged 101

Identifier Index iii

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Id
en

tifier In
d

ex

OnFontButtonClick 320
OnLineBreak 102
OnLineError 102
OnListenButtonClick 321
OnPortClose 103
OnPortOpen 104
OnProtocolAccept 276
OnProtocolFinish 277
OnProtocolLog 278
OnProtocolStatus 279
OnReceiveButtonClick 322
OnRing 104
OnRXD 105
OnSendButtonClick 323
OnTAPICallerID 185
OnTAPIConnect 186
OnTAPIDTMF 187
OnTAPIFail 188
OnTAPIGetNumber 188
OnTapiPortClose 189
OnTapiPortOpen 189
OnTapiStatus 190
OnTAPIWaveNotify 192
OnTAPIWaveSilence 193
OnWinsockAccept 126
OnWinsockConnect 127
OnWinsockDisconnect 127
OnWinsockError 128
OnWinsockGetAddress 129
OutBuffUsed 107

P

Parity 107
PortOpen 108
PromptForPort 109
Protocol 280
ProtocolStatus 281
ProtocolStatusDisplay 283
psXxx 219, 282
ptXxx 280

PutData 110
PutString 111
PutStringCRLF 111
pXxx 107

R

ReceiveDirectory 283
ReceiveFileName 284
RemoveDataTrigger 306
RI 112
Rows 153
RS485Mode 113
RTS 114
RTSLowForWrite 285

S

ScrollbackEnabled 154
ScrollbackRows 155
SelectedDevice 194
SendBreak 115
SendFileName 286
SetAttributes 156
SetLine 157
ShowConnectButtons 323
ShowDeviceSelButton 324
ShowLightCaptions 314
ShowLights 314
ShowProtocolButtons 325
ShowStatusBar 315
ShowTerminalButtons 325
ShowToolBar 326
SilenceThreshold 195
StartReceive 287
StartTransmit 288
StatusInterval 289
StopBits 115
SWFlowOptions 116
swfXxx 116

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

iv Identifier Index

T

TAPIAnswer 196
TAPIAttempt 196
TAPICancelled 197
TAPIConfigAndOpen 197
TAPIDial 198
TAPIMode 118
TAPINumber 199
TAPIPlayWaveFile 199
TAPIRecordWaveFile 200
TAPIRetryWait 201
TAPISelectDevice 202
TAPISendTone 202
TAPISetRecordingParams 203
TAPIShowConfigDialog 204
TAPIState 205
TAPIStopWaveFile 206
TAPITranslatePhoneNumber 207
taXxx 311
tcaxXxx 151, 156
TerminalActive 158
TerminalBlinkTime 159
TerminalHalfDuplex 159
TerminalLazyByteDelay 160
TerminalLazyTimeDelay 161
TerminalSetFocus 162
TerminalUseLazyDisplay 162
TerminalWantAllKeys 163
TerminalWriteString 164
TerminalWriteStringCRLF 165
teXXX 149
tlXxx 76, 97
TotalErrors 289
TransmitTimeout 290
TrimSeconds 208
tsXxx 205

U

UpcaseFileNames 290
UseSoundCard 209

V

Version 315
Visible 166

W

WaveFileName 210
WaveState 211
waXxx 192
wfXxx 291
WinsockAddress 130
WinsockConnect 130
WinsockListen 131
WinsockMode 132
WinsockPort 133
WriteFailAction 291
WsTelnet 134
wsXxx 132

X

xdtXxx 83
xlsXxx 103
XOffChar 119
XOnChar 120
xtmXxx 118
XYmodemBlockWait 292

Identifier Index v

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Id
en

tifier In
d

ex

Z

zfoXxx 234, 293
Zmodem8K 292
ZmodemFileOption 293
ZmodemFinishRetry 294

ZmodemOptionOverride 295
ZmodemRecover 295
ZmodemSkipNoFile 296
ZXxx 231

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

14

17

16

Id
en

ti
fi

er
 In

d
ex

vi Identifier Index

 i

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex

Subject Index

A

anachronism 47
APAX version 315
ASCII protocol

 See also protocol
delay settings 247, 252
end of file settings 253
end of line character 250
end of line translation 243, 248, 251
logging state 76
overview 243
timeout settings 249

asynchronous serial communication 20

B

backwards compatibility 327
AutoProcess constants 328
AutoScroll constants 328
backspace constants 329
capture constants 329
ColorFilter constants 329
cursor type constants 329
emulation constants 329
errors constants 330
events constants 330
handshake constants 331
key translation constants 331
PDQColorConstants constants 331
TAPI constants 334
XferProtocol constants 332
XferStatus constants 333
XferStatusDialog constants 333

batch file
processing 221
transfer 221

baud rate
definition of 21
setting 26, 27, 29, 79

Berkley Sockets API 121
block size control 235
break signal 24, 102, 115
buffer

allocating 97, 108
bytes allocated for 99
clearing 148
deallocating 80
FIFO 28
input 214
output 215
output space 107
resizing 153
scrollback 136, 146, 154, 155
size allocation 215
terminal 136

button See toolbar

C

caller ID 48, 180
accessing 185

caption
alignment 310
status bar 310
status lights and 314
width 311

carrier wave 45
character

attributes 151
CR/LF 165
delay 247
disabling remote sending 119
escaping 134

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

ii Subject Index

character (continued)
escaping control 232
mapping set 137
passing 26
quoting 237, 267
reading 26
set definition 148
terminal row and 152
wildcard 298

clear to send See CTS
close button 317, 323
COM port See serial port
common problems 52
communications overview 14
ComNumber 59
compatibility with MSCom & PDQCom 327
connect button 318, 323
connection

establishing 7
listen for 7

CTS 35
check signal 81
flow control options 88
modem line state 100

D

data bits 21
setting 29

data carrier detect
 See DCD

data set ready See DSR
data trigger

adding 301
data ownership 298
deleting 306
disabling 303
DOS wildcard characters and 298
enabling 304
end conditions 298
function 298

data trigger (continued)
index 301
list of 302
matching 305
multiple 11
persistence 299
specifying 11
start conditions 298
terminating 299
timed out 305

DCD
check signal 82
modem line state 101

debugger
flow control and 50
interrupt service and 50

debugging 50
overview 67

device
connection types 6
direct 9
remote 7
selected 308
selecting TAPI 194
setting type 83, 108
specifying type 9
TAPI 9
TAPI control of 169
troubleshooting 59
Winsock 7, 9

device manager 55
device select button 319, 324
direct device 9
directory for installation 5
dispatch logging

 See logging
dispatcher overview 41
DNS

entry check 130
overview 122

Domain Name Service See DNS
dot notation 122

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex

Subject Index iii

DSR 35
check signal 84
modem line state 101

DSR signal
flow control 89

DTMF 178
sending tone 202
tone detected. 187
wave file interrupt 183

DTR 35
check signal 84
flow control 90

Dual Tone Multiple Frequency See DTMF

E

emulator 16
keyboard 164
keyboard mapping 137
selecting 149
teletype 16
TTY 16
type 149
VT100 16
VT100 escape sequences 138

escape sequence 135
parsing 136

event management 41
external modems 46

F

FAQs 52
file

processing 221
processing batch 221
receiving 287

file (continued)
refusing 221
transfer 7
transfer delay 247
transfer protocol 10
transmission logic 224
transmit 288

flow control
CTS options 88
current state 85
definition of 32
DSR hardware options 89
DTR options 90
RTS hardware options 92
software options 116
XOff character 119
XOn character 120

font
button 320, 325
setting 7

framing error 23, 57

H

handshaking 224
hardware debugging 50
hardware flow control 30, 33
hardware required 4
HyperTerminal 59

I

input buffer size 214
installation 5
interrupt

enabling 27
indentifying 27

IP address 122
ISDN 17

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

iv Subject Index

K

Kermit protocol
See also protocol
character quoting 237, 267
logging state 75
long blocks 269
long packets 241
options 239
overview 237
packet length 269
packet padding 271
prefix characters 266, 268, 272
sliding windows 242, 270, 272, 274, 275
terminator character 273
timeout settings 274

keyboard
direct to terminal 162
mapping 137
terminal active 158

knowledge base 3

L

large block 236
line

break received event 102
error 22, 95
error event 102
parameters 20, 79, 82, 107, 115

listen button 321, 323
logging

adding string to file 78
ASCII protocol state 76
audit trail 67
auditing tool 50
buffer size 99
control of 96
data received 67

logging (continued)
disabling 97
dispatch entries 69
dispatch error 75
entry types 69
facility state 76
file format 68
file name 99
hex format 98
Kermit protocol state 75
packet state 74
processed event 69
protocol 220
state 96, 97
telnet negotiation 72
trigger allocated 70
trigger data changed 72
trigger dispatched 69
trigger disposed 70, 71
Xmodem protocol state 75
Ymodem protocol state 75
Zmodem protocol state 75

long packets 241

M

modem 17
configuring 197
external 46
flow control 36
plug and play 54
property codes 207
RPI 45
selecting 44
software 45
status light 312
trouble shooting 52
voice 48

modulator/demodulator 45
MSCom 327

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex

Subject Index v

N

news.turbopower.com 3
newsgroups 3

O

output buffer
RTS line control and 65
size 215

overrun error 23, 56

P

packet
data format 105
logging state 74

parallel communication 20
parity 22

error 23, 57
setting 29

PDQCom 327
performance 40
plug and play 54
port See serial port
Programming Windows 95 Unleashed 168
property pages 8
protocol

See also ASCII protocol, Kermit protocol,
Xmodem protocol, Ymodem protocol,
Zmodem protocol

abort 216
abort on carrier drop 216, 246
accept file event 215, 276
ASCII overview 243
background operation 214
batch file transfer 221
block check method 254
block length 255
block number 256
buffer sizes 214

protocol (continued)
bytes remaining 256
bytes transferred 257
cancel 246
cancelling transfer 258
character delay 247
definition 18
destination directory 283
detecting active 266
detecting batch transfers 253
displaying buttons 325
elapsed time 258
engine 214
error count 255, 289
error handling 216
estimate transfer time 259, 272
events 215
file date and time 260
file length 261
file transfer 10
file transfer status event 215
files to send 264, 286
initial file offset 265
internal logic 222
Kermit overview 237
logging 220
logging event 278
options 10
overwrite files 291, 293
parameters 10
receive files 287
received file name 263, 264, 284
reject file 221
retry settings 262, 263
RTS low during write 285
sending files 288
state code 220, 281
status 217
status event 215, 279
status interval 289
status properties 217
status window component 220, 283

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

vi Subject Index

protocol (continued)
telnet 134
termination event 215
timeout settings 261, 290
tranmission process 224
transfer complete event 277
type setting 280
Xmodem overview 226
Ymodem overview 229
Zmodem overview 231

R

receive file button 322, 325
receive flow control

 See flow control
register

divisor latch high 27
FIFO control 27
interrupt enable 27
interrupt identification 27
line control 29
line status 31
modem control 30
modem status 32

remote device 7
request to send

 See RTS
RI signal 112
ring indicator

 See RI
ring signal event 104
RPI modems 45
RS-232 15
RS-485 15

overview 64
RTS control 65
RTS line and 64
serial port hardware 64

RTS 35
check signal 114
flow control 92
RS-485 and 64

S

scrollback mode 155
send file button 323, 325
serial port

baud rate 79
cleanup functions 189
close event 103
closing 80
CTS signal 81
data bits 82
data received event 105
DCD signal 82
DSR signal 84
DTR signal 84
error on open 59
flow control 85, 116, 119, 120
flush buffer 86, 87
identifying 129
input buffer space 93, 94
line errors 95
line signal 308
mode 83
number 109
on-board 54
open event 104
opening 108, 197
output buffer space 106, 107
overview 63
parity 107
plug and play 54
port number 80
remote sending character 119
reserved 122
RI signal 112
RS-485 support 113

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex

Subject Index vii

serial port (continued)
RTS signal 114
send data 110
sending data 111
sending string 111
setup functions 189
stop bits 115
TAPI mode 118
terminal active 158
trouble shooting 53
user defined 109
Winsock and 122
Winsock lookup 133
writing data to log 96
XOff character 119
XOn character 120

setting
baud rate 26, 27, 29
data bits 29
parity 29
stop bits 29

setup 5
sliding windows 242
socket overview 123
software flow control 35
software modems 45
software required 4
speed button See toolbar
status bar

caption 310, 311
color 312
overview 307, 309
showing 315
status lights visible 314
visible 166, 315

status lights
assert 312
break light 308
caption 314
clear 312
color 312
configuring 12

status lights (continued)
CTS light 308
DCD light 308
DSR light 308
error light 308
options 12
ring light 308
RXD light 308
specifying 12
TXD light 308
visible 314
width 313

stop bits 22, 115
setting 29

SuperKermit 242
system requirements 4

T

TAPI
access caller ID 185
advantages 167
answer delay 180
answering calls 174
auto answer 196
busy signal 201
callback procedure 171
callback routine 190
callback translation 170
caller ID 180
configuration dialog 204
configuration record 204
configuring modem 197
connect fail event 188
connecting 7
connection established 186
counting redials 196
device 7, 9
device control 169
dial count 196
dial retry 184

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

viii Subject Index

TAPI (continued)
dial retry delay 201
dialing 198
dialing status 181
disadvantages 167
disconnect check 197
display number 199
DTMF 178, 187
enabling voice 182
events 170
file length 184
get number event 188
hangup 193
interrupting wave file 183
line noise 195
making calls 174
message time 184
mode 118
modem configuration with 176
overview 17, 167
phone number check 188
playing wave file 199, 209
port closed event 189
port opened event 189
recording stop 193
recording wave file 200
selecting device 194, 202
sending DTMF tone 202
service providers 118, 175
silence threshold 195
sound card 209
state 205
status 181, 199, 205
status event 190
status message 172
status processing 171
terminating call 193
terminating wave file 206, 208
translating phone number 207
troubleshooting 55
unimodem 118, 175
unimodemv 177

TAPI (continued)
versions supported 49
voice support 48
wave device status 211
wave file 177, 183, 199, 200, 206, 208, 209
wave file name 210
wave file parameters 203
wave file status 192
wave message length 185

TAPI device
selecting 194
user configuring 204
user selection 202

TAPI Reference Manual 168
technical support 51, 315
Telephony Application Programming Inter-
face See TAPI
telnet protocol

 See also protocol
enabling 134
logging negotiation 72
overview 123

terminal
active 158
attributes 150
background color 146
blink cycle 159
capture 8
capturing data 143, 144
character set 148
character set mapping 137
character values 152
clearing display 145, 146
clearing scrollback buffer 148
color 150
column number 147
configuring 8
configuring display 146, 147, 150, 153,

155, 156, 159, 160, 161, 162
control sequence 16
copying to clipboard 148
CR/LF character 165

13

11

10

12

Id
en

tifier In
d

ex

9

1

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex

Subject Index ix

terminal (continued)
creating file 144
cursor move event 153
cursor position 153
displaying local data 159
emulation functionality 138
emulation type 149
escape sequence 135
focus 162
font 7, 150
font attributes 156
font button 325
keyboard mapping 137, 163
lazy writing mode 160, 161, 162
line end 165
overview 16
parsing escape sequence 136
repainting 160, 161, 162
row count 153
scroll back buffer 136
scroll display 145
scrollback buffer 146, 155
scrollback mode 154
text data 152, 157
trapping keystrokes 163
TTY 135
visible 166
VT100 135
VT220 135
VT52 135
window color 146
writing string to 164
writing string to row 157

toolbar
close button event 317
connect button event 318
default 307
device select button event 319
display 323, 324, 325
font button event 320

toolbar (continued)
listen button event 321
overriding default 307
overview 307, 316
receive file button event 322
send file button event 323
showing 326
visible 166, 326

transfer
batch event 61
cancelling protocol 258
file event 61
speed 61
troubleshooting 57

transmit flow control
 See flow control

trigger
logging allocation 70
logging dispatch 69
logging disposal 70
logging handler allocation 71
logging handler disposal 71

TTY 135

U

UART 14, 20, 24
overrun 56
register 25

UNIMDM.TSP 175
Unimodem/5 48
Unimodem/V 48

V

version of APAX 307, 315
VT100 135, 138
VT220 135
VT52 135

13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

x Subject Index

W

wave file
device status 211
format of 48
interrupting 183
name 210
playing 199, 209
recording 200
setting parameters 203
sound card 209
status 192
stop playing 206
TAPI and 177
terminating 193, 208
user interrupt 49

wildcard characters 298
Winmodem

disadvantages 45
troubleshooting 56

Winsock
address check 129
APAX and 124
client application 132
client connect event 126
connection check 131
connection event 127
device type 131
disconnect event 127
error event 128
host name 130
IP address 130
mode 131, 132
overview 121
port number 133
serial port number 133
server application 132
TCP/IP connection 130

Winsock device
configuration page 9
connecting 7

www.turbopower.com/search 3
www.turbopower.com/support 3
www.turbopower.com/tpslive 3

X

Xmodem protocol
See also protocol
extensions 228
logging state 75
overview 226
timeout settings 292

XOff character 119
XOn character 120

Y

Ymodem protocol
See also protocol
extensions 230
logging state 75
overview 229

Z

Zmodem protocol
See also protocol
block size control 235
character sequence and 61
control character escaping 232
file management options 234
logging state 75
long blocks 236, 292
overview 231
overwrite files 293, 295, 296
protocol options 233
resume transfer 234, 295
retry settings 294
troubleshooting 57

